urbs Documentation
Release 1.0.0

tum-ens

Jul 19, 2021

Contents

1 Contents
1.1 User'smanual e e e e e e
1.I.1 0 Usersguide o . o o i e e
1.2 Mathematical documentation e e e e e
1.2.1 Mathematical description Lo
1.3 Technical documentation e
1.3.1 Model Implementation
1.3.2 ‘urbs’ module description
1.4 ADMM module for regional decomposition L.
1.4.1 ADMM module for regional decomposition
2 Features
3 Changes
3.1 2019-03-13 Version 1.0
3.2 2017-01-13 Version 0.7 o . o o e e e e
3.3 2016-08-18 Version 0.6 e e e
3.4 2016-02-16 Version 0.5 e e e e e e e
3.5 2015-07-29 Version 0.4 e e e e e e
3.6 2014-12-05 Version 0.3 L .
4 Screenshots
5 Dependencies
Python Module Index
Index

169

171
171
171
172
172
172
172

173

175

177

179

urbs Documentation, Release 1.0.0

Author Johannes Dorfner, <johannes.dorfner@tum.de>

Organization Chair of Renewable and Sustainable Energy Systems, Technical University
of Munich, <urbs@ens.ei.tum.de>

Version 1.0.0
Date Jul 19, 2021

Copyright The model code is licensed under the GNU General Public License 3.0. This
documentation is licensed under a Creative Commons Attribution 4.0 International
license.

Contents 1

mailto:johannes.dorfner@tum.de
http://www.ens.ei.tum.de/
mailto:urbs@ens.ei.tum.de
http://www.gnu.org/licenses/gpl-3.0
http://creativecommons.org/licenses/by/4.0/

urbs Documentation, Release 1.0.0

2 Contents

cHAPTER 1

Contents

1.1 User’s manual

These documents give a general overview and help you getting started from after the installation (which
is covered in the README.md file on GitHub) to you first running model.

1.1.1 Users guide

Welcome to urbs. The following sections will help you get started.

Overview model structure

urbs is a generator for linear energy system optimization models.

urbs consists of several model entities. These are commodities, processes, transmission and storage.
Demand and intermittent commodity supply through are modelled through time series datasets.

Commodity

Commodities are goods that can be generated, stored, transmitted and consumed. By convention, they
are represented by their energy content (in MWh), but can be changed (to J, kW, t, kg) by simply using
different (consistent) units for all input data. Each commodity must be exactly one of the following six
types:

» Stock: Buyable at any time for a given price. Supply can be limited per timestep or for a whole
year. Examples are coal, gas, uranium or biomass.

* SupIm: Supply intermittent stands for fluctuating resources like solar radiation and wind energy,
which are available according to a timeseries of values, which could be derived from weather data.

https://github.com/tum-ens/urbs/blob/master/README.md#installation

urbs Documentation, Release 1.0.0

* Demand: These commodities have a timeseries for the requirement associated and must be pro-
vided by output from other process or from storage. Usually, there is only one demand commodity
called electricity (abbreviated to Elec), but multiple (e.g. electricity, space heating, process heat,
space cooling) demands can be specified.

* Env: The special commodity CO?2 is of this type and represents the amount (in tons) of greenhouse
gas emissions from processes. Its total amount can be limited, to investigate the effect of policies
on the model.

* Buy/Sell: Commodities of these two types can be traded with an external market. Similar to Stock
commodities they can be limited per hour or per year. As opposed to Stock commodities the price
at which they can be traded is not fixed but follows a user defined time series.

Stock and environmental commodities have three numeric attributes that represent their price, total an-
nual and per timestep supply or emission limit, respectively. Environmental commodities (i.e. CO2)
have a maximum allowed quantity that may be created across the entire modeling horizon.

Commodities are defined over the tuple (year, site, commodity, type), for example
(2020, 'Norway', 'Wind', 'SupIm') for wind in Norway with a time series or (2020,
'Iceland', 'Electricity', 'Demand') for an electricity demand time series in Iceland.

Process

Processes describe conversion technologies from one commodity to another. They can be visualised like
a black box with input(s) (commodity) and output(s) (commodity). Process input and output ratios are
the main technical parameters for processes. Fixed costs for investment and maintenance (per capacity)
and variable costs for operation (per output) are the economical parameters.

Processes are defined over two tuples. The first tuple (year, site, process) specifies the loca-
tion of a given process e.g. (2030, 'Iceland', 'Turbine') would locate a process Turbine
at site Tceland. The second tuple (year, process, commodity, direction) then speci-
fies the inputs and outputs for that process. For example, (2030, 'Turbine', 'Geothermal',
'In') and (2030, 'Turbine', 'Electricity', 'Out') describes thatthe process named
Turbine has a single input Geothermal and the single output Electricity.

Transmission

Transmission allows instantaneous transportation of commodities between sites. It is charac-
terised by an efficiency and costs, just like processes. Transmission is defined over the tu-
ple (year, site in, site out, transmission, commodity). For example, (2030,
'Iceland', 'Norway', 'Undersea cable', 'Electricity') would represent an un-
dersea cable for electricity between Iceland and Norway.

Storage

Storage describes the possibility to deposit a deliberate amount of energy in the form of one commodity
at one time step; with the purpose of retrieving it later. Efficiencies for charging/discharging depict
losses during input/output. Storage is characterised by capacities both for energy content (in MWh)
and charge/discharge power (in MW). Both capacities have independent sets of investment, fixed and
variable cost parameters to allow for a very flexible parametrization of various storage technologies;
ranging from batteries to hot water tanks.

4 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Storage is defined over the tuple (year, site, storage, stored commodity). For exam-
ple, (2020, 'Norway', 'Pump storage', 'Electricity') represents a pump storage
power plant in Norway that can store and retrieve energy in form of electricity.

Time series

Demand

Each combination (year, site, demand commodity) may have one time series, describing
the aggregate demand (typically MWh) for a commodity within a given timestep. They are a crucial
input parameter, as the whole optimization aims to satisfy these demands with minimal costs by the
given technologies (process, storage, transmission). An additional feature for demand commodities is
demand side management (DSM) which allows for the shifting of demands in time.

Intermittent Supply

Each combination (year, site, supim commodity) must be supplied with one time series,
normalized to a maximum value of 1 relative to the installed capacity of a process using this commodity
as input. For example, a wind power time series should reach value 1, when the wind speed exceeds the
modeled wind turbine’s design wind speed is exceeded. This implies that any non-linear behaviour of
intermittent processes can already be incorporated while preparing this timeseries.

Buy/Sell prices

Each combination (year, Buy/sell commodity) must be supplied with one time series which
represents the price for purchasing/selling the given commodities in the given modeled year.

Time variable efficiency

Each combination (year, site, process) canoptionally be supplied with one time series which
multiplies the outputs of the process with an acoording factor.

Get started

Welcome to urbs! Here you can learn how to use the program and what to do to create your own
optimization problems and run them.

Inputs

There are two different types of inputs the user has to make in order to set up and solve an optimization
problem with urbs.

First, there are the model parameters themselves, i.e. the parameters specifying the behavior of the dif-
ferent model entities such as commodities or processes. These parameters are entered into spreadsheets
with a standardized structure. These then have to be placed in the subfolder Input. There can be
no further information given on those parameters here since they make up the particular energy system

1.1. User’s manual 5

urbs Documentation, Release 1.0.0

models. There are, however, two examples provided with the code, which are explained elsewhere in
this documentation.

Second, there are the settings of the modeling run such as the modeling horizon or the solver to be
employed. These settings are made in a run script. For the standard example such scripts are given
named runme.py for the example mimo—example and runBP.py for the example Business park.
To run a modeling run you then simply execute the according run script by typing:

$ python3 runscript.py

in the command prompt.

You can immediately test this after the installation by running one of the two standard examples using
the corresponding example run scripts.

runscript explained

The runscript can be subdivided into several parts. These will be discussed here in detail.

Imports

The script starts with importing the relevant python libraries as well as the module urbs.

import os
import shutil
import urbs

The included packages have the following functions:
* os and shutil are builtin Python modules, included here for their data path and copying operations.

e urbs is the directory which includes the modules, whose functions are used mainly
in this script. These are prepare_result_directory (), setup_solver () and
run_scenario ().

More functions can be found in the document API reference.

In the following sections the user defined input, output and scenario settings are described.

Input Settings

The script starts with the specification of the input files, which is either a single .xIsx file located in the
same folder as the runscript or a collection of .xIsx files located in the subfolder Input:

input_files = 'Input'
result_name = 'Mimo-ex'
result_dir = urbs.prepare_result_directory(result_name) # name + time_,

—Sstamp

copy input file to result directory
try:

shutil.copytree (input_files, os.path.join(result_dir, 'Input'))
except NotADirectoryError:

(continues on next page)

6 Chapter 1. Contents

https://docs.python.org/2/library/os.html
https://docs.python.org/2/library/shutil.html
https://github.com/tum-ens/urbs
https://pandas.pydata.org/pandas-docs/stable/reference/index.html#api

urbs Documentation, Release 1.0.0

(continued from previous page)

shutil.copyfile (input_files, os.path.join(result_dir, input_files))
copy runme.py to result directory

shutil.copy(file , result_dir)

The input file/folder and the runscript are automatically copied into the result folder.

Next variables specifying the desired solver and objective function are set:

choose solver (cplex, glpk, gurobi, ...)
solver = 'glpk!'

objective function
objective = 'cost' # set either 'cost' or 'CO2' as objective

The solver has to be licensed for the specific user, where the open source solver “glpk” is used as the
standard. For the objective function urbs currently allows for two options: “cost” and “CO2” (case
sensitive). In the former case the total system cost and in the latter case the total CO2-emissions are
minimized.

The model parameters are finalized with a specification of timestep length and modeled time horizon:

simulation timesteps

(offset, length) = (3500, 168) # time step selection
timesteps = range (offset, offset+length+1)

dt = 1 # length of each time step (unit: hours)

The variable t imesteps is the list of timesteps to be simulated. Its members must be a subset of the
labels used in input_file’s sheets “Demand” and “Suplm”. It is one of the function arguments to
create_model () and accessible directly, so that one can quickly reduce the problem size by reducing
the simulation 1ength, i.e. the number of timesteps to be optimised. Variable dt is the duration of
each timestep in the list in hours, where any positiv real value is allowed.

range () is used to create a list of consecutive integers. The argument +1 is needed, because
range (a,b) only includes integers from a to b—1:

>>> range(1,11)
[17 2/ 3/ 4! 5/ 6/ 7/ 87 9/ 101

Output Settings

The desired output is also specified by the user in the runscript. It is split into two parts: reporting and
plotting. The former is used to generate an excel output file and the latter for standard graphs.

Reporting

urbs by default generates an .xIsx-file as an ouput in result_dir. This file includes all commodities of
interest to the user and can be specified as report tuples each consisting of a given year, sites and
commodities combination. Information about these commodities is summarized both in sum (in
sheet “Energy sums”) and as individual timeseries (in sheet “... timeseries”).

1.1. User’s manual 7

urbs Documentation, Release 1.0.0

detailed reporting commodity/sites

report_tuples = [
(2019, 'North', 'Elec'),
(2019, '™Mid', 'Elec'),
(2019, 'South', 'Elec'),
(2019, ['North', 'Mid', 'South'], 'Elec'),
(2024, 'North', 'Elec'),
(2024, 'Mid', 'Elec'"),
(2024, 'South', 'Elec'),
(2024, ['North', 'Mid', 'South'], 'Elec'),
(2029, 'North', 'Elec'),
(2029, 'Mid', 'Elec'"),

(2029, 'South', 'Elec'),

(2029, ['North', 'Mid', 'South'], 'Elec'),

(2034, 'North', 'Elec'),

(2034, 'Mid', 'Elec'"),

(2034, 'South', 'Elec'),

(2034, ['North', 'Mid', 'South'], 'Elec'),

]

optional: define names for sites in report_tuples report_sites_name = {(‘North’, ‘Mid’, ‘South’): ‘All’ }

Optionally it is possible to define clusters of sites for aggregated information and with
report_sites_name it is then possible to name these. If they are empty, the default value will
be taken.

Plotting

urbs generates default result images. Which images exactly are desired can be set by the user. via the
following input lines:

plotting commodities/sites
plot_tuples = [
(2019, 'North', 'Elec'),
(2019, '™Mid', 'Elec'),
(2019, 'South', 'Elec'),
(2019, ['North', 'Mid', 'South'], 'Elec'),
(2024, 'North', 'Elec'),
(2024, '™Mid', 'Elec'),
(2024, 'South', 'Elec'),
(2024, ['North', 'Mid', 'South'], 'Elec'),
(2029, 'North', 'Elec'),
(2029, '™Mid', 'Elec'),
(2029, 'South', 'Elec'),
(2029, ['North', 'Mid', 'South'], 'Elec'),
(2034, 'North', 'Elec'),
(2034, 'Mid', 'Elec'),
(2034, 'South', 'Elec'),
(2034, ['North', 'Mid', 'South'], 'Elec'),
]

optional: define names for sites in plot_tuples
plot_sites_name = {('North', 'Mid', 'South'): 'All'}

plotting timesteps

(continues on next page)

8 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

plot_periods = {
'all': timesteps[l:]
}

The logic is similar to the reporting case discussed above. With the setting of plotting timesteps the
exact range of the plotted result can be set. In the default case shown this range is all modeled timesteps.
For larger optimization timestep ranges this can be impractical and instead the following syntax can be
used to hard code which steps are to be plotted exactly.

plotting timesteps
plot_periods = {

'win': range (1000:1168),
sum': range (5000:5168)

}

In this example two 1 week long ranges are plotted between the specified time steps. Using this make
sure, that the chosen ranges are subsets of the modeled time steps themselves.

The plot colors can be customized using the module constant COLORS. All plot colors are user-definable
by adding color tuple () (r, g, b) ormodifying existing tuples for commodities and plot decora-
tion elements. Here, new colors for displaying import/export are added. Without these, pseudo-random
colors are generated in to_color ().

create timeseries plot for each demand (site, commodity) timeseries
for sit, com in prob.demand.columns:

Scenarios

This section deals with the definition of different scenarios. Starting from the same base scenarios,
defined by the data in input_file, they serve as a short way of defining the difference in input data.
If needed, completely separate input data files could be loaded as well.

The scenarios list in the end of the input file allows then to select the scenarios to be actually run.

scenarios = [
urbs.scenario_base,
urbs.scenario_stock_prices,
urbs.scenario_co2_limit,
urbs.scenario_co2_tax_mid,
urbs.scenario_no_dsm,
urbs.scenario_north_process_caps,
urbs.scenario_all_together

The following scenario functions are specified in the subfolder urbs in script scenarios.py.

Scenario functions

A scenario is simply a function that takes the input data and modifies it in a certain way. with the
required argument dat a, the input data dict.:

1.1. User’s manual 9

https://docs.python.org/3/library/stdtypes.html#dict

urbs Documentation, Release 1.0.0

SCENARIOS

def scenario_base (data):
do nothing
return data

The simplest scenario does not change anything in the original input file. It usually is called “base”
scenario for that reason. All other scenarios are defined by 1 or 2 distinct changes in parameter values,
relative to this common foundation.:

def scenario_stock_prices(data):
change stock commodity prices

co = datal['commodity"']
stock_commodities_only = (co.index.get_level_values('Type') == 'Stock')
co.loc[stock_commodities_only, 'price'] %= 1.5

return data

For example, scenario_stock_prices () selects all stock commodities from the DataFrame
commodity, and increases their price value by 50%. See also pandas documentation Selection by
label for more information about the . 1oc function to access fields. Also note the use of Augmented
assignment statements (x=) to modify data in-place.:

def scenario_co2_ limit (data) :
change global CO2 1limit
hacks = datal['hacks']
hacks.loc['Global CO2 limit', 'Value'] = 0.05
return data

Scenario scenario_co2_limit () shows the simple case of changing a single input data value. In
this case, a 95% CO2 reduction compared to the base scenario must be accomplished. This drastically
limits the amount of coal and gas that may be used by all three sites.:

def scenario_north_process_caps (data) :
change maximum installable capacity

pro = datal['process']
pro.loc[('North', 'Hydro plant'), 'cap-up']l %= 0.5
pro.loc[('North', 'Biomass plant'), 'cap-up'l *= 0.25
return data
Scenario scenario_north_process_caps () demonstrates accessing single values in the

process DataFrame. By reducing the amount of renewable energy conversion processes (hy-
dropower and biomass), this scenario explores the “second best” option for this region to supply its
demand.:

def scenario_all_together (data) :
combine all other scenarios

data = scenario_stock_prices (data)
data = scenario_co2_limit (data)
data = scenario_north_process_caps (data)

return data

Scenario scenario_all_together () finally shows that scenarios can also be combined by chain-
ing other scenario functions, making them dependent. This way, complex scenario trees can written
with any single input change coded at a single place and then building complex composite scenarios
from those.

10 Chapter 1. Contents

https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-label
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-label
http://docs.python.org/2/reference/ simple_stmts.html#augmented-assignment-statements
http://docs.python.org/2/reference/ simple_stmts.html#augmented-assignment-statements
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

urbs Documentation, Release 1.0.0

Run scenarios

This now finally is the function that gets everything going. It is invoked in the very end of the runscript.

for scenario in scenarios:

prob = urbs.run_scenario (input_files, solver, timesteps, scenario,
result_dir, dt, objective,
plot_tuples=plot_tuples,
plot_sites_name=plot_sites_name,
plot_periods=plot_periods,
report_tuples=report_tuples,
report_sites_name=report_sites_name)

Having prepared settings, input data and scenarios, the actual computations happen in the function
run_scenario () of the script runfunctions.py in subfolder urbs. It is executed for each
of the scenarios included in the scenario list. The following sections describe the content of function
run_scenario (). In a nutshell, it reads the input data from its argument input_file, modifies
it with the supplied scenario, runs the optimisation for the given t imesteps and writes report and
plotsto result_dir.

Reading input

scenario name, read and modify data for scenario

sce = scenario._ name
data = read_input (input_files,year)
data = scenario(data)

validate_input (data)

Function read_input () returns a dict data of up to 12 pandas DataFrames with hard-coded col-
umn names that correspond to the parameters of the optimization problem (like ef £ for efficiency or
inv-cost—c for capacity investment costs). The row labels on the other hand may be freely cho-
sen (like site names, process identifiers or commodity names). By convention, it must contain the six
keys commodity, process, storage, transmission, demand, and supim. Each value must
be a pandas.DataFrame, whose index (row labels) and columns (column labels) conforms to the
specification given by the example dataset in the spreadsheet mimo-example.x1lsx.

data is then modified by applying the scenario () function to it. To then rule out a list of known
errors, that accumulate through growing user experience, a variety of validation functions specified in
script validate.py in subfolder urbs is run on the dict data.

Solving

create model
prob = urbs.create_model (data, dt, timesteps)

refresh time stamp string and create filename for logfile
now = prob.created
log_filename = os.path.join(result_dir, '{}.log').format (sce)

solve model and read results
optim = SolverFactory('glpk') # cplex, glpk, gurobi,

(continues on next page)

1.1. User’s manual 11

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

urbs Documentation, Release 1.0.0

(continued from previous page)

optim = setup_solver (optim, logfile=log_filename)
result = optim.solve(prob, tee=True)

This section is the “work horse”, where most computation and time is spent. The optimization prob-
lem is first defined (create_model ()) and populated with parameter values with values. The
SolverFactory object is an abstract representation of the solver used. The returned object opt im
has a method set_options () to set solver options (not used in this tutorial).

The remaining line calls the solver and reads the result object back into the prob object, which is
queried to for variable values in the remaining script file. Argument tee=True enables the realtime
console output for the solver. If you want less verbose output, simply set it to False or remove it.

Business park example explained

In this part the input files of the standard example Business park will be explained in detail.

Task

The task we set ourselves here is to build our own intertemporal model. The task is the following:

The technical staff of a business park management company wants you to find the cost optimal energy
system for their business park. You are to provide this with increasingly stricter CO2 emission limits
over time. As the company expects to operate this business park for a long time still, they want you to
help developing a long term strategy how to transform the energy supply infrastructure of the business
park in cost optimal way over the time frame of 3 decades. The company also expects that the business
park will be increasingly closely interacting with the neighboring small city and its energy system. All
current and expected demand curves are given to you. You also have full access to regional climate
models and all relevant parameters for the energy conversion units relevant for your problem.

Input files

The task set is intertemporal. That is we need to provide several .xlsx input files, one for each modeled
year. Here we chose to use 3 files representing modeled years 10 years apart. For the given task this
seems to be a good compromise between accuracy and computational effort. The files are named 2020 .
x1sx, 2030.x1sx and 2040.x1sx and sit in the folder Input (Business park). We will
now proceed with a detailed walkthrough of the individual files.

Sheet Global

Here you can now specify the global properties needed for the modeling of the energy system. Note that
this sheet has different entries for the different input files:

* Support timeframe (All files): Give the value for the modeled year here.

* Discount rate (Only first file): This value gives the discount rate that is used for intertemporal
planning. It stands for the annual devaluation of money across the modeling horizon. In the
example a discount rate of 3 % is used.

12 Chapter 1. Contents

urbs Documentation, Release 1.0.0

* CO2limit (All files): This parameter limits the CO2 emissions across all sites within one modeled
year, the CO2 budget sets a cap on the total emissions across all sites in the entire modeling
horizon. If no restriction is desired enter ‘inf” here. In the example increasingly strict values for
the CO2 limit are used for the different modeled years, from 60 kt/a in 2020 over 45 kt/a in 2030
to 30 kt/a in 2040. This represents the will of the company to achieve milestones in the emission
reductions while gradually changing their energy infrastructure.

* CO2 budget (Only first file): While the CO2 limit specified for each year limits the CO2 emissions
across all sites within one modeled year, the CO2 budget sets a cap on the total emissions across
all sites in the entire modeling horizon. If no restriction is desired enter ‘inf’ here. The CO2
budget is only active when the Objective is set to its default value ‘cost’. In the example a CO2
budget of 1.2 Mt is used. This budget imposes a stricter limit on the emissions than the combined
targets for the individual modeled year. In terms of climate impact his limit is the more important
one. For all CO2 limitations the business park and the city are considered together since in the
assumed case the company running the business park wants to act as an electricity provider for
the city as well.

* Cost budget (Only first file): With this parameter a limit on the total system cost over the entire
modeling horizon can be set. If no restriction is desired enter ‘inf’ here. The Cost budget is
only active when the Objective is set to the value ‘CO2’. In the example no CO2 optimization is
considered this parameter is thus set to infinity.

* Last year weight (Only last file): In intertemporal modeling each modeled year is repeated until
the next modeled year is reached. This is done ba assigning a weight to the costs accrued in each
of the modeled years. For the last modeled year the number of repetitions has to be set by the user
here, where a high number leads to a stronger weighting of the last modeled year, i.e. of the final
energy system configuration. In the example the last year has a weight of /0 years. This means
that it will be equally weighted identically to the others which always represent all years until the
ext modeled year.

Sheet Site

In this sheet you can specify the site names and also the area of each site. The line index represents all
the sites. The only site specific property to be set is then:

* Area: Specifies the usable area for processes in the given site. The area does not need to be the
total floor area. It is used to limit the use of area consuming processes and can be seen as, e.g., the
roof area for solar technologies.

In the example two sites ‘Business park’ and ‘City’ are given. These and their respective areas do
not change. The areas here represent roof areas for PV and the city has more of this.

Sheet Commodity

In this sheet all the commodities, i.e. energy or material carriers, are specified. The line index com-
pletes a commodity tuple, i.e. a connection (year, site, commodity, type). There are three
properties to be specified for all commodities of types Stock, Buy, Sell and Environmental.

* Price denotes the cost of taking one unit of energy from the stock for Stock commodities or
emitting one unit of Environmental. For Buy and Sell commodities this is not directly a price
but a multiplier for the time series given in the sheet ‘Buy-Sell-Price’. It is thus typically set to 1
for these commodity types.

1.1. User’s manual 13

urbs

Documentation, Release 1.0.0

max limits the total amount of the commodity that may be bought, sold or emitted per year.

maxperhaour limits the total amount of the commodity that may be bought, sold or emitted per
hour (not timestep but really hour).

In the site ‘Business park’ there are 9 commodities defined:

Solar (West/East) is of type SupIm and represents the capacity factor timeseries of solar panels
mounted with a given inclination (10° both West and East).

Grid electricity is of type Buy and represents the electricity price as bought from the regional
grid operator. The business park pays constant price over the year. In the site ‘City’ this price is
different and hence a multiplier is used to increase the wholesale price for households.

Gas is of type Stock and represents the price for the purchase of natural gas from the local
provider.

Electricity, Heat and Cooling are of type Demand and represent the hourly demand for these three
energy carriers.

Intermediate is of type Stock. However, it is not possible to buy this commodity from the stock. It
is introduced to allow for a flexible operation of a combined heat and power (CHP) plant according
to section Modeling nuggets.

Intermediate low temperature is of type Stock. It is also not buyable from an external source. Its
purpose is to make the operation of the cooling processes more realistic by preventing the storage
of high temperature cooling from ambient air cooling in cold storages.

In site ‘City’ one additional commodity, Operation decentral units is introduced. It is of type SupIm
and makes sure that the different heating technologies usable in the site all operate at a fixed share of
the total heat demand. This is necessary, since these technologies are build up in a decentral way in the
individual houses. The idea behind this is laid out in section Modeling nuggets.

Sheet Process

In this sheet the energy conversion technologies are described. Here only the economical and some
general technical parameters are set. The interactions with the commodities are introduced in the next

sheet.

The following parameters are set here for the processes:

Installed capacity (MW) (Only first file) gives the capacity of the process that is already istalled
at the start of the modeling horizon.

Lifetime of installed capacity (years) (Only first file) gives the rest lifetime of the installed
processes in years. A process can be used in a modeled year y still if the lifetime plus the first
modeled year exceeds the next year y+1/.

Minimum capacity (MW) denotes a capacity target that has to be met by the process in a given
modeled year. This means that the system will build at least this capacity.

Maximum capacity (MW) restricts the capacity that can be built to the specified value.

Maximum power gradient (1/h) restricts the ramping of process operational states, i.e. the
change in the throughput variable. The value gives the fraction of the total capacity that can be
changed in one hour. A value of / thus restricts the change from idle to full operational state (or
vice versa) to at least a duration of one hour.

14

Chapter 1. Contents

urbs Documentation, Release 1.0.0

* Minimum load fraction gives a lower limit for the operational state of a process as a fraction of
the total capacity. It is only relevant for processes where part-load behavior is modeled. A value
here is only active when ‘Ratio-Min’ is numerical for at least one input commodity.

* Investment cost (€/MW) denotes the capacity specific investment costs for the process. You
should give the book value here. The program will then translate this into the correct total, dis-
counted cost within the model horizon.

e Annual fix costs (€/MW) represent the amount of money that has to be spent annually for the
operation of a process capacity. They can represent, e.g., labour costs or calendaric ageing costs.

* Variable costs (€/MWh) are linked to the operation of a process and are to be paid for each unit
of throughput through the process. They can represent anything from usage ageing to taxes.

* Weighted average cost of capital denotes the interest rate or expected return on investment with
which the investor responsible for the energy system calculates.

* Depreciation period denotes both the economical and technical lifetime of all units in the system.
It thus determines two things: the total costs of a given investment and the end of operational time
for all units in the energy system modeled.

* Area use per capcacity (m”2/MW) specifies the physical area a given process takes up at the site
it is built. This can be used, e.g. to restrict the capacity of solar technologies by a total maximal
roof area. The restricting area is defined in sheet ‘Site’.

While the details of the processes will be discussed in more detail in the next section one mention on
the processes ‘Load dump’ and ‘Slack’ is made here. These processes are not introduced to represent
real units but help making operation more realistic and error fixing more easy. A load dump process
just destroys energy which is sometimes necessary in order to prevent the system from doing unrealistic
gymnastics to keep the vertex rule. A ‘Slack’ process can create a demand commodity out of thin air for
an extremely high price. It thus indicates when the problem is not feasible, making error fixing much
easier. Both should typically be included in models.

Sheet Process-Commodity

In this sheet the technical properties of processes are set. These properties are given for each process
independent of the site where the process is located. You need to make an imput for all the processes
defined in the ‘Process’ sheet. The line index is a tuple (process, commodity, direction),
where ‘Direction’ has to be set as either ‘In” or ‘Out’ and specifies wether a commodity is an in- or
an output of a given process. Under the column ‘ratio’ you then have to specify the commodity in- or
outflows per installed capacity and time step at the point of full operation. The efficiency of the process
for the conversion of one input into one output commodity is then given by the ratio of the chosen values.
For example, in the modeled year 2020 the process ‘Gas engine power plant’ converts 2.2 MWh of ‘Gas’
into one MWh each of ‘Electricity’ and ‘Heat” while emitting 0.2 t of ‘CO2’. This corresponds to an
efficiency of 0.45 for ‘Heat’ and ‘Electricity’ conversion.

If a process has a more complex part load behavior, where, e.g., the efficiency changes this can be partly
captured by setting values in the ‘ratio-min’ column. These specify the commodity flows at the minimum
operation point specified in the ‘Process’ sheet under ‘min-fract’. The process will then no longer be
allowed to turn off so use this carefully. In the present case this behavior is set for the combined heat
and power plant ‘CHP (Operational state)’ only.

There are a few special settings made in the example. First, the CHP plant is divided into three parts.
The idea behind this is described in Modeling nuggets. The two processes ‘CHP (Electricity driven)’” and
‘CHP (Heat driven)’ specify the commodity flows in the two extreme operational states. The system can

1.1. User’s manual 15

urbs Documentation, Release 1.0.0

then chose all linear interpolations between both states by guiding the commodity flow of ‘Intermediate’
through the two processes in the desired ratio. Second, the cooling technologies are implemented in a
two stage way. The reason for this is that the process ‘Ambient air cooling’ is extremely efficient and
extremely cheap. While it can only be used in certain time intervals (see explanation of “TimeVarEff’
further below), its output could nevertheless be stored otherwise which is not realistic. The introduction
of commodity ‘Intermediate low temperature’ prevents this. It is the output of all the cooling technolo-
gies except for ‘Ambient air cooling” and is also the one that can be stored (see below).

Sheet Transmission

In this sheet the parameters for transmission lines between sites are specified. The line index is part
of a transmission tuple (Site In, Site Out, Transmission, Commodity). Note that for
each transmission the inverse one with the same properties should also be given. The parameters are the
following:

* Efficiency (1) specifies the transport efficiency of the transmission line.

* Lifetime of installed capacity (years) (Only first file) gives the rest lifetime of the installed
transmission lines in years. A transmission line can be used in a modeled year y still if the lifetime
plus the first modeled year exceeds the next year y+1.

* Investment cost (€/MW) denotes the capacity specific investment costs for the transmission line.
You should give the book value here. The program will then translate this into the correct total,
discounted cost within the model horizon.

* Annual fix costs (€/MW) represent the amount of money that has to be spent annually for the
operation of a transmission capacity. They can represent, e.g., labour costs or calendaric ageing
costs.

* Variable costs (€/MWh) are linked to the operation of a given transmission line.

* Installed capacity (MW) (Only first file) gives the transmission capacity of transmission lines
already installed at the start of the modeling horizon.

* Minimum capacity (MW) denotes a transmission capacity target that has to be met by the trans-
mission lines in a given modeled year. This means that the system will build at least this transmis-
sion capacity.

* Maximum capacity (MW) restricts the transmission capacity that can be built to the specified
value.

* Weighted average cost of capital denotes the interest rate or expected return on investment with
which the investor responsible for the energy system calculates.

* Depreciation period denotes both the economical and technical lifetime of all units in the system.
It thus determines two things: the total costs of a given investment and the end of operational time
for all units in the energy system modeled.

In the example the only commodity that can be transported from one site to the other is electricity.

Sheet Storage

In this sheet the parameters for storage units are specified. Each storage unit is indexed with parts of
a storage tuple (storage, commodity). In storages charging/discharging power and the capacity
are sized independently. The parameters specifying the storage properties are the following:

16 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Installed capacity (MWh) (Only first file) gives the storage capacity of storages already installed
at the start of the modeling horizon.

Installed storage power (MW) (Only first file) gives the charging/discharging power of storages
already installed at the start of the modeling horizon.

Lifetime of installed capacity (years) (Only first file) gives the rest lifetime of the installed
storages in years. A storage can be used in a modeled year y still if the lifetime plus the first
modeled year exceeds the next year y+1/.

Minimum storage capacity (MWh) denotes a storage capacity target that has to be met by the
storage in a given modeled year. This means that the system will build at least this capacity.

Maximum storage capacity (MWh) restricts the storage capacity that can be built to the specified
value.

Minimum storage power (MW) denotes a storage charging/discharging power target that has to
be met by the storage in a given modeled year. This means that the system will build at least this
power.

Maximum storage power (MW) restricts the storage charging/discharging that can be built to
the specified value.

Efficiency input (1) specifies the charging efficiency of the storage.
Efficiency output (1) specifies the discharging efficiency of the storage.

Investment cost capacity (€/MWh) denotes the storage capacity specific investment costs for
the storage. You should give the book value here. The program will then translate this into the
correct total, discounted cost within the model horizon.

Investment cost power (€€/MW) denotes the storage charging/discharging power specific invest-
ment costs for the storage. You should give the book value here. The program will then translate
this into the correct total, discounted cost within the model horizon.

Annual fix costs capacity (€/MWh) represent the amount of money that has to be spent annually
for the operation of a storage capacity. They can represent, e.g., labour costs or calendaric ageing
costs.

Annual fix costs power (€/MW) represent the amount of money that has to be spent annually
for the operation of a storage power. They can represent, e.g., labour costs or calendaric ageing
costs.

Variable costs capacity (€/MWh) are linked to the operation of a given storage state, i.e. they
lead to costs whenever a storage has a non-zero state of charge. These costs should typically set
to zero but can be used to manipulate the storage duration or model state-of-charge dependent
ageing.

Variable costs power (€/MWh) are linked to the charging and discharging of a storage. Each

unit of commodity leaving the storage requires the payment of these costs.

Weighted average cost of capital denotes the interest rate or expected return on investment with
which the investor responsible for the energy system calculates.

Depreciation period denotes both the economical and technical lifetime of all units in the system.
It thus determines two things: the total costs of a given investment and the end of operational time
for all units in the energy system modeled.

Initial storage state can be used to set the state of charge of a storages in the beginning of the
modeling time steps. If nan is given this value is an optimization variable. In any case the storage

1.1.

User’s manual 17

urbs Documentation, Release 1.0.0

content in the end is the same as in the beginning to avoid windfall profits from simply discharging
a storage.

* Discharge gives the hourly discharge of a storage. Over time, when no charging or discharging
occurs, the storage content will decrease exponentially.

In the example there are no storages in site ‘City’ and there is a storage for each demand in site ‘Business
park’. The commodity ‘Cooling’ is not directly storable to avoid an unrealistic behavior for the process
‘Ambient air cooling’ as was discussed above in the ‘Process-Commodity’ section.

Sheets Demand, Supim, Buy/Sell price

In these sheets the time series for all the demands, capacity factors of processes using commodities of
type ‘SupIm’ and market prices for ‘Buy’ and ‘Sell’ commodities are to be specified. For the former
two the syntax ‘site.commodity’ has to be used as a column index to specify the corresponding tuple.

Sheet TimeVarEff

In this sheet a time series for the output of processes can be given. This is always useful, when processes
are somehow dependent on external parameters. The syntax to be used to specify which process is to
be addressed by this is ‘site.process’. In the present example, this is used for the process ‘Ambient air
cooling” which has a boolean ‘TimeVarEff’ curve giving the value ‘1’ for temperatures below a threshold
and ‘0’ else.

This concludes the input generation. Of course all parameters have to be set in all the input sheets.

Run script

To run the example you can make a copy of the file runme . py calling it, e.g., run_BP . py in the same
folder. You now just have to make 3 modifications. First, replace the report tuples by:

report_tuples = [
(2020, 'Business park', 'Electricity'),
(2020, 'Business park', 'Heat'),
(2020, 'Business park', 'Cooling'),
(2020, 'Business park', 'Intermediate low temperature'),
(2020, 'Business park', 'C02'"),
(2030, 'Business park', 'Electricity'),
(2030, 'Business park', 'Heat'),
(2030, 'Business park', 'Cooling'),
(2030, 'Business park', 'Intermediate low temperature'),
(2030, 'Business park', 'C02'"),
(2040, 'Business park', 'Electricity'),
(2040, 'Business park', 'Heat'),
(2040, 'Business park', 'Cooling'),
(2040, 'Business park', 'Intermediate low temperature'),
(2040, 'Business park', 'C02'"),
(2020, 'City', 'Electricity'),
(2020, 'City', 'Heat'),
(2020, 'City', 'co2"),
(2030, 'City', 'Electricity'),
(2030, 'City', 'Heat'"),

(continues on next page)

18 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

(2030, 'City’ 'coz2"),
(2040, 'City’ 'Electricity'),
(2040, 'City', 'Heat'),
(2040, 'City', 'co2"),
(2020, ['Business park', 'City'], 'Electricity'),
(2020, ['Business park', 'City']l, 'Heat'),
(2020, ['Business park', 'City']l, 'C0o2"),
(2030, ['Business park', 'City'l, 'Electricity'),
(2030, ['Business park', 'City']l, 'Heat'),
(2030, ['Business park', 'City'], 'C0o2'"),
(2040, ['Business park', 'City'], 'Electricity'),
(2040, ['Business park', 'City'], 'Heat')
(2040, ['Business park', 'City']l, 'Ccoz2"),
]
optional: define names for sites in report_tuples
report_sites_name = { ('Business park', 'City'): 'Together'}
and the plot tuples by:
plot_tuples = [
(2020, 'Business park', 'Electricity'),
(2020, 'Business park', 'Heat'),
(2020, 'Business park', 'Cooling'),
(2020, 'Business park', 'Intermediate low temperature'),
(2020, 'Business park', 'C02'"),
(2030, 'Business park', 'Electricity'),
(2030, 'Business park', 'Heat'),
(2030, 'Business park', 'Cooling'),
(2030, 'Business park', 'Intermediate low temperature'),
(2030, 'Business park', 'C02'"),
(2040, 'Business park', 'Electricity'),
(2040, 'Business park', 'Heat'),
(2040, 'Business park', 'Cooling'),
(2040, 'Business park', 'Intermediate low temperature'),
(2040, 'Business park', 'C02'"),
(2020, 'City' 'Electricity'),
(2020, 'City', 'Heat'),
(2020, 'City’ 'coz2'"),
(2030, 'City', 'Electricity'),
(2030, 'City', 'Heat'),
(2030, 'City', 'co2"),
(2040, 'City', 'Electricity'"),
(2040, 'City’ 'Heat'),
(2040, 'City’ 'coz2'"y,
(2020, ['Business park', 'City'l, 'Electricity'),
(2020, ['Business park', 'City']l, 'Heat'),
(2020, ['Business park', 'City'], 'Co2'"),
(2030, ['Business park', 'City'], 'Electricity'),
(2030, ['Business park', 'City']l, 'Heat'),
(2030, ['Business park', 'City']l, 'Co2"),
(2040, ['Business park', 'City'l, 'Electricity'),
(2040, ['Business park', 'City'], 'Heat')
(2040, ['Business park', 'City'], 'C02'"),

]

(continues on next page)

1.1. User’s manual

19

urbs Documentation, Release 1.0.0

(continued from previous page)

optional: define names for sites in plot_tuples
plot_sites_name = {('Business park', 'City'): 'Together'}

In this way you get a meaningful output for the optimization runs. Second, the scenarios are made for the
other example and are as such no longer usable here. Thus only the base scenario is to be run. Change
the list scenario to the following:

scenarios = [
urbs.scenario_base

]

Having completed all these steps you can execute the code.

Modeling nuggets

Here you can find a collection of non-trivial modeling ideas that can be used in linear energy system
modeling with urbs. It is meant for more advanced users and you should fully understand the two
standard examples mimo-example and Business park before proceeding. What follows is a loose
collection of modeling approaches and does not follow any internal logic.

Different operational modes

For many power plants as, e.g., combined heat and power plants (CHP) there are different modes of
operation. These and intermediate states between the extremes can be well captured in urbs models
using the approach sketched in the following picture:

Source (e.g. Gas) ' Intermediate ' Output 1 (Heat) Output 2 (Elec) coz2

| .
i — Unit (Mode 1) —=
I I

. . - i

—= Unit [operational state) |
I

I
1 — Unit (Mode 2) -
|
I I

Here the vertical lines represent the commodities and the rectangle are processes. The arrows indicate
in- and output commodities of the processes. In the case shown the power plant ‘Unit’ would be able to
operate between a state where only ‘Output 1’ comes out and a state where only ‘Output 2’ comes out.
The two extreme cases can, however, also be chosen as combinations of both outputs already.

The idea behind the figure is the following: The commodity ‘Intermediate’ is to be produced exclu-
sively by the process ‘Unit (operational state)’. It thus simply tracks the throughput of this process. Due
to the vertex rule (Kirchhoff’s current law) the commodity ‘Intermediate’ once produced needs to be
consumed immediately. This can happen either via ‘Unit (Mode 1)’, ‘Unit (Mode 2)’ or a linear com-
bination of both. The result is then the desired choice for the optimizer between states formed by linear
combinations of the two modes. The commodity ‘Intermediate’ is best chosen as a Stock commodity
where either the price is set to infinity or the maximum allowed usage per hour, or year (or both) is set
to zero. This ensures that the commodity has to be produced by the process and cannot be bought from
an external source, which for the present case would of course be absurd.

20 Chapter 1. Contents

urbs Documentation, Release 1.0.0

All process parameters and the setting of part load, time variable efficiency etc. is best done for the ‘Unit
(operational state)’ process. The two other processes should in turn be used as mathematical entities that
are defined by their ‘process commodity’ input only.

Proportional operation

Often many individual consumers are lumped together in one site. If a demand of these consumers is
then met by a collection of decentral units it is important that the different technology options for these
decentral units each fulfill a fixed fraction of the demand in each time step. This means that the different
technology options are proportional to each other and the demand.

This behavior can be enforced by the following design:

Dperational state Input 1 Input 2 Demand

Process 1

Process 2

Here the vertical lines represent the commodities and the rectangle are processes. The arrows indicate
in- and output commodities of the processes.

For the desired result the commodity ‘Operational state’ has to be of type SupIm and the corresponding
time series has to be set as the normalized demand. in this way the optimizer can still size the two tech-
nology options ‘Process 1’ and ‘Process 2’ optimally while being forced to operate them proportionally
to each other and to the demand. Other input or output (not shown) commodities can then be associated
with the process operation as usual and will be dragged along by the forced operation.

Scenario generation

For a sensitivity analysis, it might be helpful to not manually create all scenario definitions automatically.
For example, if one is interested in how installed capacities of PV and storage change the output, one
might define ranges for each capacity. If there are four thresholds for the PV capacity and five for storage
capacity, creating all 20 scenarios by hand is quite tiresome.

In this example, one wants to run an optimization with capacities 20 GW, 30 GW, 40 GW and 50 GW
for PV and 50 GW, 60 GW, 70 GW, 80 GW and 90 GW for storage capacities.

Therefore, a function factory is created, which takes the values for PV and storage capacity and creates
a scenario function out of it. This is done in the file scenarios.py:

def create_scenario_pv_sto(pv_val, sto_val):
def scenario_pv_sto(data):
set PV capacity for all sites

pro = datal'process']

solar = pro.index.get_level_values('Process') == 'Photovoltaics'
pro.loc[solar, 'inst-cap'] = pv_val

pro.loc[solar, 'cap-up']l = sto_val

set storage content capacity
sto = datal['storage']

(continues on next page)

1.1. User’s manual 21

urbs Documentation, Release 1.0.0

(continued from previous page)

for site_sto_tuple in sto.index:
sto.loc[site_sto_tuple, 'inst-cap-c'] = sto_val
sto.loc[site_sto_tuple, 'cap-up-c'] = sto_val

return data
define name for scenario dependent on pv and storage values
scenario_pv_sto._ _name__ = f"scenario_pv{int (pv_val/1000)}_sto{int (sto_
—val/1000) }"
return scenario_pv_sto

In runme.py the following has to be added:

define range for sensitvity
pv_vals = range (20000, 50001, 10000)
sto_vals = range (50000, 90001, 10000)

create scenario functions
scenarios = []
for pv_val in pv_vals:
for sto_val in sto_vals:
scenarios.append (urbs.create_scenario_pv_sto(pv_val, sto_val))

1.2 Mathematical documentation

Continue here if you want to understand the theoretical conception of the model generator, the logic
behind the equations and the structure of the features.

1.2.1 Mathematical description

In this Section the mathematical description of a model generated by urbs will be explained. The
structure here follows the basic code structure and proceeds as follows:

First, a short introduction into the type of optimization problem solvable with urbs is given. This is
followed by the description of the minimal possible model in urbs. As a next step the two main expan-
sions of models, which also increase the index depth of all variables and parameters are discussed in
the parts ‘Intertemporal modeling’ and ‘Multinode modeling’. The description is then concluded by the
additional description of various feature modules. The latter are discussed in full index depth, i.e., with
all features introduced in minimal, intertemporal and multinode modeling.

Structure of an urbs model

urbs is an abstract generator for linear optimization problems. Such problems can in general be written
in the following standard form:

min ¢’

st.Ax =10
Bz <d.

where x is the variable vector, ¢ the coefficient vector for the objective function and A and B the
matrices for the equality and inequality constraints, respectively. The equality constraints could also

22 Chapter 1. Contents

urbs Documentation, Release 1.0.0

be represented by inequality constraints, which is not done here for simplicity reasons. There are two
options for the objective function: either the total system costs or environmental emissions can be used.
The structure of the following parts will be first a description of x and c and subsequently a general
formulation of the constraint functions that make up the matrices A and B as well as the vectors b and
d. All variables and equations will be first presented for a minimally complex problem and the optional
additional variables and equations are presented in extra parts.

Energy system entities

For all models that can be generated with urbs, the energy system is built up out of the following entities:
» Commodities, which represent the various forms of material and energy flows in the system.

* Processes, which convert commodities from one type to another. These entities are always
multiple-input/multiple-output (mimo) that is, a certain fixed set of input commodities is con-
verted into another fixed set of output commodities.

* Transmission lines, that allow for the transport of commodities between the modeled spatial ver-
tices.

* Storages, which allow the storage of a single type of commodity.

* DSM potentials, which make the time shifting of demands possible.
Minimal optimization model
The minimal model in urbs is a simple expansion and dispatch model with only processes being able to

fulfill the given demands. All spatial information is neglected in this case. The minimal model is already
multiple-input/multiple output (mimo) and the variable vector takes the following form:

T -~ in out
xr = (C? Pct 7l€p7ﬂp77—pt)ec ts € t)'
\ , P P
commodity variables process variables

Here, (represents the total annualized system cost, p.t the amount of commodities ¢ taken from a virtual,
infinite stock at time ¢, £, and &, the total and the newly installed process capacities of processes p, ¢
the operational state of processes p at time ¢ and eg;,t and 62;% the total inputs and outputs of commodities
c to and from process p at time ¢, respectively.

Objective

For any urbs problem as the objective function either the total system costs or the total emissions of CO2
can be chosen. In the former (standard) case this leads to an objective vector of:

¢=(1,0,0,0,0,0,0),

where only the costs are part of the objective function. For the latter choice of objective no such simple
structure can be written.

1.2. Mathematical documentation 23

urbs Documentation, Release 1.0.0

Costs

In the minimal model the total cost variable can be split into the following sum:

C = Cinv + gﬁx + Cvar + Cfuel + Cenva

where (j,y are the annualized invest costs, (gx the annual fixed costs, (yar the total variable costs accu-
mulating over one year, (gl the accumulated fuel costs over one year and (¢, the annual penalties for
environmental pollution. These costs are then calculated in the following way:

Annualized invest costs

Investments are typically depreciated over a longer period of time than the standard modeling horizon of
one year. To overcome distortions in the overall cost function urbs uses the annual cash flow (CAPEX)
for the calculation of the investment costs in the cost function. This is captured by multiplying the total
invest costs for a given process C), with the so-called annuity factor f,, i.e.:

Cinv,p = fp : Cp

For an interest rate of ¢ and a depreciation period of n years the annuity factor can be derived using the
remaining debt after & payments Cj:

After 0 Payments: Cp = C(1 + 1)

After 1 Payment: C; = (Cy — fC)(1+i) = C(1 +14)* — fO(1 + 1)

After 2 Payments: Co = (C1 — fO)(1+14) = C(1 +1i)® — fC(1 +14)* — fO(1 +1)

n—1 .
1-(1 "
After n Payments: C, = C'(1 +1¢)" + C’Z(l +i) =1+ f <(+Z)> :
k=0 !
Since the outstanding debt becomes 0 at the end of the depreciation period this leads to:
o (L+a)™ -4
(14 -1

The annualized invest costs for all investments made by the optimizer are then given by:

Giny = Z fokp" Fp,

PE Pexp

where kzi,nv signifies the specific invest costs of process p per unit capacity and Feyp is the subset of all
processes that are actually expanded.

Annual fixed costs

The annual fixed costs represent maintenance and staff payments the processes used. They are playing
a role for unit expansion only and are given as parameters for all allowed processes. Fixed costs scale
with the capacity (in W) of the processes, and can be calculated using:

Chix = Z kgx’ipa

peP

where k:g" represents the specific annual fix costs for process p.

24 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Annual variable costs

Variable costs represent both, additional maintenance requirements due to usage of processes and taxes
or tariffs. They scale with the utilization of processes (in Wh) and can be calculated in the following
way:

Cvar = WAL Z

t€Tm

var
p € Pk mpt,

where k" are the specific variable costs per time integrated process usage, and w and At are a weight
factor that extrapolates the actual modeled time horizon to one year and the timestep length in hours,
respectively.

Annual fuel costs

The usage of fuel adds an additional cost factor to the total costs. As with variable costs these costs
occur when processes are used and are dependent on the total usage of the fuel (stock) commodities:

Cruel = WAL Y

telm
fuel
cE Cstockkc Pc;

where k! are the specific fuel costs. The distinction between variable and fuel costs is introduced for
clarity of the results, both could in principle be merged into one class of costs.

Annual environmental costs

Environmental costs occur when the emission of an environmental commodity is penalized by a fine.
Environmental commodities do not have to be balanced but can be emitted to the surrounding. The total
production of the polluting environmental commodity is then given by:

Cenv = —wAt Z

t€Tm
¢ € Cenyk™CB(c,),

where £Z™ are the specific costs per unit of environmental commodity and C'B is the momentary com-
modity balance of commodity c at time ¢. The minus sign is due to the sign convention used for the
commodity balance which is positive when the system takes in a unit of a commodity.

After this discussion of the individual cost terms the constraints making up the matrices A and B are
discussed now.

Process expansion constraints

The unit expansion constraints are independent of the modeled time. In case of the minimal model the
are restricted to two constraints only limiting the allowed capacity expansion for each process. The total
capacity of a given process is simply given by:

VpeP:

kp = Kp + kp,

1.2. Mathematical documentation 25

urbs Documentation, Release 1.0.0

where K, is the already installed capacity of process p. The newly installed capacity can also be an
integer, expressed as the product between the parameter process new capacity block Kglo‘:k and the
variable new process capacity units 3.

~ _ block
kp = Kp “Bp

Process capacity limit rule

The capacity of each process p is limited by a maximal and minimal capacity, K, and K. - respectively,
which are both given to the model as parameters:

Vpe P:
K, <k, < K.

All further constraints are time dependent and are determinants of the unit commitment, i.e. the time
series of operation of all processes and commodity flows.

Commodity dispatch constraints

In this part the rules governing the commodity flow timeseries are shown.

Vertex rule (“Kirchhoffs current law”)

This rule is the central rule for the commodity flows and states that all commodity flows, (except for
those of environmental commodities) have to be balanced in each time step. As a helper function the
already mentioned commodity balance is calculated in the following way:

Vee C,tely,:
CB(c,t) = > ani— > e
(e;p)eCgut (c,p)eCin

Here, the tuple sets Czi,n’ollt represent all input and output commodities of process p, respectively. The

commodity balance thus simply calculates how much more of commodity c is emitted by than added to
the system via process p in timestep ¢. Using this term the vertex rule for the various commodity types
can now be written in the following way:

Ve € Cy, t € Ty, : pet > CB(c, t),
where Cy is the set of stock commodities and:
Ve € Cgem, t € Ty + —det > CB(c, 1),
where Cgen is the set of demand commodities and d.; the corresponding demand for commodity ¢ at

time ¢. These two rules thus state that all stock commodities that are consumed at any time in any process
must be taken from the stock and that all demands have to be fulfilled at each time step.

26 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Stock commodity limitations

There are two rule that govern the retrieval of stock commodities from stock: The total stock and the
stock per hour rule. The former limits the total amount of stock commodity that can be retrieved annually
and the latter limits the same quantity per timestep. the two rules take the following form:

Ve S Cs[.

wzpctézc

t€Tm

VCGCSt, tETm
pet < an

where L. and [, are the totally allowed annual and hourly retrieval of commodity ¢ from the stock,
respectively.

Environmental commodity limitations

Similar to stock commodities, environmental commodities can also be limited per hour or per year. Both
properties are assured by the following two rules:

Ve € Cepy -

—w Z CB(c,t) < M.
t€Tm

Ve € Cepy, t €Ty
— CB(c, t) < me,

where M, and .. are the totally allowed annual and hourly emissions of environmental commodity ¢
to the atmosphere, respectively.

Process dispatch constraints

So far, apart from the commodity balance function, the interaction between processes and commodities
have not been discussed. It is perhaps in order to start with the general idea behind the modeling of
the process operation. In urbs all processes are mimo-processes, i.c., in general they take in multiple
commodities as inputs and give out multiple commodities as outputs. The respective ratios between the
respective commodity flows remain normally fixed. The operational state of the process is then captured
in just one variable, the process throughput 7;,; and is is linked to the commodity flows via the following
two rules:

VpeP ceC, teTy:

in __ _.in
€pct = T'pcTpt
out out

Epct - Tpc Tpt>

where rli,nc’ Ut are the constant factors linking the commodity flow to the operational state. The efficiency

7 of the process p for the conversion of commodity ¢; into commodity ¢ is then simply given by:

out

_ TPCQ

=" e
T

pc1

1.2. Mathematical documentation 27

urbs Documentation, Release 1.0.0

Basic process throughput rules

The throughput 7,,; of a process is limited by its installed capacity and the specified minimal operational
state. Furthermore, the switching speed of a process can be limited:

Vpe P, tel,:

Tpt < Kp

Tpt = Bp’ip

Tpt — Tp(t—1) < AtTG;pRp

Tpt — Tp(t—1) = —AtPG,pown/@p

)

. . . . == ——d

where P, is the normalized, minimal operational state of the process and PG;p and PGpOwrl are the
normalized, maximal ramping up gradient, respectively ramping down gradient of the operational state
in full capacity per timestep.

Intermittent supply rule

If the input commodity is of type ‘SupIm’, which means that it represents an operational state rather
than a proper material flow, the operational state of the process is governed by this alone. This feature
is typically used for renewable energies but can be used whenever a certain operation time series of a
given process is desired

Vp € P, c € Csp, t €Ty :

m
cht — SCt K/p.

Here, s.; is the time series that governs the exact operation of process p, leaving only its capacity x,, as
a free variable.

This concludes the minimal model.

Intertemporal optimization model

Intertemporal models are a more general type of model than the minimal case. For such models a
second time domain is introduced to capture the behavior of the system over a timeframe of many years,
thus rendering a modeling of the system development, rather than the optimal system configuration,
possible. To keep the model as small as possible while still capturing most of the intertemporal behavior,
the second time slice is approximated by a number of support timeframes (years) Y = (y1, ..., Yn),
which is in general smaller than the total model horizon. Each modeled timeframe is then essentially
a minimal (or multinode-) model in its own right. The basic approximative assumptions linking the
modeled timeframes are then given by:

» Each modeled year is repeated & times if the next modeled year is k years later. The last year is
repeated a user specified number of times.

* The depreciation period is assumed to be also the operational period of any unit built. There is no
operation in an economically fully depreciated state.

* A unit can only be operated in a given modeled year when it is operational for the entire period
that year represents, i.e., until the next modeled year.

28 Chapter 1. Contents

urbs Documentation, Release 1.0.0

* All payments are exponentially discounted with a discount rate j that is set once for the entire
modeling horizon.

The variable vector is as a first step only changed in so far, as the second time domain is entering the
index. It now reads:

T out
z = (C, Pyct s Kyps Fyps Typt € ycpt7 €yept)-
~—
commodity variables process variables

Here, (represents the total discounted system costs over the entire modeling horizon, p,ct the amount of
commodities ¢ taken from a virtual, infinite stock in year y at time ¢, £, and K, the total and the newly
installed process capacities in year y of processes p, 7, the operational state in year y of processes p at
time ¢ and €, and eg‘;;,t the total inputs and outputs in year y of commodities ¢ to and from process p
at time ¢, respectively.

All dispatch constraint equations for commodities and processes described in the minimal model section,
as well as all such constraints for transmissions, storages, DSM described in their respective dedicated
sections, remain structurally the same in an intertemporal model. The only modification there is, that
the modeled year shows up as an additional index.

The parts that change in a more meaningful way are the costs and the unit expansion constraints.

Costs

As in the minimal model the total cost variable can be split into the following sum:

C = Cinv + Cﬁx + Cvar + Cfuel + Cenw

where (i, are the discounted invest costs accumulated over the entire modeled period, (g« the dis-
counted, accumulated fixed costs, (yar the discounted, sum over the modeled years of all variable costs
accumulated over each year, (g the discounted sum over the modeled years of fuel costs accumulated
over each year and (., the discounted total penalty for environmental pollution.

All costs are discounted by the same exponent j for the entire modeling horizon on a yearly basis. This
means that any payment z that has to be made in a year k will be discounted for the cost function ¢ by:

Tdiscounted — (1 +])_k T
Since all non-modeled years are just treated as exact copies of the last modeled year before them, the
discounted sum of fix, variable, fuel and environmental costs can simply be taken as the costs of the
representative modeled year m multiplied by a factor D,,. If the distance to the next modeled year is k,
it can be calculated via:

m+k—1 k—1 1_(14_].),]C
D,, = 1+t =01 “mN (1 gyl =
=m 1=0
=145

So for example the variable costs for modeled year m and its k identical, non-modeled copies

L.mtk—1 .
é;?’er R} e given by:

{m,m+1,..,m+k—1}
var D CVd_['?

if ¢ is the sum of all variable costs accumulated by the use of units in the year m alone by the model.

1.2. Mathematical documentation 29

urbs Documentation, Release 1.0.0

Intertemporal calculation of invest costs

In the intertemporal model, invest costs are calculated using the annuity method. This directly entails
that there are no rest values of any units built by the model that have to be considered for the cost
function. It is then possible to multiply the annuity payments fC' for a unit with investment costs C
built in year m simply with the factor D,,. The only difference is, that the investment annuity payments
are not restricted to the modeled years but have to be paid for the entire depreciation period provided
that it is within the modeled time horizon. When the depreciation period is n and k is the number of

payments that fall in the modeled time horizon, the total costs Clyy of an investment of size C' made in
year m is given by:

1—(1+)7F% @+dm-i
ml—(1+7) _(%W)Z.C:

Ctotal:Dm' .C = 1+.1,
m f (.])] (1_}_1)71_1

R A A N) el O) i
=y 'j'<1+j> a1 ¢

=:In

For either 7 = 0 or 7 = 0 a distinction has to be made, which takes the following form:

«i=0,j=0:

k
Crtl(l)tal: E .C
~—~
=:In
«i#0, j=0:
1+i)"
Ctotal:k' C:]€< .
m / 1+ -1
N——
=:In
«i=0,j#0:
k—1 .
a_ 1 1 o (L)F =1
CO = — . (14)™Y A+ C==-1+4) " o C
= 2. n UG
=:In

In any case the total invest costs are then given by:

Cinv = Z

yey
pePCR ="
yey

p € PLENR,,

Unit expansion constraints

Apart from the costs there are also changes in the unit expansion constraints for an intertemporal model.
These changes mostly concern how the amount of installed units is found. This becomes an issue since

30 Chapter 1. Contents

urbs Documentation, Release 1.0.0

units built in an earlier modeled year or already installed in the first modeled year, may or may not be
operational in a given modeled year m and through m + k£ — 1. Here, k is the distance to the next
modeled year or the end of the modeled horizon in case of m being the last modeled year. To properly
calculate the capacity of a process in a year y the following two sets are necessary:

O :={(p,yi,y;)lp € P, {yisu;} €Y, vi <yj, ¥i + Lp > yj11}

Oinst :={(0,yj)lpe Po, yeY, yo+Tp > yjt1},

where L, is the lifetime of processes p, F the subset of processes that are already installed in the first
modeled year yo and T}, the rest lifetime of already installed processes. If y; is the last modeled year,
1;j+1 stands for the end of the model horizon.

With these two sets the installed process capacity in a given year is then given by:
Fp =)
y' ey
(p,y,y) € ORyp + Ky, if (p,y) € Oinst

Kyp = E:

y'eY

(pv y/7y) € O//%y’p 5 else

where K, is the installed capacity of process p at the beginning of the modeling horizon. Since for each
modeled year still the capacity constraint

VyeY, pe P:
Kypg’iypgfyp

is valid, the set constraints can have effects across years and especially the modeller has to be careful
not to set infeasible constraints.

Commodity dispatch constraints

While in an intertemporal model all commodity constraints within one modeled year remain valid one
addition is possible concerning CO2 emissions. Here, a budget can be given, which is valid over the
entire modeling horizon:

t € T,CB(y,COy, t) < Lo,

Here, fc is the global budget for the emission of the environmental commodity. Currently this is hard
coded for CO2 only.

This rule concludes the model additions introduced by intertemporal modeling.
Multinode optimization model

The introduction of multiple spatial nodes into the model is the second big extension of the minimal
model that is possible. Similar to the intertemporal model expansion it also adds an index level to

1.2. Mathematical documentation 31

urbs Documentation, Release 1.0.0

all variables and parameters. This addition is perpendicular to the intertemporal modeling and both
extensions do not interact in any complex way with each other. Here, the multinode model extension
will be shown without the intertemporal extension, i.e., it is shown as an extension to the minimal model.
In this case the variable vector of the optimization problem reads:

T _ - in out o~ in out
z = (C, Puct » Kupy Fups Tupts €yepts €vepts Kafs Kafs Tafts 7Tzzft)-
. . Vv
commodity variables process variables transmission variables

Here, (represents the total annualized system cost across all modeled vertices v € V, p,¢: the amount
of commodities ¢ taken from a virtual, infinite stock at vertex v and time ¢, k., and K, the total and the
newly installed process capacities of processes p at vertex v, T, the operational state of processes p at
vertex v and time ¢, eg‘cpt and €9y, the total inputs and outputs of commodities ¢ to and from process p
at vertex v and time ¢, K, and Koy the installed and new capacities of a transmission line f linking two

vertices with the arc a and ﬁ;nft and ﬂg‘}tt the in- and outflows into arc ¢ via transmission line f at time .

There are no qualitative changes to the cost function only the sum of all units now extends over processes
and transmission lines.

Transmission capacity constraints

Transmission lines are modeled as unidirectional arcs in urbs. This means that they have a input site and
an output site. Furthermore, an arc already specifies a commodity that can travel across it. However,
from the modelers point of view the transmissions rather behave like non-directional edges, linking both
sites with the identical capacity in both directions. This behavior is then ensured by the transmission
symmetry rule, which sets the capacity of both unidirectional arcs to be identical:

VaeV xVxC, feF:
Raf = Ka/f,

where d’ is the inverse arc of a. The transmission capacity is then calculated similar to process capacities
in the minimal model:

YVaeV xVxC, feF:
ﬁaf:Kaf+k\af7

where K, represents the already installed and % the new capacity of transmission f installed in arc
a. The new capacity can also be expressed as the product of the parameter transmission capacity block
K¢k and the variable new transmission capacity units Byaf:

yaf
Raf = Kpaf** Byas

Transmission capacity limit rule

Completely analogous to processes also transmission line capacities are limited by a maximal and min-
imal allowed capacity K,y and K ; via:

YVaeV xVxC, feF:
Kafgﬁafgfaf

Commodity dispatch constraints

Apart from these time independent rules, the time dependent rules governing the unit utilization are
amended with respect to the minimal model by the introduction of transmission lines.

32 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Amendments to the Vertex rule

The vertex rule is changed, since additional commodity flows through the transmission lines occur in
each vertex. The commodity balance function is thus changed to:

Vee C,teTy,:

CB(c,t) = Z eiuncpt+ 7T¢iznft_ Z egg;t_ Z Wg;l‘tt

(c,;p)eCip (a,f)€Aln (c,p)eCgut (a,f)eAg

Here, the new tuple sets Aln-out represent all input and output arcs a connecting vertex v, respectively.
The commodity balance is thereby allowing for commodities to leave the system at vertex v via arcs as
well as processes. Apart from this change to the commodity balance the vertex rule and the other rules
restricting commodity flows remain unchanged with respect to the minimal model.

Global CO2 limit

In addition to the general vertex specific constraint for the emissions of environmental commodities as
discussed in the minimal model, there is a hard coded possibility to limit the CO2 emissions across all
modeled sites:

“w)

veV
t e TmCB(’U, COo, t) < Zco%y

Transmission dispatch constraints

There are two main constraints for the commodity flows to and from transmission lines. The first restricts
the total amount of commodity ¢ flowing in arc a on transmission line f to the total capacity of the line:

VaeV xVxC, feF, tel,:
wj;‘ftgmaf.

Here, the input into the arc ’/T;nft is taken as a reference for the total capacity. The output of the arc in the
target site is then linked to the input with the transmission efficiency e, s

VaeV xVxC, feF, tel,:

out __ . -in
Taft = Caf Taft

DC Power Flow feature

Transmission lines can be modelled with DC Power Flow as an optional feature to represent the AC
network grid. With the DC Power Flow feature, the variable voltage angle is introduced for the ver-
tices connected with DC Power Flow transmission lines The DC Power Flow is defined by the relation
between the voltage angle 6, of connecting vertices.

It is possible to combine the default transmission model with the DC Power Flow transmission model.
The DCPF feature can be activated on the selected transmission lines. This way two different sets of
transmission tuples, subject to different constraints, will be modelled. These transmission tuple sets are
defined as the set of transport model (default) transmission lines ngfj v, and the set of DCPF transmis-
sion lines FDCPF

CUoutVin

1.2. Mathematical documentation 33

urbs Documentation, Release 1.0.0

Usage

This feature can be activated for selected transmission lines by including the following parameters:

e The reactance X,y of a transmission line is required to be included in the model input to model the
given transmission line with DCPF. This parameter should be greater than 0 and given in per-unit
system. If this parameter is excluded from the model input, DCPF will not be activated for the
transmission line.

* The voltage angle difference of two connecting sites should be limited with angle difference limit
dl,s to create a stable model. This parameter is required to limit the voltage angle difference
between two connecting sites. A degree value between 0 and 91 is allowed.

* The base voltage V, thase Of transmission lines are required to convert the power flow from per-unit
system to MW. The base voltage parameter is required in kV for every transmission line, which
should be modelled with DCPF. The value of this parameter should be greater than 0.

¢ Since the DC Power Flow model ignores the loss of a transmission line, the efficiency e, s of the
transmission lines modelled with the DCPF should be set to 100% represented with the value “17.

Contrary to the default transmission line representation, DC Power Flow transmission lines are repre-
sented with a single bidirectional arc between two vertices. The complementary arc of a DC Power Flow
transmission line will be excluded from the model even if it is defined by the user. Depending on the
voltage angle difference of two connecting sites, the power flow 7, ¢, on a DC Power Flow transmission
line can be both negative or positive indicating the direction of the flow.

DC Power Flow Equation

Power flow on a transmission line modelled with DCPF:

in (H'Uint B evoult)

_1
Taft = 579058

2
Xaf)Vafbase

(

Here 0,,; and 6, are the voltage angles of the source site vj, and destinaton site voy. These are
converted to radian from degrees by dividing by 57,2958. X, is the reactance of the transmission line
1

in per unit system and (—X;f) is the admittance of the transmission line.

Constraints

Constraints applied to the DCPF transmission lines vary from those applied to the transport transmission
lines.

Symmetry rule is ignored for the DCPF transmission lines, since these lines only consist of single bidi-
rectional arcs. Since the DCPF transmission lines do not have complementary arcs the fixed and in-
vestment costs would be halved. To prevent this error caused by the excluded symmetry constraint for
DCPF transmission lines, fixed and investment prices for DCPF lines are doubled automatically before
calculating the costs.

The constraint which restricts the commodity flow w;“ft on a transmission line with the installed capacity
kqy is expanded for DCPF transmission lines. The additional constraint restricts the lower limit of the
power flow, since the power flow with DCPF can also be negative.

in
_7T¢11ft < Kaf

34 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Voltage angle difference of two connecting vertices vi, and vy is restricted with the angle difference
limit parameter dl, s given for a DCPF transmission f on an arc a

_maf < (vat - evou[t) < dlaf

Two additional constraints are used in DCPF feature to retrieve the absolute value Wflnft/ of the power
flow on a DCPF transmission line, which is included in the variable cost calculation. With the help of
these constraints and minimization of objective function , which includes the substitute variable Wfl“ft/,
the substitute variable will be equal to the absolute value of the power flow variable \ﬁ;"ft|

.y .
in in
7Ta,ft > 7Tzzft

.y .
in in
7Taft > _7Taft

Energy Storage

Storages can optionally be set in urbs. They introduce additional variables and constraints, contribute
to the cost function but do not increase the index depth of all variables and parameters. For this and
all the further features all variables will be written in the full index depth, i.e. for intertemporal models
with multiple vertices. For storages the capacity and the charging/discharging power are expanded
independently. For each storage one commodity is specified which is stored. It is thus not necessary
to specify the commodity as an extra index in the variables and parameters. With added storages the
variable vector then reads:

T -~ in out ~ in out
T = (C? pyvct 9 "fyvp7 K/yvpa Tyvpt7 eyvcptv eyvcpb /fyafv "iyaﬁ ﬂ'yafta Tryafta
N’ 7
commodity variables process variables transmission variables
c p ~C ~p in out con
Hyvs? ijvs? ’k‘:yvsv ’%yvs? 6yvst? 6yvst? 6yvst)'

storage variables

Here, the new storage variables ks and Ryrs stand for the total and new capacities of storage capacity
and power of storage unit s, in modeled year y at vertex v, respectively, the variables €% represent the

yvst
input and output to storage s in year y at vertex v at time ¢ and €y,y, the storage state.

Costs

The costs are changed in a straightforward way. The invest, fix and variable costs are now summed over
the storage capacities, powers and the total amount of charged and discharged commodity in addition to
the process indices. As in the case of transmissions there are no qualitative changes to the costs.

1.2. Mathematical documentation 35

urbs Documentation, Release 1.0.0

Storage expansion constraints

Storages are expanded in their capacity and charging and discharging power separately. The respective

constraints read:

(s,v,9,y) € OR.F

c
where ﬁyf,’ s

Fyvs the corresponding

c,p § :
Kyus

y'ey
+ K’US ’ if (87 v, y) € Oinst

y'vs

cp _ E :
’%yvs -
y'ey
! ~C,p
(s,v,9,y) € Oliy,vs , else,

are the total installed capacity and power, repectively, in year y at site v of storage s and

newly installed storage capacities and powers. Both newly installed quantities can also be expressed as

the product of the parameter storage new capacity/power block Kb

. . C,
size/power units Byﬁ’s:

p block .
P9 and the variable new storage

~ep Kc,p block

c,p
"vas Yus

Yvus
Both total installed quantities are then also given an upper and a lower bond via:

VvyeY,veV,se§:
K¢ <kt <K.

=2yvs Yyvs Yvs
p p TP
Kyvs S Hyvs S Kyvs

Commodity dispatch constraints

The commodity unit utilization constraints are expanded by the use of storages.

Amendments to the Vertex rule

The vertex rule is changed, since additional commodity flows into and out of the storages can occur. The

commodity balance function is thus changed to:

VyeY,veV,ceC, teTl,:

_ in in in
CB (y) v, ¢, t) - § €vept + § €yust + § Toft—
(y,U,C,P)GCL",U,C,p (yvv»svc)ecy,v,s,c (y,a,f)EAiU"
out out out
- E €vept E : €yust E 7Taft'

Here, the new tuple sets ")

into storage s. The variables €

Cin,out

(y7v7c7p) ng”‘

s,C
in,out
yust

(¥,v,5,0)€Cyv,5,¢ (y,a,f)eAQ"

represent all inputs and outputs in year y at vertex v of commodity ¢

are then the inputs and outputs of commodities to and from storages.

36

Chapter 1. Contents

urbs Documentation, Release 1.0.0

Storage dispatch constraints

In a storage the energy content ey,

to and subtracting all outputs from the storage content at the previous time step €

has to be calculated. This is achieved by simply adding all inputs

con .
yus(t—1)°

VyeY,veV, seS tel,:
out
yust

out *
eyvs

€

con __ _con At in in
Cyvst — 6yvs(tfl) ’ (1 - df’JUS) + Cyuvs " Cyvst —

Here, 6211}(;Ut are the efficiencies for charging and discharging, respectively, and dy,s is the hourly self

discharge rate.

Basic storage dispatch rules

Similar to processes and transmission lines, inputs and outputs are limited by the power capacity of the
storage:

YVyeY,veV, seS tel,:

in,out P
6y'vst < At - Kyvs-

Additionally, the storage content is limited by the total storage energy capacity:

VyeY,veV, seS tel,:

con c
6yvst‘ S Hyvs'

Initial and final state

In order to avoid windfall profits for the optimization by, e.g., emptying a storage over the model horizon,
the initial and final storage content are linked via:

VyeY,veV, se§:
con con
6yvs(tl) = Cyustyo
where t1 v are the initial and final modeled timesteps, respectively. The inequality simplifies the model
solving by relaying an otherwise unnecessarily strict constraint. A small disadvantage arises when the
system can gain costs or save CO2 by filling a storage. This case is, however, not too common. It is
additionally possible for the user to fix the initial storage content via:

VyeY,veV, se§:

6%?9?1 = HszIyUSa
where I, is the fraction of the total storage capacity that is filled at the beginning of the modeling
period.

Fixed energy/power ratio

It is sometimes desirable to fix the ratio between energy capacity and charging/discharging power for
a given storage. This is modeled by the possibility to set a linear dependence between the capacities

through a user-defined “energy to power ratio” k:g{}; Note that this constraint is only active for the

1.2. Mathematical documentation 37

urbs Documentation, Release 1.0.0

storages with a positive value under the column “ep-ratio” in the input file, and when this value is not
given, the power and energy capacities can be sized independently

VyeY, veV,ses§:
E/P
Ksz = ﬁgvskyvs'

This concludes the storage feature.

Trading with an external market

In urbs it is possible to model the trade with an external market. For this two new commodity types,
buy and sell commodities, are introduced. For each a time series representing the momentary cost at
each timestep is given. This time series is of course known to the model in advance, which has two
implications. First, the modeled system is considered too small to influence the external market and any
possible influence is not captured by the model, and, second, the perfect price foresight can distort the
results when compared to a realistic trader in a market. For models with buy and sell commodities the
variable vector takes the following form:

T _ -~ in out -~ in out
r = (C, Pyvet Oyuets Vyvets Byvps Kyvps Tyopts €yvepts Eyvepts Byafs Byafs Tyaft ﬂyaft)?
TV
commodity variables process variables transmission variables

where 0y, is the amount of sell commodity ¢ sold to the external market in year y from vertex v at time
t and vy, is the amount of buy commodity ¢ bought from the external market in year y at vertex v and
time ¢.

Costs

The cost function is amended by two new cost types when the trading with an external market is modeled,
the purchase and the revenue costs

C = Cinv + Cﬁx + Cvar + Cfuel + Crev + Cpur + Cenv-

The two new cost types are then specified by the following equations:

Crev = — WAL Z

yey
veV
ce Csell

t e TmDm : kzzct : vact

Cpur =wAL Z

yey
veV
S Cbuy

b
te TmDm : yict ' wyvct;

where /{:22 . represents the time series of the given buy and sell commodity prices.

38 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Commodity dispatch constraints

Buy and sell commodities change the vertex rule (Kirchhoff’s current law), by adding a new way for in-
an output flows of commodities. The rule is thus amended by the following two equations:

VyeY,veV, c€Cen t €Ty :
— ot > CB(c,t)

VyeY,veV, c€ Cuy, t €Ty :
wct Z CB(C, t).

The commodity balance itself is not changed. The new rules state that any amount of energy sold needs
to be provided to (negative CB) the system via processes, storages or transmission lines, while buy
commodity consumed by processes, storages or transmission lines in the system has to be replenished.

Buy/sell commodity limitations

The trade with the market in each modeled year and each vertex can be limited per time step and for an
entire year. This introduces the following constraints:

VyeY, veV, c€ Cgn:
wzgctééyvc

t€Tm
VyeY,veV, c€ Cen, t €Ty
Oyvet < Gyoe

and

VyeY,veV, ce Cuy:
wz¢ct§§yvc

t€Tm
VyeY,veV, c€ Cuy, t €Ty :

Oyvct < Byvc-

Here, the parameters Byvc and By, limit the hourly and yearly maximums of buy from and Gyve and
Gy the hourly and yearly maximum of selling to the external market.

This concludes the discussion of the modeled trading with an external market.
Demand side management
Demand side management allows for the shifting of demands in time. It thus gives the model the

possibility to divert from the strict restriction that all demands have to be fulfilled at all timesteps.
Demand side management adds two variables to an urbs problem and the variable vector then reads:

T -~ in out ~ in out up down
T = (C, Pyvct y Byvps Byvps Tyvpts Cyueptr Eyveptr Fyafs Byafsr Tyafts Tyafts 5yvct7 6y'uct(tt))'
commodity variables process variables transmission variables DSM variables

1.2. Mathematical documentation 39

urbs Documentation, Release 1.0.0

The new variable 5;gct represent the upshift of the momentary demand at time ¢ and 62%{‘() the corre-
sponding downshifts. The downshifts need two time indices as they are referencing to the corresponding
upshift with the first index ¢ and the timesteps they actually occur via the second time index tt. The lat-
ter is then restricted to an interval around the reference upshift since loads cannot in general be shifted
indefinitely. As it is modeled in urbs, DSM does not introduce any costs. To clarify the terms used for

the DSM feature the following illustrative example is helpful.

Example of a DSM process

An example scenario with parameters below can be used to clarify the mathematical structure of a DSM
process.

Site Commodity | delay | eff | recov | cap-max-do | cap-max-up
South | Elec 3 1 1 2000 2000

First, an series of three upshifts, i.e. demand increases, indexed with the modeled timesteps 3,4 and 5
occurs in the example.

Table 1: DSM upshift process
t

1445
1580
2000

DO B W N =

The corresponding downshifts can then be visualized using a matrix, where the row index ¢ corresponds
to the upshifts above, that have to be compensated by downshifts. The modeled timesteps where the
downshifts actually occur are labeled by ¢t and represent the column indices.

Table 2: DSM downshift process

t\tt | 1 2 3 4/5|6

1 0 0 0 0

2 0 0 0 010

3 1445 | 0 0 01010

4 555 |0 55510101470
5 2000 | O 0]01]0

6 0 01010

The DSM upshift process is relatively easy to understand, for every time step ¢ one upshift is made and
it can not exceed 2000. The table for DSM downshift process shows, that the sum over all elements for
every row index t, is equal to the upshift made at time step ¢. The blank spaces in the table are because
of delay time restriction. For instance, an upshift in ¢ = 1 may not be compensated with a downshift in
tt = 5, as delay time is equal to 3 in our example. The restriction of the total DSM downshifts is given
by the sum of all column elements for every index ¢¢. This sum may not exceed 2000 as well, due to
given parameters.

40 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Commodity dispatch constraints

Demand side management changes the vertex rule. Every upshift 5;gct leads to an additional demand,
i.e., to an additional required output of the system, and vice versa for the downshifts. Effectively this

changes the vertex rule (Kirchhoff’s current law) for demand commodities with DSM to:

VyeY,veV, c€ Coem, t € Ty :

— dyvet — 5;56t > CB(y,v,c,t)

B dyvct + Z 622‘:(11%)t > CB (ya v, ¢, t)

tte[t_yyvcvt‘i‘yyvc}

The downshift equation requires a little elaboration. Here, the total downshift occurring at a timestep ¢
can be caused by downshifts linked to different upshifts, which in the notation above occur at times #t.
All downshift contributions within the delay time . of their respective upshifts are then summed up.

DSM variables rule

This central constraint rule for DSM in urbs links the up- and down shifts of DSM events. An upshift
(multiplied with the DSM efficiency) at time ¢ must be compensated with multiple downshifts during a
certain time interval. The lower and upper bounds of this time interval are given by ¢ — ¥y, and ¢+ Yy,
where . is the delay time parameter specifying the allowed duration of a DSM event. Inside this time
interval, another time index ¢t is required. It is used to index the downshift processes that are always
linked to one upshift. Of course, the intervals of several upshifts can overlap. Mathematically, this rule
can be noted like this:

VyeY,veV,ceCPM teT, :

dem
up down
eyvcdyvct - § : 5yvct(tt)7
tte[t_yyvmt""yyvc]

where e, is the DSM efficiency. Note here, that the summation is over the timesteps where the down-
shifts are occurring as opposed to the vertex rule above, where the summation is over the timesteps of
the corresponding upshifts.

DSM shift limitations

DSM shifts are limited in size in both directions. This is modeled by

VyeY,veV,ceCPM e, -

dem >

up T-up
5yvct S K yve

down —>down
§ : 6yvc(tt)t < Kyvc)
tte[t_yyvcvt""yyvc]

where again the downshifts are summed over the corresponding upshifts, making sure that at no time
there is a total downshift sum larger than the set maximum value.

1.2. Mathematical documentation 41

urbs Documentation, Release 1.0.0

In addition to these limitations on the single shift directions, the total sum of shifts is also limited in an
urbs model via:

YyeY,velV, ceCd';?nM,teTm:

up down F>up F-down
6yvct + § : 5yvc(tt)t < maX{Kyvc? Kyvc
tte[t*yyvcyt+yyvc}

DSM recovery

Assuming that DSM is linked to some real physical devices, it is necessary to allow these devices to
have some minimal time between DSM events, where, e.g., the ability to perform DSM is recovered.
This is modeled in the following way:

VyeY,veV,ceCBM teT,:

Oyve/At—1

up ToUP
Z 5yvc(tt) < Ky’UC " Yyves
tt=t

where 0y, is the recovery time in hours. This constraint limits the total amount of upshifted energy
within the recovery period (lhs) to the maximum allowed energy shift retained for the maximum amount
of allowed shifting time for one shifting event. This means that only one full shifting event can occur
within the recovery period.

This concludes the demand side management constraints.

Advanced Processes

Several processes have a complicated, non-linear behavior. Those that can be modelled in urbs are
explained here. These are: Time Variable Efficiency, Minimum Load and Part Load Behaviors and
On/Off Behavior.

Time Variable Efficiency

It is possible to exogenously manipulate the output of a process by introducing a time series, which
changes the output ratios and thus the efficiency of a given process in each given timestep. This intro-
duces an additional set of constraints in the form:

Vp c PTimeVarEff’ ce(C — Cenv7 teT,:

out __ out rout
€ypct = Typeypt Typct -

Here, f;’,}“ represents the normalized time series of the varying output ratio. This feature can be helpful
when modeling, e.g., temperature dependent effects or maintenance intervals. Environmental commodi-
ties are intentionally excluded from the output manipulation. The reason for this is that they are typically
directly linked to inputs as, e.g., CO2 emissions are linked to the fossil inputs. A manipulation of the
output for environmental commodities would thus violate the mass balance of carbon in this case (e.g.

coal).

42 Chapter 1. Contents

urbs Documentation, Release 1.0.0

When the process in question is a process with part load behavior the equation for the time variable
efficiency case takes the following form:

Vp € pratload gng pp ¢ pTimeVarll .« 0t e T,

out _ .out out __ out

€U Af. fout Lype ™ "ype p . i Type — Lplype .

ypet — ypt 1_P L yp " yp 1_p ypt | -
—yp —yp

Minimum Load and Part Load Behaviors

There are some processes which theoretically can be turned on and off, while others tipically operate
as must-run units (e.g. nuclear power plants, heat-producing plants during the cold season etc.). These
processes can either have a constant and load independent efficiency or a part-load behavior.

In the case of a minimum load behavior with a constant, load independent efficiency, the values of the
input and of the output of a process remain unchanged when compared except for the fact that their
values, together with the value of the throughput, stay between the following boundaries:

Vp e Pminimum load7 = C, t e Tm .

g

in,out in,out in,out
pKp T <e <Kp-r

> €pet ’

Vp e pratload . e oy e

g

in,out in,out in,out
b bBp T <e <Kp-r

L —= pct)

where P, is the minimum load fraction, ,, the installed capacity, 00Ut the input/output ratios and 7™°ut

the minimum input/output ratios.

Many processes show a non-trivial part-load behavior. In particular, often a nonlinear reaction of the
efficiency on the operational state is given. Although urbs itself is a linear program this can with some
caveats be captured in many cases. The reason for this is, that the efficiency of a process is itself not
given as a parameter, but is merely the ratio between input and output multipliers. It is thus possible to
use purely linear functions to get a nonlinear behavior of the efficiency of the form:

a+ bty

= ¢+ dry’

where a,b,c and d are some constants. Specifically, the input and output ratios can be set to vary linearly
between their respective values at full load " and their values at the minimal allowed operational
state Pp,kp, which are given by inout " This is achieved with the following equations and exemplified

zpc
with the following graphic:

Vp e pratload o c O e Th

in,out in,out in,out in,out
. 10, 10, 10, P 10,
n,out ~pc C C =p-—pc
1n,oul ﬁ L < D D . P K p P—P! . >)

t 4
pc 1_£p P]'_Bp

1.2. Mathematical documentation 43

urbs Documentation, Release 1.0.0

_im,out
pc

1)
prrpc
out

I\pf-pc

P K,rin

P—pe

~.out
Epfxp

prc

in
e Input €7

out
Output e,

Efficiency 7y,

Ip
nar

p

41T
”p

PLK,

A few restrictions have to be kept in mind when using this feature:

* P, has to be set larger than 0 otherwise the feature will work but not have any effect.

* Environmental output commodities have to mimic the behavior of the inputs by which they are
generated. Otherwise the emissions per unit of input would change together with the efficiency,
which is typically not the desired behavior.

On/off Behavior

Some processes are characterised by a minimum or part-load behavior but still retain the practical ne-
cessity of being turned on and off if this is optimal. This feature transforms urbs from a linear problem
to a quadratic integer problem, or piecewise linear. The following graphic illustrates a process with the

on/off feature and constant efficiency:

44

Chapter 1. Contents

urbs Documentation, Release 1.0.0

in,out
EIDC’- A

- oan
pr! pc |y .

- Lout.env
Kprpe.

- out
pr;pc
- out i
Epfprpc -------------------------------- 7 s Input €,
—— Output Eg:_.“‘
Environmental
t, v
: Output et
- . >
Epf!tp Ikp Tp

The following graphic illustrates a process with the on/off feature and part load behavior:

in,out

1),
€pe A Ip)
“;n-aa.
)
I‘P;pc '' :
- pout.env
m out
pr,’pc :
TN
P K in 1
ottt
=—p~*P—pc d
- out.env
Epﬁp’_pg
- m—— [nput €.
P Kot | e
—p*tP—pe
t
= Output e
Efficiency 7,
v ironmental
t.env ;
: Output ez “""
Bpfl'p Il'p Tp

Coupling the throughput ant the on/off marker: The following equation introduces a coupling be-
tween ,;, the boolean on/off marker of a process and its throughput 7, so that ,; assumes the value 1
when the process has a non-zero output and 0 otherwise.

Vp e POVt e

Py bppt < Tpr < Kp pt +P), - Ky - (1—pt)

Input: The following equation describes the alteration of the input equation of a process with on/off and
part-load behaviors due to the necessity of having a continuous, linear function defined on two intervals.
The first interval represents the starting input of a process, while the second one represents the consumed

1.2. Mathematical documentation 45

urbs Documentation, Release 1.0.0

input while also producing.

Vp c Pon/off with part load’ ce C, te Tm .

in in in in
; i Tpe — T r —Pr
mn e (1 | ZPc pc | X pbc —p—Ppc .
€pct = Tpt " T'pe (1 Pt) + At 1_p Bp kp + 1_pP Tpt | “pt -
=—p w4

In order to ensure the continuity property of the function, the input ratio used for the starting interval has
to be one corresponding to the minimum partial load, using zglc. This is a realistic value, since processes
normally use, percentagewise, more fuel in relationship to the throughput when starting than at higher
throughput values.

Output differentiation: The following equations differentiate whether an output commodity needs to
be produced when a process is starting (e.g. environmental commodities) or not (e.g. electricity):

\v/p c Pon/off" = Cenvironmemal’ te Tm .

out __ out
€pct = Tpt " Tpe

Vp e Pon/off7 = Cnon—environmental7 te Tm .

out

6pct

_ . .out
= Tpt Tpe pt -

If the process also shows part-load behavior, the previous two equations change to a similarly adapted
version of the part-load output equation:

vp c Pon/offw1th part load’ cc Cenv1ronmental’ teT,:

out out out out

rout — rout — P r

out _ oout (1 [Lpc pc) pc — Lpipc]

Epet = Tpt * Tpe (I—pt) + At <1 "y P, rp+ —1-p Tpt> ot
Lp Lp

vp c Pon/off’ = Cnon—environmental’ te Tm .

out _ ,.out out out

out Ay (e e po L n Tpe — Pylpe).

pet — 1_p Lp hp 1_pP pt | "pt -
=p =—p

Here, it is important to notice that the output of the environmental commodities becomes a continuous,
piecewise linear function defined on two intervals. In order to ensure the continuity property of the func-
tion, the output ratio used for the starting interval has to be the partial one, fglc. This is a realistic value,
since processes normaly produce, percentagewise, more CO2 and/or other environmental commodities
in relationship to the throughput when starting then at higher throughput values.

Output ramping-up limit: While ramping up a process which can be turned on and off with a defined
ramping up gradient, the following unrealistic situation might occur: Due to the fact that in the minimum
working point the process on/off marker ,; can be both 0 and 1, the output of a process might have
unrealistic jumps after the starting process is completed. There are 3 possible cases, each solved with its
own output ramping equation, as follows:

Case I: When
—
pP,> PG,
. . —5~Up
P, is amultiple of PG,,".

46 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Here, in order to ensure that the process behaves realistically, it is needed to ensure that the process
starts producing in the minimum working point, P, ;;gt, and not at a higher value. This is done by
the following equation:

Vp c Pon/off, caseI’ = C, te Tm
e;Zf — ezg€t—1) < AtP, /{prout.

If the process shows a part load behavior, the equation changes to:

Vp € Pon/off with part load, casel’ = C, te Tm

out out out
Epet — Epe(t—1) = AL Rprye

If the process has a time variable efficiency, the equation changes to:

Vp c Pon/off with TimeVarEff, caseI, = C, te Tm
out out out pout
€pet — Epe(t—1) < ALL Kprpe frp -

If the process has both a part load behavior and a time variable efficiency, the equation changes to:

Vp c Pon/off with Time VarEff, caseI7 = C, te Tm

eggf — eggft_l) < AtP /ﬁpr"‘“ I‘)’ft.
Case II: When
—
r,> PG,
P, is not a multiple ofTG;p .

Here, in order to ensure that the process behaves realistically, it is needed to ensure that the process starts
somewhere in the interval between the minimum working point P, and the point of the first multiple

of PG, greater than P, k,, which is (% + 1) - PG, where is the rounded down number. This is
p

done by the following equation:

Vp c Pon/off, case II’ ce C, t e Tm

t t
et — Gpet—1) < A=z

P out
Gup + 1) PGprprpe.

If the process shows a part load behavior, the equation changes to:

Vp e Pon/off, case II’ = C, te Tm

out out BP out
€pct ~ Epe(t—1) = A75(13—Gup)PGPHPT :
p

If the process has a time variable efficiency, the equation changes to:

Vp e Pon/off with TimeVarEff, case H? = C, te Tm

out out A P PG out pout
6pct - pc(t 1) < t(PGup + 1) HlpT .

pt
p

1.2. Mathematical documentation 47

urbs Documentation, Release 1.0.0

If the process has both a part load behavior and a time variable efficiency, the equation changes to:

\v/p c Pon/off with part load and Time VarEff, case II7 ce 07 t e Tm .

out out Bp D out rout
6pcz& - 6pc(t—l) < At(PiGup + 1)PGPRP£pc pt -
p

Case III: When
B4
Bp < PGp .

Here, in order to ensure that the process behaves realistically, it is needed to ensure that the process
starts somewhere in the interval between the minimum working point Pk, and the first ramping up

point greater than 0, PiG;p kp. This is done by the following equation:

Vp c Pon/off, case HI’ = C, te Tm .
out out D UP out
€pct — Epe(t—1) < ALPG Kprpe.

If the process shows a part load behavior, the equation changes to:

Vp c Pon/off, case HI’ c e C, te Tm .
out out D UP out
€pct — Epe(t—1) < AtPGp KpTpe -

If the process has a time variable efficiency, the equation changes to:

Vp c Pon/off with TimeVarEff, case III, = C, te Tm .

out out up out rout
€pet — Epe(t—1) < AEPGy Rprpe fyr -

If the process has both a part load behavior and a time variable efficiency, the equation changes to:

Vp c Pon/off with part load and Time VarEff, case III’ = C, te Tm .

out out up out rout
€pct — Epe(t—1) < AtPGp KpTpe Jpt -

Starting ramp-up: There are some processes which have a different ramping up gradient while starting
than while producing. This is usually defined with the help of a so called starting time. The following
equations transform the starting time into a starting ramp and implement the starting ramp only during
start, either as the only ramping constraint when no ramp up gradient is defined or by replacing during
start the rampiong up constraint which uses the ramping up gradient:

Vp c Pon/off with start time7 te Tm .

P
SR, = =2
P Tp

Tpt = Tp(t—1) = AtpiG;p”pp(tfl) + At SRphip(1=p(-1))-

Start-up costs: For those processes which have a fix start-up cost, it is necessary to identify whether
a process has completed its starting phase and begins to produce or not. The following equation does

48 Chapter 1. Contents

urbs Documentation, Release 1.0.0

this by turning the boolean variable process start-up marker o,; to 1 when the process on/off marker
switches from O to 1:

\V/p c Pon/offwith start cost’ te Tm .

Tpt Zpt —p(t—1)-

The following table shows the possible values of o,: .. table:: Table: Process Start-up Marker Values

pt | pt=1) | Tpt

010 O or 1 (0 is optimal)
0|1 0

110 1

1|1 0

Costs

The cost function is ammended with one cost type, the start-up cost:

C = Cinv + Cﬁx + Cvar + Cfuel + Cstartup + Cenv~

Turning on a process requires sometime an additional fix cost besides the fuel used for the starting. As
the variable costs, these costs occur when processes are used:

Cstartup = wAt Z

teTm,
start
JAS Pon/ofpr Opt

where P;ta“ is the fix start-up cost and oy, is the process start-up marker. This cost type can also be
merged into the same class of costs as the variable and fuel costs.

1.3 Technical documentation

Continue here if you want to understand in detail the model generator implementation.

1.3.1 Model Implementation

In this Section the implementation of the theoretical concepts of the model is described. This includes
listing and describing all relevant sets, parameters, variables and constraints linking mathematical nota-
tion with the corresponding code fragment.

Sets

Since urbs is a linear optimization model with many objects (e.g variables, parameters), it is reasonable
to use sets to define the groups of objects. With the usage of sets, many facilities are provided, such as
understanding the main concepts of the model. Many objects are represented by various sets, therefore
sets can be easily used to check whether some object has a specific characteristic or not. Additionally sets
are useful to define a hierarchy of objects. Mathematical notation of sets are expressed with uppercase
letters, and their members are usually expressed with the same lowercase letters. Main sets, tuple sets
and subsets will be introduced in this respective order.

1.3. Technical documentation 49

urbs Documentation, Release 1.0.0

Elementary sets

Table 3: Table: Model Sets

Set Description

t €T | Timesteps

t € Tiy | Modelled Timesteps
y €Y | Support timeframes
veV | Sites

c € C | Commodities

q € Q | Commodity Types
p € P | Processes

s €S | Storages

f € F | Transmissions

r € R | Cost Types

Time Steps

The model urbs is considered to observe a energy system model and calculate the optimal solution within
a limited span of time. This limited span of time is viewed as a discrete variable, which means values of
variables are viewed as occurring only at distinct timesteps. The set of time steps 7' = {t¢, ..., tx} for
N in N represents Time. This set contains N 4 1 sequential time steps with equal spaces. Each time step
represents another point in time. At the initialisation of the model this set is fixed by the user by setting
the variable t imesteps in script runme . py. Duration of space between timesteps At = t,11 — t,,
length of simulation At - N and time interval [t,] can be fixed to satisfy the needs of the user. In
code this set is defined by the set t and initialized by the section:

m.t = pyomo.Set (
initialize=m.timesteps,
ordered=True,
doc="'Set of timesteps')

Where:

e [nitialize: A function that receives the set indices and model to return the value of that set element,
initializes the set with data.

* Ordered: A boolean value that indicates whether the set is ordered.

* Doc: A string describing the set.

Modelled Timesteps

The Set, modelled timesteps, is a subset of the time steps set. The only difference between modelled
timesteps set and the timesteps set is that the initial timestep g is not included. All other features of the
set time steps also apply to the set of modelled timesteps. This set is the main time set used in the model.
The distinction with the set timesteps is only required to facilitate the definition of the storage state
equation. In script model . py this set is defined by the set tm and initialized by the code fragment:

50 Chapter 1. Contents

urbs Documentation, Release 1.0.0

m.tm = pyomo.Set (
within=m.t,
initialize=m.timesteps[1l:],
ordered=True,
doc="'Set of modelled timesteps')

Where:
» Within: The option that supports the validation of a set array.

* m.timesteps[1:] represents the timesteps set starting from the second element, excluding
the first timestep tg

Support timeframes

Support timeframes are represented by the set Y. They represent the explicitly modeled support time-
frames, e.g., years, for intertemporal models. In script model . py the set is defined as:

m.stf = pyomo.Set (
initialize=(m.commodity.index.get_level_values ('support_timeframe')
.unique ()),
doc="'Set of modeled support timeframes (e.g. years)')

Sites

Sites are represented by the set V. A Site v can be any distinct location, a place of settlement or activity
(e.g process, transmission, storage).A site is for example an individual building, region, country or even
continent. Sites can be imagined as nodes(vertices) on a graph of locations, connected by edges. Index
of this set are the descriptions of the Sites (e.g north, middle, south). In script model .py this set is
defined by sit and initialized by the code fragment:

m.sit = pyomo.Set (
initialize=m.commodity.index.get_level_values ('Site') .unique(),
doc="'Set of sites')

Commodities

As explained in the Overview section, commodities are goods that can be generated, stored, transmitted
or consumed. The set of Commodities represents all goods that are relevant to the modelled energy
system, such as all energy carriers, inputs, outputs, intermediate substances. (e.g Coal, CO2, Electric,
Wind) By default, commodities are given by their energy content (MWh). Usage of some commodities
are limited by a maximum value or maximum value per timestep due to their availability or restric-
tions, also some commodities have a price that needs to be compensated..(e.g coal, wind, solar).In script
model . py this set is defined by com and initialized by the code fragment:

m.com = pyomo.Set (
initialize=m.commodity.index.get_level_values ('Commodity') .unique (),
doc="'Set of commodities')

1.3. Technical documentation 51

urbs Documentation, Release 1.0.0

Commodity Types

Commodities differ in their usage purposes, consequently commodity types are introduced to subdivide
commodities by their features. These Types are hard coded as SupIm, Stock, Demand, Env, Buy,
Sell. Inscript model . py this set is defined as com__t ype and initialized by the code fragment:

m.com_type = pyomo.Set (
initialize=m.commodity.index.get_level_values('Type') .unique(),
doc="'Set of commodity types')

Processes

One of the most important elements of an energy system is the process. A process p can be defined
by the action of changing one or more forms of energy, i.e. commodities, to others. In our modelled
energy system, processes convert input commodities into output commodities. Process technologies
are represented by the set processes P. Different processes technologies have fixed input and output
commodities. These input and output commodities can be either single or multiple regardless of each
other. Some example members of this set can be: Wind Turbine,'Gas Plant‘, Photovoltaics. In script
model . py this set is defined as pro and initialized by the code fragment:

m.pro = pyomo.Set (
initialize=m.process.index.get_level_values('Process') .unique (),
doc="'Set of conversion processes')

Storages

Energy Storage is provided by technical facilities that store energy to generate a commodity at a later
time for the purpose of meeting the demand. Occasionally, on-hand commodities may not be able to
satisfy the required amount of energy to meet the demand, or the available amount of energy may be
much more than required.Storage technologies play a major role in such circumstances. The Set S
represents all storage technologies (e.g Pump storage). In script model . py this set is defined as sto
and initialized by the code fragment:

m.sto = pyomo.Set (
initialize=m.storage.index.get_level_values ('Storage') .unique (),
doc="'Set of storage technologies')

Transmissions

Transmissions [€ F represent possible conveyances of commodities between sites. Transmission
process technologies can vary between different commodities, due to distinct physical attributes and
forms of commodities. Some examples for Transmission technologies are: hvac, hvdc, pipeline) In
script model . py this set is defined as t ra and initialized by the code fragment:

m.tra = pyomo.Set (
initialize=m.transmission.index.get_level_values('Transmission').
—unique (),
doc="'Set of transmission technologies')

52 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Cost Types

One of the major goals of the model is to calculate the costs of a simulated energy system. There are 6
different types of costs. Each one has different features and are defined for different instances. Set of
cost types is hardcoded, which means they are not considered to be fixed or changed by the user. The
Set R defines the Cost Types, each member r of this set R represents a unique cost type name. The cost
types are hard coded as: Investment, Fix, Variable, Fuel, Revenue, Purchase, Startup.
In script model . py this set is defined as cost_t ype and initialized by the code fragment:

m.cost_type = pyomo.Set (
initialize=['Inv', 'Fix', 'Var', 'Fuel', 'Revenue', 'Purchase', 'Startup
‘—>']I

doc="'Set of cost types (hard-coded)"')

Tuple Sets

A tuple is finite, ordered collection of elements. For example, the tuple (hat, red, large) consists
of 3 ordered elements and defines another element itself. Tuples are needed in this model to define the
combinations of elements from different sets. Defining a tuple lets us assemble related elements and
use them as a single element. These tuples are then collected into tuple sets. These tuple sets are then
immensely useful for efficient indexing of model variables and parameters and for defining the constraint
rules.

Commodity Tuples

Commodity tuples represent combinations of defined commodities. These are represented by the set
Cyvq- A member cy,q in set Cy,q is a commodity ¢ of commodity type ¢ in support timeframe y and
site v. For example, (2020, Mid, Elec, Demand) is interpreted as commodity Elec of commodity type
Demand in the year 2020 in site Mid. This set is defined as com_tuples and given by the code
fragment:

m.com_tuples = pyomo.Set (
within=m.stf*m.sit+m.com*m.com_type,
initialize=m.commodity.index,
doc='Combinations of defined commodities, e.g. (2020,Mid,Elec,Demand) ')

Process Tuples

Process tuples represent possible placements of processes within the model. These are represented by
the set P,. A member p,, in set Py, is a process p in support timeframe y and site v. For example,
(2020, North, Coal Plant) is interpreted as process Coal Plant in site North in the year 2020. This set is
defined as pro_tuples and given by the code fragment:

m.pro_tuples = pyomo.Set (
within=m.stf*m.sit*m.pro,
initialize=m.process.index,
doc='Combinations of possible processes, e.g. (2020,North,Coal plant)"')

1.3. Technical documentation 53

urbs Documentation, Release 1.0.0

There are several subsets defined for process tuples, which each activate a different set of modeling
constraints.

The first subset is formed in order to capture all processes that take up a certain area and are thus subject
to the area constraint at the given site. These processes are identified by the parameter area-per—-cap
set in table Process, if at the same time a value for area is set in table Sife. The tuple set is defined as:

m.pro_area_tuples = pyomo.Set (
within=m.stf*m.sit*m.pro,
initialize=m.proc_area.index,
doc='Processes and Sites with area Restriction')

The second subset is formed in order to capture all processes which have the parameter process new
capacity block cap-block K;’L‘;fk set in the table Process, used for building new capacity in blocks.
The tuple set is defined as:

m.pro_cap_new_plock_tuples = pyomo.Set (
within=m.stf * m.sit * m.pro,
initialize=[(stf, site, process)
for (stf, site, process) in m.pro_tuples
for (s, si, pro) in tuple(m.cap_block_dict.keys())
if process == pro and si == site and s == stf],
doc="'Processes with new capacities built in blocks')

The third subset of the process tuples pro_minfraction_tuples Pﬁi“fmai"n is formed in order to
identify processes that have a minimum fraction defined without having partial operation properties and
cannot be turned off. Programatically, they are identified by those processes which have the parameter
min-fraction set and the parameter on—off set to 0 in the table Process. The tuple set is defined
in AdvancedProcesses.py as:

m.pro_minfraction_tuples = pyomo.Set (
within=m.stf * m.sit % m.pro,
initialize=[(stf, site, process)
for (stf, site, process) in m.pro_tuples
for (st, sit, pro) in tuple(m.min_fraction_dict.keys())
if stf == st and sit == site and process ==pro and
m.process_dict['on-off'] [stf, site, process] != 1],
doc='Processes with constant efficiency and minimum working load which'
'cannot be turned off')

The fourth subset of the process tuples pro_partial_tuples Ph™ is formed in order to identify

processes that have partial operation properties and cannot be turned off. Programmatically, they are
identified by those processes, which have the parameter rat io-min set for one of their input and/or
outputcommodities in table Process-Commodity and the parameter on—of f in the table Process set to
0. The tuple set is defined in AdvancedProcesses.py as:

m.pro_partial tuples = pyomo.Set (
within=m.stf * m.sit % m.pro,

initialize=[(stf, site, process)
for (stf, site, process) in m.pro_tuples
for (s, pro, _) in tuple(m.r_in _min_fraction_dict.keys () or
m.r_out_min_fraction_dict.keys())
if process == pro and s == stf and
m.process_dict['on-off'] [stf, site, process] !'= 1],

doc='Processes with partial input/output which cannot be turned off')

54 Chapter 1. Contents

urbs Documentation, Release 1.0.0

The fifth subset of the process tuples pro_on_off_tuples P;{}/"ff is formed in order to iden-
tify processes that have a minimum fraction defined without having partial operation properties and
can be turned off. Programatically, they are identified by those processes which have the parameter
min-fraction set and the parameter on—off set to 1 in the table Process. The tuple set is defined
in AdvancedProcesses.py as:

m.pro_on_off tuples = pyomo.Set (

within=m.stf * m.sit * m.pro,

initialize=[(stf, site, process)
for (stf, site, process) in

tuple(m.min_fraction_dict.keys())

for (st, sit, pro) in tuple(m.onoff_dict.keys())
if stf == st and site == sit and process == pro],

doc='Processes with minimal fraction which can be turned off')

The sixth subset of the process tuples pro_on_off_partial_tuples Pha Mg formed in or-

der to identify processes that have a minimum fraction defined, partial operation properties and can
be turned off. Programmatically, they are identified by those processes, which have the parameter
ratio-min set for one of their input and/or outputcommodities in table Process-Commodity and the
parameter on—-of f in the table Process set to 1. The tuple set is defined in AdvancedProcesses.py as:

m.pro_partial_on_off_tuples = pyomo.Set (

within=m.stf * m.sit * m.pro,

initialize=[(stf, site, process)
for (stf, site, process) in m.pro_tuples
for (st, pro, _) in tuple(m.r_in_min_fraction_dict.keys()

or m.r_out_min_fraction_dict)

if process == pro and stf == st and
m.process_dict['on-off'][stf, site, process] == 1],

doc='Processes with partial input/output which can be turned off')

Finally, processes that are subject to restrictions in the change of operational state are captured with
the pro_rampupgrad_tuples and pro_rampdowngrad_tuples. This subsets are defined in
AdvancedProcesses as:

m.pro_rampupgrad_tuples = pyomo.Set (
within=m.stf * m.sit * m.pro,
initialize=[(stf, sit, pro)
for (stf, sit, pro) in m.pro_tuples
if m.process_dict|['ramp-up-grad'][stf, sit, pro] < 1.0 /_
—dt],
doc='Processes with maximum ramp up gradient smaller than timestep,
—~length')

m.pro_rampdowngrad_tuples = pyomo.Set (
within=m.stf * m.sit * m.pro,
initialize=[(stf, sit, pro)
for (stf, sit, pro) in m.pro_tuples
if m.process_dict|['ramp-down-grad'] [stf, sit, pro] < 1.0 /_
—dt],
doc='Processes with maximum ramp down gradient smaller than timestep,,
—length'")

In the case of a a process which can be turned on and off and are subject to restrictions in the change of
operational state while starting are captured with the pro_rampup_start_tuples, subset which is
defined in advancedProcesses.py as:

1.3. Technical documentation 55

urbs Documentation, Release 1.0.0

m.pro_rampup_start_tuples = pyomo.Set (
within=m.stf * m.sit »*m.pro,

initialize=[(stf, sit, pro)
for (stf, sit, pro) in m.pro_on_off_ tuples
if m.process_dict['start-time'][stf, sit, pro]

> 1.0 / m.dt],
doc='Processes with different starting ramp up gradient')

Transmission Tuples

Transmission tuples represent possible transmissions. These are represented by the set Fcyo0,- A
member fycyou;, 1N S€t Fyeyo,u;, 1 @ transmission fthat is directed from an origin site voy to a destina-
tion site v;, and carrying the commodity c¢ in support timeframe y. The term “directed from an origin
site Vou to a destination site vy,” can also be defined as an arc a . For example, (2020, South, Mid,
hvac, Elec) is interpreted as transmission hvac that is directed from origin site South to destination site
Mid carrying commodity Elec in year 2020. This set is defined as t ra_tuples and given by the code
fragment:

m.tra_tuples = pyomo.Set (
within=m.stf*m.sit+m.sit+m.tra*m.com,
initialize=m.transmission.index,
doc='Combinations of possible transmissions, e.g.
'(2020, South,Mid, hvac,Elec) ")

v

The set Fé’éﬁgﬁfjm includes all transmission lines which have a defined capacity block for the building of

new transmission capacities.

m.tra_block_tuples = pyomo.Set (
within=m.stf * m.sit * m.sit * m.tra % m.com,
initialize=[(stf, sit, sit_, tra, com)
for (stf, sit, sit_, tra, com) in tuple(m.tra_block_dict.
—~keys ())1,
doc="'Transmission with new block capacities')

DCPF Transmission Tuples

If the DC Power Flow Model feature is activated in the model, three different transmission tuple sets are
defined in the model.

The set F ., v,7p includes every transport model transmission lines and is defined as

tra_tuples_tp and given by the code fragment:

m.tra_tuples_tp = pyomo.Set (
within=m.stf * m.sit % m.sit * m.tra * m.com,
initialize=tuple (tra_tuples_tp),
doc='"'Combinations of possible transport transmissions,'
'e.g. (2020,South,Mid, hvac,Elec) ")

The set Fy, ., pcpr includes every transmission line, which should be modelled with DCPF. If the
complementary arcs are included in the input for DCPF transmission lines, these will be excluded from
this set with remove_duplicate_transmission (). This set is defined as tra_tuples_dc
and given by the code fragment:

56 Chapter 1. Contents

urbs Documentation, Release 1.0.0

m.tra_tuples_dc = pyomo.Set (
within=m.stf » m.sit * m.sit * m.tra *» m.com,
initialize=tuple (tra_tuples_dc),
doc="'Combinations of possible bidirectional dc'
'transmissions, e.g. (2020, South,Mid, hvac,Elec) ")

If the DCPF is activated, the set Fycy,,u;, i defined by the unification of the sets F ., .. pcrr and

YCuo

Fcvouvy, 7P+ This setis defined as t ra_tuples in the same fashion as the default transmission model.

Storage Tuples

Storage tuples label storages. They are represented by the set Sy,c. A member sy, in set Sy, is
a storage s of commodity c in site v and support timeframe y For example, (2020, Mid, Bat, Elec)
is interpreted as storage Bat for commodity Elec in site Mid in the year 2020. This set is defined as
sto_tuples and given by the code fragment:

m.sto_tuples = pyomo.Set (
within=m.stf*m.sit+m.sto*m.com,
initialize=m.storage.index,
doc="'Combinations of possible storage by site,
'e.g. (2020,Mid,Bat,Elec)")

)

There are four subsets of storage tuples.

In a first subset of the storage tuples are all storages that have a user defined fixed value for the initial
state are collected.

m.sto_init_bound_tuples = pyomo.Set (
within=m.stf*m.sit+m.sto*m.com,
initialize=m.stor_init_bound. index,
doc="'storages with fixed initial state')

A second subset is defined for all storages that have a fixed ratio between charging/discharging power
and storage content.

m.sto_ep_ratio_tuples = pyomo.Set (
within=m.stf*m.sit*m.sto*m.com,
initialize=tuple (m.sto_ep_ratio_dict.keys()),
doc='storages with given energy to power ratio')

The third and fourth subsets are defined for all the storages that have a capacity or power expansion
block defined in the input.

m.sto_block_c_tuples = pyomo.Set (
within=m.stf * m.sit * m.sto * m.com,
initialize=tuple (m.sto_block_c_dict.keys()),
doc="'storages with new energy block capacities')
m.sto_block_p_tuples = pyomo.Set (
within=m.stf * m.sit % m.sto * m.com,
initialize=tuple (m.sto_block_p_dict.keys()),
doc='storages with new power block capacities')

1.3. Technical documentation 57

urbs Documentation, Release 1.0.0

Process Input Tuples

Process input tuples represent commodities consumed by processes. These are represented by the set
Cyup- A member ¢, in set Cy, is a commodity ¢ consumed by the process p in site v in support
timeframe y. For example, (2020, Mid, PV, Solar) is interpreted as commodity Solar consumed by the
process PV in the site Mid in the year 2020. This set is defined as pro_input_tuples and given by

the code fragment:

m.pro_input_tuples = pyomo.Set (

within=m.stf*m.sit*m.pro*m.com,

initialize=[(stf, site, process, commodity)
for (stf, site, process) in m.pro_tuples
for (s, pro, commodity) in m.r_in.index
if process == pro and s == stf],

doc='"'Commodities consumed by process by site,'

'e.g. (2020,Mid,PV,Solar)")

Where: r_in represents the process input ratio as set in the input.

For processes in the tuple set pro_partial_tuples, the following tuple set
pro_partial_input_tuples enumerates their input commodities. It is used to index the
constraints that modifies a process’ input commodity flow with respect to the standard case without
partial operation. It is defined by the following code fragment:

m.pro_partial_input_tuples = pyomo.Set (
within=m.stf*m.sit*m.pro*m.com,
initialize=[(stf, site, process, commodity)
for (stf, site, process) in m.pro_partial_ tuples
for (s, pro, commodity) in m.r_in_min_fraction.index
if process == pro and s == stf],
doc="'Commodities with partial input ratio,'
'e.g. (2020,Mid, Coal PP,Coal)")

Where: r_in_min_fraction represents the process input ratio as set in the input for the minimum
load of the process.

For processes in the tuple set pro_on_off_ tuples, the following tuple set
pro_on_off_input_tuples enumerates their input commodities. It is used to index the
constraints that modifies a process’ input commodity flow with respect to the standard case without the
on/off feature. It is defined by the following code fragment in AdvancedProcesses.py:

m.pro_on_off_input_tuples = pyomo.Set (
within=m.stf * m.sit * m.pro * m.com,
initialize=[(stf, site, process, commodity)
for (stf, site, process) in m.pro_on_off tuples
for (s, pro, commodity) in tuple(m.r_in_dict.keys())
if process == pro and stf == s],
doc="'Commodities for on/off input')

For processes in the tuple set pro_partial_on_off_tuples, the following tuple set
pro_partial_on_off_input_tuples enumerates their input commodities. It is used to index
the constraints that modifies a process’ input commodity flow with respect to the standard case without
the on/off feature and partial operation. It is defined by the following code fragment in AdvancedPro-
cesses.py:

58 Chapter 1. Contents

urbs Documentation, Release 1.0.0

m.pro_partial_on_off_input_tuples = pyomo.Set (

within=m.stf » m.sit * m.pro * m.com,

initialize=[(stf, site, process, commodity)
for (stf, site, process) in m.pro_partial_on_off_ tuples
for (s, pro, commodity) in tuple(m.r_in_min_fraction_dict

.keys ())

if process == pro and s == stf],

doc="'Commodities with partial input ratio which can be turned off,'

'e.g. (2020,Mid,Coal PP,Coal)")

Process Output Tuples

Process output tuples represent commodities generated by processes. These are represented by the set
C’;E;D. A member c%tp in set C;E;, is a commodity ¢ generated by the process p in site v and support
timeframe y. For example, (2020, Mid,PV,Elec) is interpreted as the commodity Elec is generated by the
process PV in the site Mid in the year 2020. This set is defined as pro_output_tuples and given

by the code fragment:

m.pro_output_tuples = pyomo.Set (
within=m.stf*m.sit*m.pro*m.com,
initialize=[(stf, site, process, commodity)
for (stf, site, process) in m.pro_tuples
for (s, pro, commodity) in m.r_out.index
if process == pro and s == stf],
doc='Commodities produced by process by site, e.g. (2020,Mid,PV,Elec) ")

Where: r_out represents the process output ratio as set in the input.

There are several alternative tuple sets that are active whenever their respective features are set in the
input.

First, for processes in the tuple set pro_partial_tuples, the tuple set
pro_partial_output_tuples enumerates their output commodities. It is used to index
the constraints that modifies a process’ output commodity flow with respect to the standard case without
partial operation. It is defined by the following code fragment:

m.pro_partial_output_tuples = pyomo.Set (
within=m.stf*m.sit*m.pro*m.com,
initialize=[(stf, site, process, commodity)
for (stf, site, process) in m.pro_partial_tuples
for (s, pro, commodity) in m.r_out_min_ fraction.index
if process == pro and s == stf],
doc='Commodities with partial input ratio, e.g. (Mid,Coal PP,C02)")

Second, for processes in the tuple set pro_on_off_ tuples, the tuple set
pro_on_off_ output_tuples enumerates their output commodities. It is used to index the
constraints that modifies a process’ output commodity flow with respect to the standard case without
the on/off feature. It is defined by the following code fragment in AdvancedProcesses.py:

m.pro_on_off_ output_tuples = pyomo.Set (
within=m.stf * m.sit * m.pro * m.com,
initialize=[(stf, site, process, commodity)
for (stf, site, process) in m.pro_on_off_ tuples

(continues on next page)

1.3. Technical documentation 59

urbs Documentation, Release 1.0.0

(continued from previous page)

for (s, pro, commodity) in tuple (m.r_out_dict.keys())
if process == pro and stf == s],
doc="'Commodities for on/off output')

Third, for processes in the tuple set pro_partial_on_off_tuples, the tuple set
pro_partial_on_off_output_tuples enumerates their output commodities. It is used to in-
dex the constraints that modifies a process’ output commodity flow with respect to the standard case
without the on/off feature and partial operation. It is defined by the following code fragment in Ad-
vancedProcesses.py:

m.pro_partial_on_off_output_tuples = pyomo.Set (
within=m.stf * m.sit * m.pro * m.com,
initialize=[(stf, site, process, commodity)
for (stf, site, process) in m.pro_partial_on_off_ tuples
for (s, pro, commodity) in tuple(m.r_out_min_fraction_

—dict
.keys ())
if process == pro and s == stf],
doc="'Commodities for on/off output with partial behaviour')
Fourth, the processes in the tuple sets pro_on_off_tuples and

pro_partial_on_off_tuples require another constraint to limit the excessive growth of
the output of a process. This is required due to the fact that in the point of minimum load, without these
limiting constraints, the process on/off marker y,,; can be both on and off. There are three cases to be
considered:

The first case is represented by the tuple set pro_rampup_divides_minfraction_output_tuples,
which covers the outputs of the processes for which the defined ramp up gradient and is smaller than

the minimum load fraction and is a divisor of it. It is defined by the following code fragment in
AdvancedProcesses.py:

m.pro_rampup_divides_minfraction_output_tuples = pyomo.Set (
within=m.stf » m.sit * m.pro * m.com,
initialize=[(stf, sit, pro, com)
for (stf, sit, pro, com) in m.pro_on_off_ output_tuples
if m.process_dict['ramp-up-grad'][stf, sit, pro] < 1.0 / m.
—dt and
m.process_dict['ramp-up-grad'] [stf, sit, pro] <=
m.min_fraction_dict[stf, sit, pro] and
m.min_fraction_dict[stf, sit, prol] %
m.process_dict['ramp-up-grad'][stf, sit, pro] == 0 and
com not in m.com_env],
doc='Output commodities of processes with ramp-up-grad smaller than'
'timestep length and smaller equal than min-fraction and is a '
'divisor of min-fraction')

The second case is represented by the tuple set pro_rampup_not_divides_minfraction_output_tuples,
which covers the outputs of the processes for which the defined ramp up gradient and is smaller than

the minimum load fraction and is not a divisor of it. It is defined by the following code fragment in
AdvancedProcesses.py:

m.pro_rampup_not_divides_minfraction_output_tuples = pyomo.Set (
within=m.stf » m.sit * m.pro * m.com,
initialize=[(stf, sit, pro, com)

(continues on next page)

60 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

for (stf, sit, pro, com) in m.pro_on_off_ output_tuples

if m.process_dict['ramp-up-grad'][stf, sit, pro] < 1.0 / m.
—dt and
m.process_dict['ramp-up-grad'][stf, sit, pro] <
m.min_fraction_dict[stf, sit, pro] and
m.min_fraction_dict[stf, sit, prol] %
m.process_dict['ramp-up-grad'][stf, sit, pro] != 0 and

com not in m.com_env],
doc='Output commodities of processes with ramp-up—-grad smaller than'
'timestep length and smaller than min-fraction and is NOT a '
'divisor of min-fraction')

The third and last case is represented by the tuple set pro_rampup_bigger_minfraction_output_tuples,
which covers the outputs of the processes for which the defined ramp up gradient and is greater than the
minimum load fraction. It is defined by the following code fragment in AdvancedProcesses.py:

m.pro_rampup_bigger_minfraction_output_tuples = pyomo.Set (
within=m.stf * m.sit * m.pro * m.com,
initialize=[(stf, sit, pro, com)
for (stf, sit, pro, com) in m.pro_on_off_ output_tuples
if m.process_dict|['ramp-up-grad'][stf, sit, pro] < 1.0 / m.
—dt and
m.process_dict ['ramp-up-grad'] [stf, sit, pro] >

m.min_fraction_dict[stf, sit, pro] and
com not in m.com_env],
doc="'Output commodities of processes with ramp up gradient smaller’
'than timestep length and greater than min-fraction')

Last, the output of all processes that have a time dependent efficiency are collected in an additional tuple
set. The set contains all outputs corresponding to processes that are specified as column indices in the
input file worksheet TimeVarEff.

m.pro_timevar_output_tuples = pyomo.Set (
within=m.sit*m.pro*m.comnm,
initialize=[(site, process, commodity)
for (site, process) in m.eff factor.columns.values
for (pro, commodity) in m.r_out.index
if process == pro]l,
doc="'Outputs of processes with time dependent efficiency')

Demand Side Management Tuples

There are two kinds of demand side management (DSM) tuples in the model: DSM site tuples D,

and DSM down tuples Dggvggjtt. The first kind D, represents all possible combinations of support

timeframe y, site v and commodity c of the DSM sheet. It is given by the code fragment:

m.dsm_site_tuples = pyomo.Set (
within=m.stf*m.sit+*m.com,
initialize=m.dsm.index,
doc='"'Combinations of possible dsm by site, e.g. (2020, Mid, Elec)')

The second kind Dg%‘g;vc refers to all possible DSM downshift possibilities. It is defined to overcome

the difficulty caused by the two time indices of the DSM downshift variable. Dependend on support

1.3. Technical documentation 61

urbs Documentation, Release 1.0.0

timeframe y, site v and commodity c¢ the tuples contain two time indices. For example (5001, 5003,
2020, Mid, Elec) is intepreted as the downshift in timestep 5003, which was caused by the upshift of
timestep 5001 in year 2020 and ‘site ‘Mid for commodity Elec. The tuples are given by the following
code fragment:

m.dsm_down_tuples = pyomo.Set (
within=m.tm+m.tm*m.stf+*m.sit+m.com,
initialize=[(t, tt, stf, site, commodity)
for (t, tt, stf, site, commodity)
in dsm_down_time_tuples (m.timesteps[l:],
m.dsm_site_tuples,
m)],
doc="'Combinations of possible dsm_down combinations, e.g.
'(5001,5003,2020,Mid,Elec) ")

]

where the following function is utilized:

def dsm_down_time_tuples (time, sit_com_tuple, m):

"mm Dictionary for the two time instances of DSM_down

Args:
time: list with time indices
sit_com _tuple: a list of (site, commodity) tuples
m: model instance

Returns:
A 1list of possible time tuples depending on site and commodity

mmrn

delay = m.dsm_dict['delay']
ub = max (time)
1b = min(time)
time_list = []

for (stf, site, commodity) in sit_com_tuple:
for stepl in time:
for step2 in range (stepl -

max (int (delay[stf, site, commodity] /
m.dt.value), 1),

stepl +

max (int (delay[stf, site, commodity] /
m.dt.value), 1) + 1):

if 1b <= step2 <= ub:
time_list.append((stepl, step2, stf, site, commodity))

return time_list

Commodity Type Subsets

Commodity Type Subsets represent the commodity tuples only from a given commodity type. Com-
modity Type Subsets are subsets of the sets commodity tuples These subsets can be obtained by fixing
the commodity type ¢ to a desired commodity type (e.g Suplm, Stock) in the set commodity tuples C'.
Since there are 6 types of commodity types, there are also 6 commodity type subsets. Commodity type
subsets are;

Supply Intermittent Commodities (SupIm): The set Cyyp represents all commodities ¢ of commodity
type SupIm. Commodities of this type have intermittent timeseries, in other words, availability of these

62 Chapter 1. Contents

urbs Documentation, Release 1.0.0

commodities are not constant. These commodities might have various energy content for every timestep
t. For example solar radiation is contingent on many factors such as sun position, weather and varies
permanently.

Stock Commodities (Stock): The set Cy represents all commodities ¢ of commodity type Stock.
Commodities of this type can be purchased at any time for a given price(k).

Sell Commodities (Se11): The set Cy represents all commodities ¢ of commodity type Se11l. Com-
modities that can be sold. These Commodities have a sell price (k%,) that may vary with the given
timestep t.

Buy Commodities (Buy): The set Cyyy represents all commodities ¢ of commodity type Buy. Com-
modities that can be purchased. These Commodities have a buy price (k25) that may vary with the
given timestep ¢.

Demand Commodities (Demand): The set Cyer, represents all commodities ¢ of commodity type
Demand. Commodities of this type are the requested commodities of the energy system. They are
usually the end product of the model (e.g Electricity:Elec).

Environmental Commodities (Env): The set Ceyy represents all commodities ¢ of commodity type
Env. Commodities of this type are usually the undesired byproducts of processes that might be harm-
ful for environment, optional maximum creation limits can be set to control the generation of these
commodities (e.g Greenhouse Gas Emissions: COs).

Commodity Type Subsets are given by the code fragment:

m.com_supim = pyomo.Set (
within=m.com,
initialize=commodity_subset (m.com_tuples, 'SuplIm'),
doc="'Commodities that have intermittent (timeseries) input')
m.com_stock = pyomo.Set (
within=m.com,
initialize=commodity_subset (m.com_tuples, 'Stock'),
doc='Commodities that can be purchased at some site(s)')
m.com_sell = pyomo.Set (
within=m.com,
initialize=commodity_subset (m.com_tuples, 'Sell'),
doc="'Commodities that can be sold')
m.com_buy = pyomo.Set (
within=m.com,
initialize=commodity_subset (m.com_tuples, 'Buy'),
doc='Commodities that can be purchased')
m.com_demand = pyomo.Set (
within=m.com,
initialize=commodity_subset (m.com_tuples, 'Demand'),
doc="'Commodities that have a demand (implies timeseries)')
m.com_env = pyomo.Set (
within=m.com,
initialize=commodity_subset (m.com_tuples, 'Env'),
doc='Commodities that (might) have a maximum creation limit"')

Where:

urbs.commodity_subset (com_tuples, type_name)
Returns the commodity names(c) of the given commodity type(q).

Parameters

* com_tuples — A list of tuples (site, commodity, commodity type)

1.3. Technical documentation 63

urbs Documentation, Release 1.0.0

* type_name — A commodity type or a list of commodity types

Returns The set (unique elements/list) of commodity names of the desired commodity
type.

Operational state tuples

For intertemporal optimization the operational state of units in a support timeframe y has to be cal-
culated from both the initially installed units and their remaining lifetime and the units installed in a
previous support timeframe which are still operational in y. This is achieved via 6 tuple sets two each
for processes, transmissions and storages.

Intially installed units

Processes which are already installed at the beginning of the modeled time horizon and still operational
in support timeframe stf are collected in the following tuple set:

m.inst_pro_tuples = pyomo.Set (
within=m.sit*m.pro*m.stf,
initialize=[(sit, pro, stf)
for (sit, pro, stf)
in inst_pro_tuples(m)],
doc=' Installed processes that are still operational through stf')

where the following function is utilized:

def inst_pro_tuples (m) :
"mro Tuples for operational status of already installed units
(processes, transmissions, storages) for intertemporal planning.
Only such tuples where the unit is still operational until the next
support time frame are valid.
inst_pro = []
sorted_stf = sorted(list (m.stf))

for (stf, sit, pro) in m.inst_pro.index:
for stf_ later in sorted_stf:
index_helper = sorted_stf.index(stf_later)
if stf_later == max(m.stf):
if (stf_later +
m.global_prop.loc|[(max(sorted_stf), 'Weight'), 'wvalue']_

-
1 < min(m.stf) + m.process_dict['lifetime']][
(stf, sit, pro)l):
inst_pro.append((sit, pro, stf_later))
elif (sorted_stfl[index_helper+l] <=
min(m.stf) + m.process_dict['lifetime'][(stf, sit,
—pro)l):

inst_pro.append((sit, pro, stf_later))

return inst_pro

Transmissions which are already installed at the beginning of the modeled time horizon and still opera-
tional in support timeframe stf are collected in the following tuple set:

64 Chapter 1. Contents

urbs Documentation, Release 1.0.0

m.inst_tra_tuples = pyomo.Set (
within=m.sit*m.sit*m.trasm.com*m.stf,
initialize=[(sit, sit_, tra, com, stf)
for (sit, sit_, tra, com, stf)
in inst_tra_tuples(m)],
doc='"'Installed transmissions that are still operational through stf')

where the following function is utilized:

def inst_tra_tuples(m):

mmn

s.a. inst_pro_tuples
inst_tra = []
sorted_stf = sorted(list (m.stf))

for (stf, sitl, sit2, tra, com) in m.inst_tra.index:
for stf later in sorted_stf:

index_helper = sorted_stf.index(stf_later)
if stf_later == max(m.stf):
if (stf_later +
m.global_prop_dict['value'] [(max(sorted_stf), 'Weight

1 < min(m.stf) + m.transmission_dict['lifetime']][
(stf, sitl, sit2, tra, com)]):
inst_tra.append((sitl, sit2, tra, com, stf_later))
elif (sorted_stfl[index_helper + 1] <= min(m.stf) +
m.transmission_dict['lifetime'] [
(stf, sitl, sit2, tra, com)]):
inst_tra.append((sitl, sit2, tra, com, stf_later))

return inst_tra

Storages which are already installed at the beginning of the modeled time horizon and still operational
in support timeframe stf are collected in the following tuple set:

m.inst_sto_tuples = pyomo.Set (
within=m.sit*m.stoxm.com+m.stf,
initialize=[(sit, sto, com, stf)

for (sit, sto, com, stf)
in inst_sto_tuples(m)],
doc='"'Installed storages that are still operational through stf')

where the following function is utilized:

def inst_sto_tuples (m) :
"m"ros.a. inst_pro_tuples
mimin
inst_sto = []
sorted_stf = sorted(list (m.stf))

for (stf, sit, sto, com) in m.inst_sto.index:
for stf_later in sorted_stf:

index_helper = sorted_stf.index(stf_later)
if stf_later == max(m.stf):
if (stf_later +
m.global_prop_dict['value'] [(max (sorted_stf), 'Weight

(continues on next page)

1.3. Technical documentation 65

urbs Documentation, Release 1.0.0

(continued from previous page)

1 < min(m.stf) +
m.storage_dict['lifetime'][(stf, sit, sto, com)]):
inst_sto.append((sit, sto, com, stf_later))
elif (sorted_stfl[index_helper + 1] <=
min(m.stf) + m.storage_dict['lifetime'] [
(stf, sit, sto, com)]):
inst_sto.append((sit, sto, com, stf_later))

return inst_sto

Installation in earlier support timeframe

Processes installed in an earlier support timeframe stf and still usable in support timeframe stf_later are
collected in the following tuple set:

m.operational_ pro_tuples = pyomo.Set (
within=m.sit*m.prosm.stfxm.stf,
initialize=[(sit, pro, stf, stf_later)
for (sit, pro, stf, stf_later)
in op_pro_tuples (m.pro_tuples, m)],
doc='Processes that are still operational through stf_later'
'(and the relevant years following), if built in stf'
'in stf.")

where the following function is utilized:

def op_pro_tuples (pro_tuple, m):
"mm Tuples for operational status of units (processes, transmissions,
storages) for intertemporal planning.
Only such tuples where the unit is still operational until the next
support time frame are valid.
op_pro = []
sorted_stf = sorted(list (m.stf))

for (stf, sit, pro) in pro_tuple:
for stf_later in sorted_stf:
index_helper = sorted_stf.index(stf_later)
if stf_later == max (sorted_stf):
if (stf_later +
m.global_prop.loc[(max(sorted_stf), 'Weight'), 'value

1 <= stf + m.process_dict['depreciation'][
(stf, sit, pro)l):
op_pro.append((sit, pro, stf, stf_later))
elif (sorted_stf[index_helper+l] <=
stf + m.process_dict['depreciation'][(stf, sit, pro)] and
stf <= stf_later):
op_pro.append((sit, pro, stf, stf_later))
else:
pass

return op_pro

66 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Transmissions installed in an earlier support timeframe s¢f and still usable in support timeframe stf_later
are collected in the following tuple set:

m.operational_tra_tuples = pyomo.Set (
within=m.sit*m.sit*m.tra*m.comsm.stf+m.stf,
initialize=[(sit, sit_, tra, com, stf, stf_ later)
for (sit, sit_, tra, com, stf, stf_later)
in op_tra_tuples(m.tra_tuples, m)],
doc='Transmissions that are still operational through stf_later'
' (and the relevant years following), if built in stf'
'in stf.")

where the following function is utilized:

def op_tra_tuples(tra_tuple, m):
""" s.a. op_pro_tuples
mimn
op_tra = []
sorted_stf = sorted(list (m.stf))

for (stf, sitl, sit2, tra, com) in tra_tuple:
for stf_later in sorted_stf:

index_helper = sorted_stf.index(stf_later)
if stf_later == max(sorted_stf):
if (stf_later +
m.global_prop_dict['value'] [(max(sorted_stf), 'Weight

1 <= stf + m.transmission_dict['depreciation'][
(stf, sitl, sit2, tra, com)]):
op_tra.append((sitl, sit2, tra, com, stf, stf_later))
elif (sorted_stf[index_helper + 1] <=
stf + m.transmission_dict|['depreciation'] [
(stf, sitl, sit2, tra, com)] and stf <= stf_later):
op_tra.append((sitl, sit2, tra, com, stf, stf_later))
else:
pass

return op_tra

Storages installed in an earlier support timeframe s#f and still usable in support timeframe stf_later are
collected in the following tuple set:

m.operational_ sto_tuples = pyomo.Set (

within=m.sit*m.sto+m.com*m.stf+m.stf,
initialize=[(sit, sto, com, stf, stf_later)

for (sit, sto, com, stf, stf_later)

in op_sto_tuples(m.sto_tuples, m)],
doc='Processes that are still operational through stf_later'

'(and the relevant years following), if built in stf'

'in stf.")

where the following function is utilized:

def op_sto_tuples(sto_tuple, m):
""" s.a. op_pro_tuples

mmn

op_sto = []

(continues on next page)

1.3. Technical documentation 67

urbs Documentation, Release 1.0.0

(continued from previous page)

sorted_stf = sorted(list (m.stf))

for (stf, sit, sto, com) in sto_tuple:
for stf_later in sorted_stf:

index_helper = sorted_stf.index(stf_later)
if stf_later == max(sorted_stf):
if (stf_later +
m.global_prop_dict['value'] [(max(sorted_stf), 'Weight
=")1] -
1 <= stf +
m.storage_dict|['depreciation'] [(stf, sit, sto,
—com)])
op_sto.append((sit, sto, com, stf, stf_later))
elif (sorted_stf[index_helper + 1] <=
stf +
m.storage_dict['depreciation'][(stf, sit, sto, com)] and
stf <= stf_later):
op_sto.append((sit, sto, com, stf, stf_later))
else:
pass
return op_sto
Variables

All the variables that the optimization model requires to calculate an optimal solution will be listed and
defined in this section. A variable is a numerical value that is determined during optimization. Variables
can denote a single, independent value, or an array of values. Variables define the search space for
optimization. Variables of this optimization model can be separated into sections by their area of use.
These Sections are Cost, Commodity, Process, Transmission, Storage and demand side management.

Table 4: Table: Model Variables

Variable | Unit | Description

Cost Variables

¢ € Total System Cost

Cinv € Investment Costs

Cfix € Fix Costs

Cvar € Variable Costs

Cfuel € Fuel Costs

Crev € Revenue Costs

Cpur € Purchase Costs

Cstart € Start Costs

Commodity Variables

Pyvet MWh Stock Commodity Source Term
Qyuvct MWh Sell Commodity Source Term
Yyvet MWh Buy Commodity Source Term
Process Variables

Kyop MW Total Process Capacity

Ryup MW New Process Capacity

Continued on next page

68 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Table 4 — continued from previous page

Variable Unit Description

Byvp New Process Capacity Units

Tyvpt MWh Process Throughput

Eyvept MWh Process Input Commodity Flow

Emept MWh Process Output Commodity
Flow

yopt Process On/Off Marker

Oyupt Process Start-up Marker

Transmission Variables

Kyaf MW Total transmission Capacity

Ryaf MW New Transmission Capacity

Byaf New Transmission Capacity

. Units

Ty ft MWh Transmission Input Commodity
Flow

ﬂ'thf ’ MWh Transmission Output Commod-
ity Flow

DCPF Transmission Variables

Oyot deg. Voltage Angle

er; ft/ MW Absolute Transmission Flow

Storage Variables

Kyus MWh Total Storage Size

Ryvs MWh New Storage Size

Byvs New Storage Size Units

mgv s MW Total Storage Power

Riyvs MW New Storage Power

us New Storage Power Units

€t MWh Storage Input Commodity Flow

Emst MWh Storage Output Commodity
Flow

€pvst MWh Storage Energy Content

Demand Side Management Variables

Oyvet MWh DSM Upshift

oo e MWh DSM Downshift

1.3. Technical documentation

69

urbs Documentation, Release 1.0.0

Cost Variables

Total System Cost, (: the variable represents the total expense incurred in reaching the satisfaction
of the given energy demand in the entire modeling horizon. If only a fraction of a year is modeled in
each support timeframe, the costs are scaled to the annual expenditures. The total cost is calculated by
the sum total of all costs by type((,, Vr € R) and defined as cost s by the following code fragment:

m.costs = pyomo.Var (
m.cost_type,
within=pyomo.Reals,
doc="'Costs by type (EUR/a)"')

System costs are divided into the 7 cost types invest, fix, variable, fuel, purchase, sell and environmental.
The separation of costs by type, facilitates business planning and provides calculation accuracy. These
cost types are hardcoded, which means they are not considered to be fixed or changed by the user.

For more information on the definition of these variables see section Minimal optimization model and
for their implementation see section Objective function.

Commodity Variables

Stock Commodity Source Term, p,,.¢, e_co_stock, MWh: The variable p,,; represents the energy
amount in [MWh] that is being used by the system of commodity ¢ from type stock (V¢ € Ciock) in
support timeframe y (Vy € Y) in asite v (Vv € V) at timestep ¢t (Vt € Tp,). In script model . py this
variable is defined by the variable e_co_stock and initialized by the following code fragment:

m.e_co_stock = pyomo.Var (
m.tm, m.com_tuples,
within=pyomo.NonNegativeReals,
doc='Use of stock commodity source (MWh) at a given timestep')

Sell Commodity Source Term, 0,,.:, e_co_sell, MWh : The variable oy, represents the energy
amount in [MWh] that is being used by the system of commodity ¢ from type sell (V¢ € Cyp) in support
timeframe y (Vy € Y) in asite v (Vv € V) at timestep t (Vt € T1,). In script model . py this variable is
defined by the variable e_co_sell and initialized by the following code fragment:

m.e_co_sell = pyomo.Var (
m.tm, m.com_tuples,
within=pyomo.NonNegativeReals,
doc="'Use of sell commodity source (MWh) at a given timestep')

Buy Commodity Source Term, vy,.;, e_co_buy, MWh : The variable 1), represents the energy
amount in [MWh] that is being used by the system of commodity ¢ from type buy (Vc € Cyyy) in support
timeframe y (Vy € Y) inasite v (Vv € V) at timestep ¢t (Vi € Ty,). In script model . py this variable is
defined by the variable e__co_lbuy and initialized by the following code fragment:

m.e_co_buy = pyomo.Var (
m.tm, m.com_tuples,
within=pyomo.NonNegativeReals,
doc='Use of buy commodity source (MWh) at a given timestep')

70 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Process Variables

Total Process Capacity, ., cap_pro: The variable x,,, represents the total potential throughput
(capacity) of a process tuple py, (Vp € P,Vv € V, forall y in Y*), that is required in the energy system.
The total process capacity includes both the already installed process capacity and the additional new
process capacity that needs to be installed. Since the costs of the process technologies are mostly directly
proportional to the maximum possible output (and correspondingly to the capacity) of processes, this
variable acts as a scale factor of process technologies. For further information see Process Capacity
Rule. This variable is expressed in the unit (MW). In script model . py this variable is defined by the
model variable cap_pro and initialized by the following code fragment:

m.cap_pro = pyomo.Var (
m.pro_tuples,
within=pyomo.NonNegativeReals,
doc='Total process capacity (MwW) ")

New Process Capacity, ,,,, cap_pro_new: The variable &, represents the capacity of a process
tuple py, (Vp € P,Vv € V) that needs to be installed additionally to the energy system in support
timeframe y in site v in order to provide the optimal solution. This variable is expressed in the unit MW.
In script model . py this variable is defined by the model variable cap_pro_new and initialized by
the following code fragment:

m.cap_pro_new = pyomo.Var (
m.pro_tuples,
within=pyomo.NonNegativeReals,
doc="'New process capacity (MWw) ")

New Process Capacity Units, 3,,,, pro_cap_unit: The variable 3,,, represents the number of
capacity blocks of a process tuple py, (Vp € P,Vv € V) that needs to be installed additionally to the
energy system in support timeframe y in site v in order to provide the optimal solution. In script model.
py this variable is defined by the model variable cap_pro_new and initialized by the following code
fragment:

m.pro_cap_unit = pyomo.Var (
m.pro_tuples,
within=pyomo.NonNegativelIntegers,
doc="'Number of newly installed capacity units"')

Process Throughput, 7,,,;, tau_pro : The variable 7,,,; represents the measure of (energetic) activ-
ity of a process tuple py, (Vp € P,Vv € V,Vy € Y) at a timestep ¢ (V¢ € T},). Based on the process
throughput amount in a given timestep of a process, flow amounts of the process’ input and output com-
modities at that timestep can be calculated by scaling the process throughput with corresponding process
input and output ratios. For further information see Process Input Ratio and Process Output Ratio.
The process throughput variable is expressed in the unit MWh. In script model . py this variable is
defined by the model variable tau_pro and initialized by the following code fragment:

m.tau_pro = pyomo.Var (
m.tm, m.pro_tuples,
within=pyomo.NonNegativeReals,
doc="'Activity (MWh) through process')

in in

Process Input Commodity Flow, €, .,, e pro_in: The variable €., represents the commodity
input flow into a process tuple p,, (Vp € P,Vv € V,Vy € Y') caused by an input commodity ¢ (Vc € C)

1.3. Technical documentation 71

urbs Documentation, Release 1.0.0

at a timestep ¢t (Vt € T},). This variable is generally expressed in the unit MWh. In script model . py
this variable is defined by the model variable e_pro_in and initialized by the following code fragment:

m.e_pro_in = pyomo.Var (
m.tm, m.pro_tuples, m.com,
within=pyomo.NonNegativeReals,
doc='"'Flow of commodity into process at a given timestep')

Process Output Commodity Flow, €. ,, e_pro_out: The variable €}, represents the commodity
flow output out of a process tuple py, (Vp € P,Vv € V,Vy € Y) caused by an output commodity ¢
(Ve € C) atatimestep ¢ (Vt € T,;,). This variable is generally expressed in the unit MWh (or tonnes e.g.
for the environmental commodity ‘C0O2’). In script model . py this variable is defined by the model

variable e_pro_out and initialized by the following code fragment:

m.e_pro_out = pyomo.Var (
m.tm, m.pro_tuples, m.com,
within=pyomo.NonNegativeReals,
doc="'Flow of commodity out of process at a given timestep')

Process On/Off Marker, ,,,;, on_off: The boolean variable ,,,; marks whether process tuple py,
(Vp € Poff vy € V,Vy € Y) is on and producing (yopt 1s 1) or it is not producing (y.pt is 0) at
a timestep ¢. While not producing, the process is either turned off or it started, without reaching the
minimum fraction P,,,. In the script AdvancedProcesses.py, this variable is defined by the
model variable on_off and initialized by the following code fragment:

m.on_off = pyomo.Var (
m.t, m.pro_on_off_tuples,
within=pyomo.Boolean,
doc='Turn on/off a process with minimum working load')

Process Start-up Marker, oy,,:, start_ups: The boolean variable o,,; marks whether process
tuple py, (Vp € Poott vy €V, Vy € Y) is starting (0, becomes 1) or not (ot is 0) at a timestep
t. The process is considered to start when its output e_pro_out becomes greater than 0. In the
script AdvancedProcesses.py, this variable is defined by the model variable start_ups and
initialized by the following code fragment:

m.start_up = pyomo.Var (
m.tm, m.pro_start_up_tuples,
within=pyomo.Boolean,
doc='Start-up marker')

Transmission Variables

Total Transmission Capacity, ., cap_tra: The variable s represents the total potential transfer
power of a transmission tuple fy.,, where a represents the arc from an origin site voy to a destination
site vi,. The total transmission capacity includes both the already installed transmission capacity and
the additional new transmission capacity that needs to be installed. This variable is expressed in the
unit MW. In script t ransmission. py this variable is defined by the model variable cap_tra and
initialized by the following code fragment:

m.cap_tra = pyomo.Var (
m.tra_tuples,

(continues on next page)

72 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

within=pyomo.NonNegativeReals,
doc='Total transmission capacity (MW) ")

New Transmission Capacity, <,,f, cap_tra_new: The variable &, s represents the additional ca-
pacity, that needs to be installed, of a transmission tuple fy.,, where a represents the arc from an origin
site voye to a destination site vj,. This variable is expressed in the unit MW. In script transmission.
py this variable is defined by the model variable cap_tra_new and initialized by the following code
fragment:

m.cap_tra_new = pyomo.Var (
m.tra_tuples,
within=pyomo.NonNegativeReals,
doc="'New transmission capacity (MW)"')

New Transmission Capacity Units, 3,,;, tra_cap_unit: The variable 3,4 represents the number
of additional capacity blocks of a transmission tuple f,., that need to be installed , where a represents
the arc from an origin site vy to a destination site vj,. In script transmission.py this variable is
defined by the model variable cap_t ra_new and initialized by the following code fragment:

m.tra_cap_unit =pyomo.Var (
m.tra_block_tuples,
within=pyomo.NonNegativelntegers,
doc="'New transmission capacity blocks")

Transmission Input Commodity Flow, w;“a o e_tra_in: The variable w;“a ft represents the commod-
ity flow input into a transmission tuple f,., at a timestep ¢, where a represents the arc from an origin
site voy to a destination site vj,. This variable is expressed in the unit MWh. In script urbs . py this

variable is defined by the model variable e_t ra_ in and initialized by the following code fragment:

m.e_tra_in = pyomo.Var (
m.tm, m.tra_tuples,
within=pyomo.NonNegativeReals,
doc="'Commodity flow into transmission line (MWh) at a given timestep')

Transmission Output Commodity Flow, wzg‘ft, e_tra_out: The variable w;'jl‘ft represents the com-

modity flow output out of a transmission tuple f,, at a timestep ¢, where a represents the arc from an
origin site vy to a destination site vi,. This variable is expressed in the unit MWh. In script urbs.
py this variable is defined by the model variable e_tra_out and initialized by the following code
fragment:

m.e_tra_out = pyomo.Var (
m.tm, m.tra_tuples,
within=pyomo.NonNegativeReals,
doc="'Power flow out of transmission line (MWh) at a given timestep')

DCPF Transmission Variables

If the DC Power Flow transmission modelling is activated, two new variables are introduced to the
model.

Voltage Angle, 0,,;, voltage_angle: The variable 6,,; represents the voltage angle of a site v,
which has a DCPF transmission line connection, at a timestep ¢. This variable is expressed in the unit

1.3. Technical documentation 73

urbs Documentation, Release 1.0.0

degrees. In script urbs.py this variable is defined by the model variable voltage_angle and
initialized by the following code fragment:

m.voltage_angle = pyomo.Var (
m.tm, m.stf, m.sit,
within=pyomo.Reals,
doc='Voltage angle of a site')

Absolute Value of Transmission Commodity Flow, w;na ft/, e_tra_abs: The variable W;ﬁl ft/ repre-
sents the absolute value of the transmission commodity flow on a DCPF transmission tuple fy.q at a
timestep ¢, where a represents the arc from an origin site voy to a destination site vy,. This variable is ex-
pressed in the unit MWh. In script urbs . py this variable is defined by the model variable e_tra_abs

and initialized by the following code fragment:

m.e_tra_abs = pyomo.Var (
m.tm, m.tra_tuples_dc,
within=pyomo.NonNegativeReals,
doc="Absolute power flow on transmission line (MW) per timestep')

Transmission Commodity Flow Domain Changes :DC Power Flow transmission lines are represented
by bidirectional single arcs instead of unidirectional symmetrical arcs as in the default transmission
model. Consequently the power flow is allowed to be both positive or negative for DCPF transmission
lines contrary to the transport transmission lines. For this reason, the domains of the variables trans-
mission input commodity flow ﬂiy“a 7+ and transmission output commodity flow 772‘;‘]% are defined with
the e_tra_domain_rule () function depending on the corresponding transmission tuple set. These
variables are defined by the model variables e_tra_in and e_tra_out and intialized by the code

fragment:

m.e_tra_in = pyomo.Var (

m.tm, m.tra_tuples,

within=e_tra_domain_rule,

doc='Power flow into transmission line (MW) per timestep')
m.e_tra_out = pyomo.Var (

m.tm, m.tra_tuples,

within=e_tra_domain_rule,

doc="'Power flow out of transmission line (MW) per timestep')

The function e_tra_domain_rule () is given by the code fragment:

def e _tra domain_rule(m, tm, stf, sin, sout, tra, com):
assigning e_tra_in and e_tra_out variable domains for transport and,
—~DCPF
if (stf, sin, sout, tra, com) in m.tra_tuples_dc:
return pyomo.Reals
elif (stf, sin, sout, tra, com) in m.tra_tuples_tp:
return pyomo.NonNegativeReals

Storage Variables

Total Storage Size, r;,,,, cap_sto_c: The variable xy,,, represents the total load capacity of a storage
tuple sy,c. The total storage load capacity includes both the already installed storage load capacity and
the additional new storage load capacity that needs to be installed. This variable is expressed in unit
MWh. In script model . py this variable is defined by the model variable cap_sto_c and initialized

by the following code fragment:

74 Chapter 1. Contents

urbs Documentation, Release 1.0.0

m.cap_sto_c = pyomo.Var (
m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='"'Total storage size (MWh)"'")

New Storage Size, &;,,, cap_sto_c_new: The variable &y, represents the additional storage load

capacity of a storage tuple s,. that needs to be installed to the energy system in order to provide the
optimal solution. This variable is expressed in the unit MWh. In script model . py this variable is
defined by the model variable cap_sto_c_new and initialized by the following code fragment:

m.cap_sto_c_new = pyomo.Var (
m.sto_tuples,
within=pyomo.NonNegativeReals,
doc="'New storage size (MWh)"')

New Storage Size Units, 3;,,, sto_cap_c_unit: The variable £}, represents the number of addi-

tional storage load capacity blocks of a storage tuple s, that needs to be installed to the energy system
in order to provide the optimal solution. In script storage . py this variable is defined by the model
variable cap_sto_c_unit and initialized by the following code fragment:

m.sto_cap_c_unit = pyomo.Var (
m.sto_block_c_tuples,
within=pyomo.NonNegativelIntegers,
doc="'New storage size units')

Total Storage Power, mgvs, cap_sto_p: The variable m‘;vs represents the total potential discharge
power of a storage tuple s,.. The total storage power includes both the already installed storage power
and the additional new storage power that needs to be installed. This variable is expressed in the unit
MW. In script model . py this variable is defined by the model variable cap_sto_p and initialized by
the following code fragment:

m.cap_sto_p = pyomo.Var (
m.sto_tuples,
within=pyomo.NonNegativeReals,
doc="'Total storage power (MW) ")

New Storage Power, /%gvs, cap_sto_p_new: The variable /%{jvs represents the additional potential
discharge power of a storage tuple s, that needs to be installed to the energy system in order to provide
the optimal solution. This variable is expressed in the unit MW. In script model . py this variable is
defined by the model variable cap_sto_p_new and initialized by the following code fragment:

m.cap_sto_p_new = pyomo.Var (
m.sto_tuples,
within=pyomo.NonNegativeReals,
doc="'New storage power (MW)")

New Storage Power Units, 3;,,, sto_cap_p_unit: The variable 3}, represents the number of

additional potential discharge power blocks of a storage tuple s,,. that needs to be installed to the energy
system in order to provide the optimal solution. In the script storage. py this variable is defined by
the model variable st o_cap_p_unit and initialized by the following code fragment:

m.sto_cap_p_unit = pyomo.Var (
m.sto_block_p_tuples,

(continues on next page)

1.3. Technical documentation 75

urbs Documentation, Release 1.0.0

(continued from previous page)

within=pyomo.NonNegativelIntegers,
doc="'New storage power units')

Storage Input Commodity Flow, eiynvst, e_sto_in: The variable eg‘vst represents the input commodity
flow into a storage tuple sy, at a timestep ¢. Input commodity flow into a storage tuple can also be
defined as the charge of a storage tuple. This variable is expressed in the unit MWh. In script model.
py this variable is defined by the model variable e_sto_in and initialized by the following code

fragment:

m.e_sto_in = pyomo.Var (
m.tm, m.sto_tuples,
within=pyomo.NonNegativeReals,
doc="'Commodity flow into storage (MWh) at a given timestep')

Storage Output Commodity Flow, €., e _sto_out: The variable €} represents the output com-

modity flow out of a storage tuple sy, at a timestep ¢. Output commodity flow out of a storage tuple can
also be defined as the discharge of a storage tuple. This variable is expressed in the unit MWh. In script
model . py this variable is defined by the model variable e_sto_out and initialized by the following
code fragment:

m.e_sto_out = pyomo.Var (
m.tm, m.sto_tuples,
within=pyomo.NonNegativeReals,
doc="'Commodity flow out of storage (MWh) at a given timestep')

Storage Energy Content, ¢,,,, e_sto_con: The variable €, represents the energy amount that

is loaded in a storage tuple s, at a timestep ¢. This variable is expressed in the unit MWh. In script
urbs.py this variable is defined by the model variable e_sto_out and initialized by the following
code fragment:

m.e_sto_con = pyomo.Var (
m.t, m.sto_tuples,
within=pyomo.NonNegativeReals,
doc="'Energy content of storage (MWh) at a given timestep')

Demand Side Management Variables

DSM Upshift, 5;?@’ dsm_up, MWh: The variable 5;505 represents the DSM upshift in time step ¢ in

support timeframe y in site v for commodity c. It is only defined for all dsm_site_tuples. The
following code fragment shows the definition of the variable:

m.dsm_up = pyomo.Var (
m.tm, m.dsm_site_tuples,
within=pyomo.NonNegativeReals,
doc='DSM upshift (MWh) of a demand commodity at a given timestap')

DSM Downshift, 5?22‘;%, dsm_down, MWh: The variable 5?222% represents the DSM downshift in
timestep ¢t caused by the upshift in time ¢ in support timeframe y in site v for commodity c. The special
combinations of timesteps ¢ and ¢t for each (support timeframe, site, commodity) combination is created

by the dsm_down_tuples. The definition of the variable is shown in the code fragment:

76 Chapter 1. Contents

urbs Documentation, Release 1.0.0

m.dsm_down = pyomo.Var (

m.dsm_down_tuples,

within=pyomo.NonNegativeReals,

doc='DSM downshift (MWh) of a demand commodity at a given timestep')

Parameters

All the parameters that the optimization model requires to calculate an optimal solution will be listed and
defined in this section. A parameter is a datapoint, that is provided by the user before the optimization
simulation starts. These parameters are the values that define the specifications of the modelled energy
system. Parameters of this optimization model can be separated into two main parts, these are Technical
and Economical Parameters.

Technical Parameters

Table 5: Table: Technical Model Parameters

Parameter | Unit | Description
General Technical Parameters
w _ Fraction of 1 year of modeled timesteps
At h Timestep Size
W a Weight of last support timeframe
Commodity Technical Parameters
dyet MWh Demand for Commodity
Syvet _ Intermittent Supply Capacity Factor
Zy@c MW Maximum Stock Supply Limit Per Hour
fyvc MWh Maximum Annual Stock Supply Limit Per Vertex
Myve t/h Maximum Environmental Output Per Hour
Myvc t Maximum Annual Environmental OQutput
Jye MW Maximum Sell Limit Per Hour
Gyve MWh Maximum Annual Sell Limit
Byvc MW Maximum Buy Limit Per Hour
Eyvc MWh Maximum Annual Buy Limit
ZCOQ,y t Maximum Global Annual CO2 Emission Limit
Lco, t CO2 Emission Budget for modeling horizon
Process Technical Parameters
K, MW Process Capacity Lower Bound
Ky MW Process Capacity Installed
Fyvp MW Process Capacity Upper Bound
Top MW Remaining lifetime of installed processes
PG;EP 1/h Process Maximal Power Ramp Up Gradient (relat
PiG?/Z‘Zn 1/h Process Maximal Power Ramp Down Gradient (r
ST yop h Process Starting Time
SRyup 1/h Process Starting Ramp
Buvp _ Process Minimum Part LLoad Fraction
oopt _ Process Output Ratio multiplyer
rg;gc _ Process Input Ratio

Continued on nex

1.3. Technical documentation 77

urbs Documentation, Release 1.0.0

Table 5 — continued from previous page

Parameter Unit Description

Tupe _ Process Partial Input Ratio

e _ Process Partial Output Ratio

o _ Process Output Ratio

Kok MW Process New Capacity Block
Storage Technical Parameters

Iyys _ Initial and Final State of Charge

Cyvs _ Storage Efficiency During Charge
s _ Storage Efficiency During Discharge
dyos 1/h Storage Self-discharge Per Hour

K s MWh Storage Capacity Lower Bound
Ky, MWh Storage Capacity Installed

E/vs MWh Storage Capacity Upper Bound
Kb MW Storage Power Lower Bound

Khus MW Storage Power Installed

ngs MW Storage Power Upper Bound

Tys MW Remaining lifetime of installed storages
kgﬁ h Storage Energy to Power Ratio

K 2;1)’;“]‘ MWh Storage New Capacity Block

K 5;b;°°k MW Storage New Power Block

Transmission Technical Parameters

Cyaf _ Transmission Efficiency

K .r MW Transmission Capacity Lower Bound
Kyar MW Transmission Capacity Installed

Fya ¥ MW Transmission Capacity Upper Bound
Tof year Remaining lifetime of installed transmission
K El?;k MW Transmission New Capacity Block
DCPF Transmission Technical Parameters

Xyaf p.u Transmission Reactance

mya ¥ deg. Voltage Angle Difference Limit

Viya foase kV Transmission Base Voltage

Kok _ Transmission New Capacity Block
Demand Side Management Parameters

Eyve _ DSM Efficiency

Yyue _ DSM Delay Time

Oyve _ DSM Recovery Time

FZZ . MW DSM Maximal Upshift Per Hour
ngjn MW DSM Maximal Downshift Per Hour

General Technical Parameters

Weight, w, weight: The parameter w helps to scale variable costs and emissions from the length
of simulation, that the energy system model is being observed, to an annual result. This parameter
represents the fraction of a year (8760 hours) of the observed time span. The observed time span is
calculated by the product of number of time steps of the set 7" and the time step duration. In script
model . py this parameter is defined by the model parameter we ight and initialized by the following

code fragment:

78

Chapter 1. Contents

urbs Documentation, Release 1.0.0

m.weight = pyomo.Param (
initialize=float (8760) / (len(m.tm) =« dt),
doc='Pre-factor for variable costs and emissions for an annual result')

Timestep Duration, A¢, dt: The parameter At represents the duration between two sequential
timesteps ¢, and t,41. This is calculated by the subtraction of smaller one from the bigger of the
two sequential timesteps At = .1 — t;. This parameter is the unit of time for the optimization model,
is expressed in the unit h and by default the value is set to 1. In script model . py this parameter is
defined by the model parameter dt and initialized by the following code fragment:

m.dt = pyomo.Param (
initialize=dt,
doc="'Time step duration (in hours), default: 1'")

The user can set the paramteter in script runme . py in the line:

dt = 1 # length of each time step (unit: hours)

Weight of last modeled support timeframe, W, m.global_prop.loc[(min(m.stf), 'Cost
budget '), 'value']: This parameter specifies how long the time interval represented by the last
support timeframe is. The unit of this parameter is years. By extension it also specifies the end of the
modeling horizon. The parameter is set in the spreadsheet corresponding to the last support timeframe
in worksheet “Global” in the line denoted “Weight” in the column titled “value”.

Commodity Technical Parameters

Demand for Commodity, dy,.;, m.demand_dict [(stf, sit, com)] [tm]: The parameter
represents the energy amount of a demand commodity tuple ¢y, required at a timestep ¢ (Vy € Y, Vv €
V,q = " Demand”,Vt € T,,). The unit of this parameter is MWh. This data is to be provided by the
user and to be entered in the spreadsheet corresponding to the specified support timeframe. The related
section for this parameter in the spreadsheet can be found in the “Demand” sheet. Here each row rep-
resents another timestep ¢ and each column represent a commodity tuple c,,q. Rows are named after
the timestep number n of timesteps ¢,,. Columns are named after the combination of site name v and
commodity name c respecting the order and seperated by a period(.). For example (Mid, Elec) represents
the commodity Elec in site Mid. Commodity Type ¢ is omitted in column declarations, because every
commodity of this parameter has to be from commodity type Demand in any case.

Intermittent Supply Capacity Factor, s,,.;, m.supim_dict [(stf, sit, coin)] [tm]: The
parameter s,,.; represents the normalized availability of a supply intermittent commodity ¢ (Ve € Cyyp)
in a support timeframe y and site v at a timestep ¢. In other words this parameter gives the ratio of cur-
rent available energy amount to maximum potential energy amount of a supply intermittent commodity.
This data is to be provided by the user and to be entered in the spreadsheet corresponding to the support
timeframe. The related section for this parameter in the spreadsheet can be found under the “Suplm”
sheet. Here each row represents another timestep ¢ and each column represent a commodity tuple c,.
Rows are named after the timestep number n of timesteps ¢,,. Columns are named after the combination
of site name v and commodity name c, in this respective order and separated by a period(.). For ex-
ample (Mid.Elec) represents the commodity Elec in site Mid. Commodity Type ¢ is omitted in column
declarations, because every commodity of this parameter has to be from commodity type Suplm in any
case.

Maximum Stock Supply Limit Per Hour, Zyvc, m.commodity_dict['maxperhour'] [(stf,
sit, com, com_type)]: The parameter [, represents the maximum energy amount of a stock

1.3. Technical documentation 79

urbs Documentation, Release 1.0.0

commodity tuple cy,q (Vy € Y,Vv € V,q = ”Stock”) that energy model is allowed to use per hour.
The unit of this parameter is MW. This parameter applies to every timestep and does not vary for each
timestep ¢. This parameter is to be provided by the user and to be entered in spreadsheet corresponding
to the support timeframe. The related section for this parameter in the spreadsheet can be found under
the Commodity sheet. Here each row represents another commodity tuple ¢y, and the column with
the header label “maxperhour” represents the parameter Zyvc. If there is no desired restriction of a stock
commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Annual Stock Supply Limit Per Vertex, fyvc, m.commodity_dict['max'] [(stf,
sit, com, com_type)]: The parameter fyvc represents the maximum energy amount of a stock
commodity tuple ¢, (Vy € Y,Vv € V,q = "Stock”) that energy model is allowed to use annually.
The unit of this parameter is MWh. This parameter is to be provided by the user and to be entered
in spreadsheet corresponding to the support timeframe. The related section for this parameter in the
spreadsheet can be found under the Commodity sheet. Here each row represents another commodity
tuple ¢y, and the column with the header label “max” represents the parameter Ly,.. If there is no
desired restriction of a stock commodity tuple usage per timestep, the corresponding cell can be set to
“inf” to ignore this parameter.

Maximum Environmental Output Per Hour, 77,,,c, m. commodity_dict ['maxperhour'] [(stf,
sit, com, com_type)]: The parameter 7y,. represents the maximum energy amount of an
environmental commodity tuple cyq (Vy € Y,Vv € V,q = " Env”) that energy model is allowed to
produce and release to environment per time step. This parameter applies to every timestep and does not
vary for each timestep ¢/h. This parameter is to be provided by the user and to be entered in spreadsheet
corresponding to the support timeframe. The related section for this parameter in the spreadsheet can

be found under the Commodity sheet. Here each row represents another commodity tuple ¢, and
the column with the header label “maxperhour” represents the parameter 72y,.. If there is no desired
restriction of an environmental commodity tuple usage per timestep, the corresponding cell can be set

to “inf” to ignore this parameter.

Maximum Annual Environmental Output, Myvc, m.commodity_dict['max'] [(stf, sit,
com, com_type)]: The parameter M. represents the maximum energy amount of an environmen-
tal commodity tuple c,.,q (Vy € Y, Vv € V,q = " Env”) that energy model is allowed to produce and
release to environment annually. This parameter is to be provided by the user and to be entered in spread-
sheet corresponding to the support timeframe. The related section for this parameter in the spreadsheet
can be found under the Commodity sheet. Here each row represents another commodity tuple ¢, and
the column with the header label “max” represents the parameter Myvc. If there is no desired restriction
of a stock commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this
parameter.

Maximum Sell Limit Per Hour, Jype> M. commodity dict['maxperhour'] [(stf, sit,
com, com_type)]: The parameter g,,,. represents the maximum energy amount of a sell commodity
tuple cypq (Vy € Y,Vv € V,q = " Sell”) that energy model is allowed to sell per hour. The unit of
this parameter is MW. This parameter applies to every timestep and does not vary for each timestep
t. This parameter is to be provided by the user and to be entered in spreadsheet. The related section
for this parameter in the spreadsheet corresponding to the support timeframe can be found under the
Commodity sheet. Here each row represents another commodity tuple ¢y, and the column with the
header label “maxperhour” represents the parameter g,,.. If there is no desired restriction of a sell
commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Annual Sell Limit, éyvc, m.commodity_dict['max'][(stf, sit, com,
com_type)]: The parameter éyvc represents the maximum energy amount of a sell commodity tuple
Cyvg (Vy € Y, Vv € V,q = " Sell”) that energy model is allowed to sell annually. The unit of this param-
eter is MWh. This parameter is to be provided by the user and to be entered in spreadsheet corresponding
to the support timeframe. The related section for this parameter in the spreadsheet can be found under

80 Chapter 1. Contents

urbs Documentation, Release 1.0.0

the Commodity sheet. Here each row represents another commodity tuple ¢, and the column of sell
with the header label “max” represents the parameter G'y,.. If there is no desired restriction of a sell
commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Buy Limit Per Hour, Eyvc, m.commodity_dict ['maxperhour'] [(stf, sit,
com, com_type)]: The parameter Eyvc represents the maximum energy amount of a buy commodity
tuple cyq (Vy € Y,Vv € V,q = ”Buy”) that energy model is allowed to buy per hour. The unit of
this parameter is MW. This parameter applies to every timestep and does not vary for each timestep
t. This parameter is to be provided by the user and to be entered in spreadsheet corresponding to the
support timeframe. The related section for this parameter in the spreadsheet can be found under the
Commodity sheet. Here each row represents another commodity tuple ¢y, and the column with the
header label “maxperhour” represents the parameter Eym. If there is no desired restriction of a sell
commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Annual Buy Limit, Pyvc, m.commodity_dict['max'][(stf, sit, com,
com_type)]: The parameter B, represents the maximum energy amount of a buy commodity tuple
cyug Vy € Y,Vv € V,q = " Buy”) that energy model is allowed to buy annually. The unit of this
parameter is MWh. This parameter is to be provided by the user and to be entered in spreadsheet cor-
responding to the support timeframe. The related section for this parameter in the spreadsheet can be
found under the Commodity sheet. Here each row represents another commodity tuple c,,, and the
column with the header label “max” represents the parameter Eyvc. If there is no desired restriction
of a buy commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this
parameter.

Maximum Global Annual CO; Annual Emission Limit, fgow, m.global_prop.loc[stf,
'CO2 limit']['value']: The parameter fcog,y represents the maximum total amount of CO2
the energy model is allowed to produce and release to the environment annually. If the user desires
to set a maximum annual limit to total C'Oy emission across all sites of the energy model in a given
support timeframe y, this can be done by entering the desired value to the spreadsheet corresponding to
the support timeframe. The related section for this parameter can be found under the sheet “Global”.
Here the the cell where the “CO2 limit” row and “value” column intersects stands for the parameter
fcoz,y. If the user wants to disable this parameter and restriction it provides, this cell can be set to “inf”
or simply be deleted.

COsoverline{overline{L}}_{CO_2}°, B m.global_prop.loc[min (m.stf), 'CO2
budget '] ['value']: The parameter Lo, represents the maximum total amount of CO2
the energy model is allowed to produce and release to the environment over the entire modeling horizon.
If the user desires to set a limit to total C'O- emission across all sites and the entire modeling horizon of
the energy model, this can be done by entering the desired value to the spreadsheet of the first support
timeframe. The related section for this parameter can be found under the sheet “Global”. Here the the

cell where the “CO2 budget” row and “value” column intersects stands for the parameter Lco,. If the
user wants to disable this parameter and restriction it provides, this cell can be set to “inf” or simply be
deleted.

Process Technical Parameters

Process Capacity Lower Bound, Kyvp, m.process_dict['cap-lo'] [stf, sit, prol:
The parameter K, represents the minimum amount of power output capacity of a process p at a
site v in support timeframe vy, that energy model is required to have. The unit of this parameter is MW.
The related section for this parameter in the spreadsheet corresponding to the support timeframe can be
found under the “Process” sheet. Here each row represents another process p in a site v and the column

with the header label “cap-lo” represents the parameters &, belonging to the corresponding process p

1.3. Technical documentation 81

urbs Documentation, Release 1.0.0

and site v combinations. If there is no desired minimum limit for the process capacities, this parameter
can be simply set to “0”.

Process Capacity Installed, K,,, m.process_dict['inst-cap'] [min(m.stf), sit,
pro]: The parameter K, represents the amount of power output capacity of a process p in a site
v, that is already installed to the energy system at the beginning of the modeling period. The unit of this
parameter is MW. The related section for this parameter can be found in the spreadsheet corresponding
to the first support timeframe under the “Process” sheet. Here each row represents another process p in
a site v and the column with the header label “inst-cap” represents the parameters K, belonging to the
corresponding process p and site v combinations.

Process Capacity Upper Bound, fyvp, m.process_dict['cap-up'] [stf, sit, prol:
The parameter ?yvp represents the maximum amount of power output capacity of a process p at a
site v in support timeframe y, that energy model is allowed to have. The unit of this parameter is MW.
The related section for this parameter in the spreadsheet corresponding to the support timeframe can be
found under the “Process” sheet. Here each row represents another process p in a site v and the column
with the header label “cap-up” represents the parameters ?yvp of the corresponding process p and site v
combinations. Alternatively, K, is determined by the column with the label “area-per-cap”, whenever
the value in “cap-up” times the value “area-per-cap” is larger than the value in column “area” in sheet
“Site” for site v in support timeframe 3. If there is no desired maximum limit for the process capacities,
both input parameters can be simply set to “inf”.

Remaining lifetime of installed processes, 7, m.process.loc[(min(m.stf), sit,
pro), 'lifetime']: The parameter T, represents the remaining lifetime of already installed
units. It is used to determine the set m.inst_pro_tuples, i.e. to identify for which support timeframes
the installed unit can still be used.

Process Maximal Power Ramp Up Gradient, PG;ZP, m.
process_dict['ramp-up-grad'] [(stf, sit, pro)]: The parameter PG;I;p represents

the maximal power ramp up gradient of a process p at a site v in support timeframe y, that energy
model is allowed to have. The unit of this parameter is 1/h. The related section for this parameter in
the spreadsheet can be found under the ‘“Process” sheet. Here each row represents another process p in
a site v and the column with the header label “ramp-up-grad” represents the parameters TGZEP of the
corresponding process p and site v combinations. If there is no desired maximum limit for the process

power ramp up gradient, this parameter can be simply set to a value larger or equal to 1.

Process Maximal Power Ramp Down Gradient, PG;?,V;H, m.
—~d
process_dict ['ramp-down—-grad'] [(stf, sit, pro)]l: The parameter PGy(;\;n

represents the maximal power ramp down gradient of a process p at a site v in support timeframe y,
that energy model is allowed to have. The unit of this parameter is 1/h. The related section for this
parameter in the spreadsheet can be found under the “Process” sheet. Here each row represents another
process p in a site v and the column with the header label “ramp-down-grad” represents the parameters
PiG;I;p of the corresponding process p and site v combinations. If there is no desired maximum limit
for the process power ramp down gradient, this parameter can be simply set to a value larger or equal to
1.

Process Starting Time, ﬁyﬂp’ m.process_dict['start-time'] [(stf, sit, pro)]l:
The parameter ﬁyvp represents the time required by a process p at a site v in support timeframe y
to start. The unit of this parameter is h. The related section for this parameter in the spreadsheet can be
found under the “Process” sheet. Here each row represents another process p in a site v and the column
with the header label “start-time” represents the parameters STWP of the corresponding process p and
site v combinations.

Process Starting Ramp, SR,,,: The parameter SRy, represents the ramp of a process p at a site v in

82 Chapter 1. Contents

urbs Documentation, Release 1.0.0

support timeframe y while starting. The unit of this parameter is 1/h. This parameter is not declared di-
rectly in the input, being only a derived parameter, calculated as the ratio between the process minimum
part load fraction P, and the process starting time S7'y .

Process Minimum Part Load Fraction, Byvp, m.process_dict['min-fraction'] [(stf,
sit, pro)]: The parameter P, represents the minimum allowable part load of a process p at a site
v in support timeframe y as a fraction of the total process capacity. The related section for this parameter
in the spreadsheet can be found under the “Process” sheet. Here each row represents another process p
in a site v and the column with the header label “min-fraction” represents the parameters P, , of the
corresponding process p and site v combinations. The minimum part load fraction parameter constraints
is only relevant when the part load behavior for the process is active, i.e., when in the process commodity

sheet a value for “ratio-min” is set for at least one input commodity.

Process Output Ratio multiplyer, ;’}j;t, m.eff_factor_dict[(stf, sit, pro)]: The pa-
rameter time series JS;t allows for a time dependent modification of process outputs and by extension of
the efficiency of a process p in site v and support timeframe y. It can be used, e.g., to model temperature
dependent efficiencies of processes or to include scheduled maintenance intervals. In the spreadsheet
corresponding to the support timeframe this timeseries is set in worksheet “TimeVarEff”. Here each row
represents another timestep ¢ and each column represent a process tuple p,,,. Rows are named after the
timestep number n of timesteps ¢,,. Columns are named after the combination of site name v and com-
modity name and process name p respecting the order and seperated by a period(.). For example (Mid,
Lignite plant) represents the process Lignite plant in site Mid. Note that the output of environmental
commodity outputs are not manipulated by this factor as it is typically linked to an input commodity as
, €.g., CO2 output is linked to a fossil input.

Process Input Ratio, riy‘})c, m.r_in_dict [(stf, pro, co)]: The parameter r;‘})c represents the
ratio of the input amount of a commodity c in a process p and support timeframe y, relative to the process
throughput at a given timestep. The related section for this parameter in the spreadsheet corresponding
to the support timeframe can be found under the “Process-Commodity” sheet. Here each row represents
another commodity c that either goes in to or comes out of a process p. The column with the header
label “ratio” represents the parameters . of the corresponding process p and commodity c if the latter

ypc
is an input commodity.

Process Partial Input Ratio, gglpc, m.r_in_min_fraction[stf, pro, coin]: The parameter
zg‘pc represents the ratio of the amount of input commodity c a process p and support timeframe y con-
sumes if it is at its minimum allowable partial operation. More precisely, when its throughput 7,,,; has
the minimum value ky,pP,,,. The related section for this parameter in the spreadsheet corresponding
to the support timeframe can be found under the “Process-Commodity” sheet. Here each row represents
another commodity c that either goes in to or comes out of a process p. The column with the header
label “ratio-min” represents the parameters ™" of the corresponding process p and commodity c if the

~ypc
latter is an input commodity.

Process Output Ratio, rgj‘;‘c, m.r_out_dict[(stf, pro, co)]: The parameter rggtc represents
the ratio of the output amount of a commodity ¢ in a process p in support timeframe y, relative to
the process throughput at a given timestep. The related section for this parameter in the spreadsheet
corresponding to the support timeframe can be found under the “Process-Commodity” sheet. Here each
row represents another commodity c that either goes in to or comes out of a process p. The column with
the header label “ratio” represents the parameters of the corresponding process p and commodity c if the

latter is an output commodity.

Process Partial Output Ratio, ﬁzﬁlfc’ m.r_out_min_fraction[stf, pro, coo]: The param-
eter fg‘;tc represents the ratio of the amount of output commodity ¢ a process p and support timeframe y
emits if it is at its minimum allowable partial operation. More precisely, when its throughput 7, has

the minimum value kyypL,,,. The related section for this parameter in the spreadsheet corresponding

1.3. Technical documentation 83

urbs Documentation, Release 1.0.0

to the support timeframe can be found under the “Process-Commodity” sheet. Here each row represents
another commodity c that either goes in to or comes out of a process p. The column with the header
label “ratio-min” represents the parameters zg‘l;‘;“‘ of the corresponding process p and commodity c if the
latter is an output commodity.

Process input and output ratios are, in general, used for unit conversion between the different commodi-
ties.

Since all costs and capacity constraints take the process throughput 7,,,,; as the reference, it is reasonable
to assign an in- or output ratio of “1” to at least one commodity. The flow of this commodity then tracks
the throughput and can be used as a reference. All other values of in- and output ratios can then be
adjusted by scaling them by an appropriate factor to the reference commodity flow.

Process New Capacity Block, K;L‘;fk, m.process_dict['cap-block'] [(stf, sit,

pro)]1: The parameter K;’L‘;,Ck represents the capacity of all newly installed units of a process p at a
site v in the support timeframe y. The unit of this parameter is MW. The related section for this parame-
ter in the spreadsheet can be found under the “Process” sheet. Here each row represents another process
p in a site v and the column with the header label “cap-block” represents the parameters K P°% of the

yup
corresponding process p and site v combinations.

Storage Technical Parameters

Initial and Final State of Charge (relative), /,,,, m.storage_dict['init'][(stf, sit,
sto, com)]: The parameter I, represents the initial state of charge of a storage s in a site v and
support timeframe y. If this value is left unspecified, the initial state of charge is variable. The initial
and final value are set as identical in each modeled support timeframe to avoid windfall profits through
emptying of a storage. The value of this parameter is expressed as a normalized percentage, where
“1” represents a fully loaded storage and “0” represents an empty storage. The related section for this
parameter in the spreadsheet corresponding to the support timeframe can be found under the “Storage”
sheet. Here each row represents a storage technology s in a site v that stores a commodity c. The column
with the header label “init” represents the parameters for corresponding storage s, site v, commodity ¢
combinations. When no initial value is to be set this cell can be left empty.

Storage Efficiency During Charge, ¢l .
com)]: The parameter eiy“v . represents the charging efficiency of a storage s in a site v and support
timeframe ¥ that stores a commodity c. The charging efficiency shows, how much of a desired energy
and accordingly power can be successfully stored into a storage. The value of this parameter is expressed
as a normalized percentage, where “1” represents a charging without energy losses. The related section
for this parameter in the spreadsheet corresponding to the support timeframe can be found under the
“Storage” sheet. Here each row represents a storage technology s in a site v that stores a commodity
c. The column with the header label “eff-in” represents the parameters ei;v ¢ for corresponding storage
tuples.

m.storage_dict['eff-in'] [(stf, sit, sto,

Storage Efficiency During discharge, eg‘;ts, m.storage_dict['eff-out'][(stf, sit,
sto, com)]: The parameter ez‘jﬁs represents the discharging efficiency of a storage s in a site v
and support timeframe y that stores a commodity c. The discharging efficiency shows, how much of
a desired energy and accordingly power can be successfully released from a storage. The value of this
parameter is expressed as a normalized percentage, where “1” represents a discharging without energy
losses. The related section for this parameter in the spreadsheet corresponding to the support timeframe
can be found under the “Storage” sheet. Here each row represents a storage technology s in a site v that
stores a commodity ¢. The column with the header label “eff-out” represents the parameters eo'% for

Yvs
corresponding storage tuples.

84 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Storage Self-discharge Per Hour, d,,s, m.storage_dict['discharge'][(stf, sit,
sto, com)]: The parameter d, s represents the fraction of the energy content within a storage which
is lost due to self-discharge per hour. It introduces an exponential decay of a given storage state if no
charging/discharging takes place. The unit of this parameter is 1/h. The related section for this param-
eter in the spreadsheet corresponding to the support timeframe can be found under the “Storage” sheet.
Here each row represents a storage technology s in a site v that stores a commodity c. The column with
the header label “discharge” represents the parameters d,,, for corresponding storage tuples.

Storage Capacity Lower Bound, K¢ m.storage_dict['cap-lo-c'] [(stf, sit,

L s
sto, com)]: The parameter Ky, repgesents the minimum amount of energy content capacity re-
quired for a storage s storing a commodity ¢ in a site v in support timeframe y. The unit of this
parameter is MWh. The related section for this parameter in the spreadsheet can be found under the
“Storage” sheet. Here each row represents a storage technology s in a site v that stores a commodity c.
The column with the header label “cap-lo-c” represents the parameters K7, for corresponding storage
tuples. If there is no desired minimum limit for the storage energy content capacities, this parameter can

be simply set to “0”.

Storage Capacity Installed, K;,, m.storage_dict['inst-cap-c'][(min(m.stf),
sit, sto, com)]]: The parameter K represents the amount of energy content capacity of a
storage s storing commodity c in a site v and support timeframe y, that is already installed to the energy
system at the beginning of the model horizon. The unit of this parameter is MWh. The related section
for this parameter in the spreadsheet corresponding to the first support timeframe can be found under the
“Storage” sheet. Here each row represents a storage technology s in a site v that stores a commodity c.
The column with the header label “inst-cap-c” represents the parameters K, for corresponding storage

tuples.

Storage Capacity Upper Bound, K, m.storage_dict['cap-up-c'][(stf, sit,

Yvus?
sto, com)]: The parameter szs represents the maximum amount of energy content capacity al-
lowed of a storage s storing a comlhodity c in a site v in support timeframe y. The unit of this parameter
is MWh. The related section for this parameter in the spreadsheet corresponding to the support time-
frame can be found under the “Storage” sheet. Here each row represents a storage technology s in a site
v that stores a commodity c. The column with the header label “cap-up-c” represents the parameters

K., for corresponding storage tuples. If there is no desired maximum limit for the storage energy

Yus

content capacities, this parameter can be simply set to “”’inf””.

Storage Power Lower Bound, ngs, m.storage_dict['cap-lo-p'] [(stf, sit, sto,
com)]: The parameter K7}, ; represents the minimum amount of charging/discharging power required

for a storage s storing a commodity c in a site v in support timeframe y. The unit of this parameter is
MW. The related section for this parameter in the spreadsheet can be found under the “Storage” sheet.
Here each row represents a storage technology s in a site v that stores a commodity c. The column with
the header label “cap-lo-p” represents the parameters K7 ¢ for corresponding storage tuples. If there is
no desired minimum limit for the storage charging/discharging powers, this parameter can be simply set
tO ‘LO’7‘

Storage Power Installed, Kb, m.storage_dict['inst-cap-p'] [(min(m.stf), sit,
sto, com)]]: The parameter K} represents the amount of charging/discharging power of a stor-
age s storing commodity c in a site v and support timeframe y, that is already installed to the energy
system at the beginning of the model horizon. The unit of this parameter is MW. The related section for
this parameter in the spreadsheet corresponding to the first support timeframe can be found under the
“Storage” sheet. Here each row represents a storage technology s in a site v that stores a commodity c.
The column with the header label “inst-cap-p” represents the parameters K5, for corresponding storage
tuples.

P

Storage Power Upper Bound, Fyvs, m.storage_dict['cap-up-p'][(stf, sit, sto,

1.3. Technical documentation 85

urbs Documentation, Release 1.0.0

com)]: The parameter FZUS represents the maximum amount of charging/discharging power allowed
of a storage s storing a commodity c in a site v in support timeframe y. The unit of this parameter is
MW. The related section for this parameter in the spreadsheet corresponding to the support timeframe
can be found under the “Storage” sheet. Here each row represents a storage technology s in a site v that
stores a commodity c. The column with the header label “cap-up-p” represents the parameters ngs
for corresponding storage tuples. If there is no desired maximum limit for the storage energy content

capacities, this parameter can be simply set to “’inf””.

Remaining lifetime of installed storages, T,,s, m.storage.loc[(min(m.stf), sit, pro),
'lifetime']: The parameter 7}, represents the remaining lifetime of already installed units. It is
used to determine the set m.inst_sto_tuples, i.e. to identify for which support timeframes the installed
units can still be used.

Storage Energy to Power Ratio, k",
com)]: The parameter kgfjps represents the linear ratio between the energy and power capacities of a
storage s storing a commodity c in a site v in support timeframe y. The unit of this parameter is hours.
The related section for this parameter in the spreadsheet corresponding to the support timeframe can
be found under the “Storage” sheet. Here each row represents a storage technology s in a site v that
stores a commodity c. The column with the header label “ep-ratio” represents the parameters kg}z for
corresponding storage tuples. If there is no desired set ratio for the storage energy and power capacities
(which means the storage energy and power capacities can be sized independently from each other), this

cell can be left empty.

m.storage_dict['ep-ratio'][(stf, sit, sto,

Storage New Capacity Block, K;;E’;"Ck, m.storage_dict['c-block'] [(stf, sit, sto,

com)]: The parameter K;;E’;“k represents the capacity of all newly installed units of a storage s at a site
v in the support timeframe y. The unit of this parameter is MWh. The related section for this parameter
in the spreadsheet can be found under the “Storage” sheet. Here each row represents another storage
s in a site v and the column with the header label “c-block™ represents the parameters K ;;'fslo‘:k of the
corresponding storage s and site v combinations.

Storage New Power Block, K{,’;)bslmk, m.storage_dict['p-block'] [(stf, sit, sto,

com)]: The parameter K, E;P;OCk represents the power of all newly installed units of a storage s at a
site v in the support timeframe y. The unit of this parameter is MW. The related section for this parame-
ter in the spreadsheet can be found under the “Storage” sheet. Here each row represents another storage
s in a site v and the column with the header label “c-block™ represents the parameters Kgi,bs]“k of the

corresponding storage s and site v combinations.

Transmission Technical Parameters

Transmission Efficiency, ¢e,,r, m.transmission_dict['eff'][(stf, sin, sout,
tra, com)]: The parameter e,,s represents the energy efficiency of a transmission f that transfers
a commodity ¢ through an arc a in support timeframe y. Here an arc a defines the connection line
from an origin site voy to a destination site vj,. The ratio of the output energy amount to input energy
amount, gives the energy efficiency of a transmission process. The related section for this parameter in
the spreadsheet corresponding to the support timeframe can be found under the “Transmission” sheet.
Here each row represents another combination of transmission f and arc a. The column with the header
label “eff” represents the parameters e, of the corresponding transmission tuples.

Transmission Capacity Lower Bound, Kyaf, m.transmission_dict['cap-lo'] [(stf,

sin, sout, tra, com)]: The parameter K _, represents the minimum power output capacity of
a transmission f transferring a commodity ¢ through an arc a, that the energy system model is required
to have. Here an arc a defines the connection line from an origin site vy to a destination site vy,. The

unit of this parameter is MW. The related section for this parameter in the spreadsheet corresponding to

86 Chapter 1. Contents

urbs Documentation, Release 1.0.0

the support timeframe can be found under the “Transmission” sheet. Here each row represents another
transmission f, arc ¢ combination. The column with the header label “cap-lo” represents the parameters
K, of the corresponding transmission tuples.

Transmission Capacity Installed, K,f, m.transmission_dict['inst-cap'] [(min (m.
stf), sin, sout, tra, com)]: The parameter K,; represents the amount of power output
capacity of a transmission f transferring a commodity ¢ through an arc a, that is already installed to the
energy system at the beginning of the modeling horizon. The unit of this parameter is MW. The related
section for this parameter in the spreadsheet corresponding to the first support timeframe can be found
under the “Transmission” sheet. Here each row represents another transmission f, arc a combination.
The column with the header label “inst-cap” represents the parameters K, ¢ of the transmission tuples.

Transmission Capacity Upper Bound, fyaf, m.transmission_dict['cap-up'][(stf,
sin, sout, tra, com)]: The parameter K, represents the maximum power output capac-
ity of a transmission f transferring a commodity ¢ through an arc a in support timeframe y, that the
energy system model is allowed to have. Here an arc a defines the connection line from an origin site
Vout tO @ destination site vi,. The unit of this parameter is MW. The related section for this parameter in
the spreadsheet corresponding to the support timeframe can be found under the “Transmission” sheet.
Here each row represents another transmission f, arc ¢ combination. The column with the header label
“cap-up” represents the parameters Fya 1 of the corresponding transmission tuples.

Remaining lifetime of installed transmission, 7, m.transmission.loc[(min (m.stf),
sitin, sitout, tra, com), 'lifetime']: The parameter T, represents the remaining
lifetime of already installed units. It is used to determine the set m.inst_tra_tuples, i.e. to identify for
which support timeframes the installed units can still be used.

Transmission New Capacity Block, K'?j}f]?k, m.transmission_dict['tra-block'] [(stf,

sin, sout,tra, com)]: The parameter K L’}l";k represents the capacity of all newly installed units
of a transmission f transferring a commodity ¢ through an arc a in support timeframe 3.The unit of
this parameter is MW. The related section for this parameter in the spreadsheet can be found under the
“Transmission” sheet. Here each row represents another transmission f, arc ¢ combination. The column
with the header label “tra-block™ represents the parameters K L’L‘}?k of the corresponding transmission
tuples.

DCPF Transmission Technical Parameters

Selected transmission lines can be modelled with DC Power Flow and combined with the transport
model in an energy system model. The following parameters are only required and included in the
model when a transmission line should be modelled with DCPF.

Transmission Reactance, X,,r, m.transmission_dict['reactance'][(stf, sin,
sout, tra, com)]: The parameter X, represents the reactance of a transmission f that transfers
a commodity c through an arc a in support timeframe y. Here an arc a defines the connection line from
an origin site vy to a destination site vj,. Transmission reactance is used to calculate the power flow
of DCPF transmission lines. This parameter is required to define a transmission line with the DCPF
model and should be given in per unit system. The related section for this parameter in the spreadsheet
corresponding to the support timeframe can be found under the “Transmission” sheet. Here each row
represents another combination of transmission f and arc a. The column with the header label “reac-
tance” represents the parameters X, s of the corresponding transmission tuples. If the parameter is left
empty in the spreadsheet, the transmission line will be modelled with transport model as default.

Voltage Angle Difference Limit, myaf, m.transmission_dict['difflimit'] [(stf,
sin, sout, tra, com)]: The parameter dl,,s represents the voltage angle difference limit of

1.3. Technical documentation 87

urbs Documentation, Release 1.0.0

a transmission f that transfers a commodity ¢ through an arc a in support timeframe y. Here an arc a
defines the connection line from an origin site voy to a destination site vj,. The allowed maximum dif-
ference of voltage angles of sites vy and vy, is limited with this parameter. This parameter is expected
in degrees and a value between 0 and 91 is allowed. This parameter is required to define a transmission
line with the DCPF model. The related section for this parameter in the spreadsheet corresponding to
the support timeframe can be found under the “Transmission” sheet. Here each row represents another
combination of transmission f and arc a. The column with the header label “difflimit” represents the
parameters mya 1 of the corresponding transmission tuples.

Transmission Base Voltage, V,fpase, m.transmission_dict['base_voltage'] [(stf,
sin, sout, tra, com)]: The parameter V,,fpase represents the base voltage of a transmission
f that transfers a commodity ¢ through an arc a in support timeframe y. Here an arc a defines the
connection line from an origin site vy, to a destination site vj,. This parameter is used to calculate the
power flow of DCPF transmission lines. This parameter is expected in kV and a value greater than O is
allowed. This parameter is required to define a transmission line with the DCPF model. The related sec-
tion for this parameter in the spreadsheet corresponding to the support timeframe can be found under the
“Transmission” sheet. Here each row represents another combination of transmission f and arc a. The
column with the header label “base_voltage™ represents the parameters V,, rpase Of the corresponding
transmission tuples.

Demand Side Management Technical Parameters

DSM Efficiency, ey,., m.dsm_dict['eff'] [(stf, sit, com)]: The parameter e, repre-
sents the efficiency of the DSM process, i.e., the fraction of DSM upshift that is benefiting the system
via the corresponding DSM downshifts of demand commodity c in site v and support timeframe y. The
parameter is given as a fraction with “1” meaning a perfect recovery of the DSM upshift. The related
section for this parameter in the spreadsheet corresponding to the support timeframe can be found under
the “DSM” sheet. Here each row represents another DSM potential for demand commodity c in site v.
The column with the header label “eff” represents the parameters ey, of the corresponding DSM tuples.

DSM Delay Time, y,,c, m.dsm_dict['delay'] [(stf, sit, com)]: The delay time yyq.
restricts how long the time difference between an upshift and its corresponding downshifts may be for
demand commodity c in site v and support timeframe y. The parameter is given in h. The related section
for this parameter in the spreadsheet corresponding to the support timeframe can be found under the
“DSM” sheet. Here each row represents another DSM potential for demand commodity c in site v. The
column with the header label “delay” represents the parameters y,,,. of the corresponding DSM tuples.

DSM Recovery Time, oy, m.dsm_dict ['recov'] [(stf, sit, com)]: The recovery time
Oyve prevents the DSM system to continuously shift demand. During the recovery time, all upshifts of
demand commodity c in site v and support timeframe y may not exceed the product of the delay time
and the maximal upshift capacity. The parameter is given in h. The related section for this parameter in
the spreadsheet corresponding to the support timeframe can be found under the “DSM” sheet. Here each
row represents another DSM potential for demand commodity c in site v. The column with the header
label “recov” represents the parameters oy, of the corresponding DSM tuples. If no limitation via this
parameter is desired it has to be set to values lower than the delay time ¥y ..

DSM Maximal Upshift Per Hour, ?;I;C, MW, m.dsm_dict['cap-max—up'] [(stf, sit,
com)]1: The DSM upshift capacity ?;1;0 limits the total upshift per hour for a DSM potential of demand
commodity c in site v and support timeframe y. The parameter is given in MW. The related section for
this parameter in the spreadsheet corresponding to the support timeframe can be found under the “DSM”
sheet. Here each row represents another DSM potential for demand commodity c in site v. The column

with the header label “cap-max-up” represents the parameters FZ[;C of the corresponding DSM tuples.

88 Chapter 1. Contents

urbs Documentation, Release 1.0.0

DSM Maximal Downshift Per Hour, Ky, MW, m.dsm_dict ['cap-max-do'] [(stf,
sit, com)]: The DSM downshift capacity F‘;‘;C limits the total downshift per hour for a DSM
potential of demand commodity c in site v and support timeframe y. The parameter is given in MW.
The related section for this parameter in the spreadsheet corresponding to the support timeframe can be

found under the “DSM?” sheet. Here each row represents another DSM potential for demand commodity

. . , —d
c in site v. The column with the header label “cap-max-do” represents the parameters K y(;

corresponding DSM tuples.

Economic Parameters

"1 of the

[

Table 6: Table: Economic Model Parameters

Parameter Unit Description
J _ Global Discount rate
D, _ Factor for any payment made in modeled year y
1, _ Factor for any investment made in modeled year
Leost € Maximum total system costs (if CO2 is minimize
Commodity Economic Parameters
kil €/MWh Stock Commodity Fuel Costs
ke €/MWh Environmental Commodity Costs
k:g; ot €/MWh Buy/Sell Commodity Buy/Sell Costs
kg; . _ Multiplier for Buy/Sell Commodity Buy/Sell Cos
Process Economic Parameters
Lyup _ Weighted Average Cost of Capital for Process
Zyup _ Process Depreciation Period
Ky €/MW Process Capacity Investment Costs
kg;‘p €/(MW a) Annual Process Capacity Fixed Costs
Ky €/MWh Process Throughput Variable Costs
Pt €/MW Process Start-up Cost
Storage Economic Parameters
lyvs _ Weighted Average Cost of Capital for Storage
Zyvs _ Storage Depreciation Period
k:gigv €/MW Storage Power Investment Costs
k:gi‘;‘ €/(MW a) Annual Storage Power Fixed Costs
kggg g €/MWh Storage Power Variable Costs
ks €/MWh Storage Size Investment Costs
k;;"; €/(MWh a) Annual Storage Size Fixed Costs
ks €/MWh Storage Usage Variable Costs
Transmission Economic Parameters
Lyo f _ Weighted Average Cost of Capital for Transmissi
Zyaf _ Tranmission Depreciation Period
Koo €/MW Transmission Capacity Investment Costs
k% f €/(MW a) Annual Transmission Capacity Fixed Costs
k;‘(‘lrf €/MWh Tranmission Usage Variable Costs
Discount rate, 7 m.global_prop.xs('Discount rate', level=1l).loc[m.
global_prop.index.min () [0]]['value']: The discount rate j is used to calculate

the present value of future costs. It is set in the worksheet “Global” in the input file of the first support

1.3. Technical documentation 89

urbs Documentation, Release 1.0.0

timeframe.

Factor for future payments, D,: The parameter D, is a multiplier that has to be factored into all cost
terms apart from the invest costs in intertemporal planning based on support timeframes. All other cost
terms for the support timeframe y are muliplied directly with this factor to find the present value of the
sum of costs in support timeframe % and all non-modeled time frames until the next modeled time frame
141, which are identical to the support timeframe with the modeling approach taken:

1— (14)" W+—y+1)
Dy — (]_ +j)1_(y_ymin) . (+‘7)

J
In script modelhelper.py the factor D, is implemented as the product of the functions:

def discount_factor(stf, m):
"""Discount for any payment made in the year stf

mmrn

discount = (m.global_prop.xs('Discount rate', level=1)
.loc[m.global_prop.index.min () [0]]['value'])
return (1 + discount) ** (1 - (stf - m.global_prop.index.min() [0]))

and

def effective_distance(dist, m):
"""Factor for variable, fuel, purchase, sell, and fix costs.
Calculated by repetition of modeled stfs and discount utility.
mimn
discount = (m.global_prop.xs('Discount rate', level=l)
.loc[m.global_prop.index.min () [0]]['value'])

if discount ==
return dist
else:
return (1 - (1 + discount) =% (-dist)) / discount

Factor for investment made in support timeframe y, /,;: The parameter I, is a multiplier that has
to be factored into the invest costs in intertemporal planning based on support timeframes. The book
value of the total invest costs per capacity in support timeframe y is muliplied with this factor to find the
present value of the sum of costs of all annual payments made for this investment within the modeling
horizon. The calculation of this parameter requires several case distinctions and is given by:

«i£0, j#0:

I,=(1 +)t W ymin)

; (1“)". (14)" — (14 j)"*

1+ (1+4)"—1
«i=0,j=0
k
Iy:ﬁ
ci#0,7=0:
Ly
Iy:k-(f#
(I+i)n—1
¢+ i=0,j#0:
1 o (I4)F =1
Iy=—-(14j)" —rf—
v = WD

90 Chapter 1. Contents

urbs Documentation, Release 1.0.0

where k is the number of annualized payments that have to be made within the modeling horizon, n the
depreciation period and 7 the weighted average cost of capital. Note that the parameters ¢ and n take
different values for different unit tuples.

In script modelhelper.py the factor [, is implemented with the function:

def invcost_factor (dep_prd, interest, discount=None, year_built=None,
stf_min=None) :
"""ITnvestment cost factor formula.
Evaluates the factor multiplied to the invest costs
for depreciation duration and interest rate.
Args:
dep_prd: depreciation period (years)
interest: interest rate (e.g. 0.06 means 6 %)
yvear_built: year utility is built
discount: discount rate for intertmeporal planning
mmn
invcost factor for non intertemporal planning
if discount is None:

if interest == 0:
return 1 / dep_prd
else:
return ((1 + interest) ** dep_prd x interest /

((1 + interest) % dep_prd — 1))
invcost factor for intertemporal planning

elif discount == 0:
if interest == 0:
return 1
else:
return (dep_prd % ((1 + interest) ++ dep_prd » interest) /
((1 + interest) xx dep_prd - 1))
else:
if interest == 0:
return ((1 + discount) *x (1 - (year_built-stf_min)) =«
((1 + discount) =** dep_prd - 1) /
(dep_prd % discount * (1 + discount) *»* dep_prd))
else:

return ((1 + discount) **x (1 - (year_built-stf_min)) =«
(interest * (1 + interest) ** dep_prd =x

((1 + discount) #* dep_prd - 1)) /

(discount = (1 + discount) =»* dep_prd =

(

(l+interest) *x dep_prd - 1)))

In this formulation also payments after the modeled time horizon are being made. To fix this the overpay
is subtracted via:

def overpay_factor (dep_prd, interest, discount, year_built, stf_min, stf_
—end) :
"""Overpay value factor formula.
Evaluates the factor multiplied to the invest costs
for all annuity payments of a unit after the end of the
optimization period.
Args:
dep_prd: depreciation period (years)
interest: interest rate (e.g. 0.06 means 6 %)
year_built: year utility is built
discount: discount rate for intertemporal planning

(continues on next page)

1.3. Technical documentation 91

urbs Documentation, Release 1.0.0

(continued from previous page)

k: operational time after simulation horizon

mmn

op_time = (year_built + dep_prd) - stf_end - 1

if discount == 0:
if interest ==
return op_time / dep_prd

else:
return (op_time % ((1 + interest) ++* dep_prd *» interest) /
((1 + interest) xx dep_prd - 1))
else:
if interest ==
return ((1 + discount) *x (1 - (year_built - stf_min)) =
((1 + discount) +** op_time - 1) /
(dep_prd % discount * (1 + discount) =** dep_prd))
else:
return ((1 + discount) *x (1 - (year_built - stf_min)) =
interest % (1 + interest) =% dep_prd =

discount % (1 + discount) =*+* dep_prd =*

(
(
((1 + discount) #*+* op_time — 1)) /
(
((1 + interest) #+% dep_prd - 1)))

In case of negative values this overpay factor is set to zero afterwards.

Maximum total system cost, L. m.global_prop.loc[(min(m.stf), 'Cost
budget '), 'value']: This parameter restricts the total present costs over the entire model-
ing horizon. It is only sensible and active when the objective is a minimization of CO2 emissions.

Commodity Economic Parameters

Stock Commodity Fuel Costs, £, m.commodity_dict['price'] [c]: The parameter k;‘;fcl
represents the book cost for purchasing one unit (1 MWh) of a stock commodity ¢ (V¢ € Cyock) in
modeled timeframe y in a site v (Vv € V). The unit of this parameter is €/ MWh. The related section for
this parameter in the spreadsheet belonging the support timeframe y can be found in the “Commodity”
sheet. Here each row represents another commodity tuple ¢y, and the column of stock commodity

tuples (Vq = ” Stock”) in this sheet with the header label “price” represents the corresponding parameter

fuel
Eyve-

Environmental Commodity Costs, kj;y, m.commodity_dict ['price'] [c]: The parameter

kyue represents the book cost for producing/emitting one unit (1 t, 1 kg, ...) of an environmental
commodity ¢ (Ve € Cgyy) in support timeframe y in a site v (Vv € V). The unit of this parameter is
€/t (i.e. per unit of output). The related section for this parameter in the spreadsheet corresponding to
support timeframe y is the “Commodity” sheet. Here, each row represents a commodity tuple ¢4 and
the fourth column of environmental commodity tuples (Vg = ” Env”) in this sheet with the header label

“price” represents the corresponding parameter kj,.

Buy/Sell Commodity Buy/Sell Costs, k..
tm)]: The parameter k:g;ct represents the purchase/buy cost for purchasing/selling one unit (1 MWh)
of a buy/sell commodity ¢ (Ve € Chpuy)/(Ve € Cgen) in support timeframe y in a site v (Vv € V) at
timestep ¢ (V¢ € 1,,). The unit of this parameter is €/MWh. The related section for this parameter in
the spreadsheet can be found in the “Buy-Sell-Price” sheet. Here each column represents a commodity

tuple and the row values provide the timestep information.

m.buy_sell_price_dict[c[2],][(c[0],

92 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Multiplyer for Buy/Sell Commodity Buy/Sell Costs, kgic, m.commodity_dict['price'] [c]:
The parameter /@'y’f;c is a multiplier for the buy/sell time series. It represents the factor on the purchase/buy
cost for purchasing/selling one unit (1 MWh) of a buy/sell commodity ¢ (Ve € Cipyy)/(Ve € Ceep) in
support timeframe y in a site v (Vv € V). This parameter is unitless. The related section for this
parameter in the spreadsheet belonging to support timeframe y can be found in the “Commodity” sheet.
Here each row represents another commodity tuple ¢, and the column of Buy/Sell commodity tuples
(Vg = " Buy/Sell”) in this sheet with the header label “price” represents the corresponding parameter

kbs

yve:
Process Economic Parameters

Weighted Average Cost of Capital for Process, i,,,, : The parameter i,,, represents the weighted
average cost of capital for a process technology p in support timeframe ;math:y in a site v. The weighted
average cost of capital gives the interest rate (%) of costs for capital after taxes. The related section
for this parameter in the spreadsheet corresponding to support timeframe y can be found under the
“Process” sheet. Here each row represents another process tuple and the column with the header label
“wacc” represents the parameters i,,,. The parameter is given as a percentage, where “0.07” means 7%

Process Depreciation Period, z,,,: The parameter z,,,, represents the depreciation period of a process p
built in support timeframe y in a site v. The depreciation period gives the economic and technical lifetime
of a process investment. It thus features in the calculation of the invest cost factor and determines the
end of operation of the process. The unit of this parameter is “a”, where “a” represents a year of 8760
hours. The related section for this parameter in the spreadsheet can be found under the “Process” sheet.
Here each row represents another process tuple and the column with the header label “depreciation”
represents the parameters 2y ,p.

inv

) yup
Ky, represents the book value of the investment cost for adding one unit new capacity of a process
technology p in support timeframe y in a site v. The unit of this parameter is €/MW. To get the full
impact of the investment within the modeling horizon this parameter is multiplied with the factor for the
investment made in modeled year y I,,. The process capacity investment cost is to be given as an input by
the user. The related section for the process capacity investment cost in the spreadsheet representing the
support timeframe y can be found under the “Process” sheet. Here each row represents another process
p in a site v and the column with the header label “inv-cost” represents the process capacity investment

costs of the corresponding process p and site v combinations.

Process Capacity Investment Costs, k.., , m.process_dict ['inv-cost'] [p]: The parameter

Process Capacity Fixed Costs, kgﬁp, m.process_dict ['fix-cost'] [p]: The parameter k:ggp
represents the fix cost per one unit capacity k., of a process technology p in support timeframe y in
a site v, that is charged annually. The unit of this parameter is €/(MW a). The related section for
this parameter in the spreadsheet correesponding to the support timeframe y can be found under the
“Process” sheet. Here each row represents another process p in a site v and the column with the header

label “fix-cost” represents the parameters kgq’ip of the corresponding process p and site v combinations.

Process Variable Costs, k;‘}fp, m.process_dict['var-cost'] [p]: The parameter k:;‘;rp repre-
sents the book value of the variable cost per one unit energy throughput 7,,; through a process tech-

nology p in a site v in support timeframe y. The unit of this parameter is €/ MWh. The related section
for this parameter in the spreadsheet corresponding to the support timeframe g can be found under the
“Process” sheet. Here each row represents another process p in a site v and the column with the header

label “var-cost” represents the parameters k7, of the corresponding process p and site v combinations.

Process Start-up Cost, P;g‘g‘, m.process_dict['start-cost'][(stf, sit, pro)]: The

parameter Pysﬁf’;f represents the cost inquired by the starting of a process p at a site v in the support

timeframe y. The unit of this parameter is the currency used in the support timeframe y. The related

1.3. Technical documentation 93

urbs Documentation, Release 1.0.0

section for this parameter in the spreadsheet can be found under the “Process” sheet. Here each row
represents another process p in a site v and the column with the header label “start-cost” represents the

parameters P;ggt of the corresponding process p and site v combinations.

Storage Economic Parameters

Weighted Average Cost of Capital for Storage, i,,,, : The parameter ., represents the weighted
average cost of capital for a storage technology s in a site v and support timeframe y. The weighted
average cost of capital gives the interest rate(%) of costs for capital after taxes. The related section
for this parameter in the spreadsheet corresponding to the support timeframe y can be found under the
“Storage” sheet. Here each row represents another storage s in a site v and the column with the header
label “wacc” represents the parameters 7, of the corresponding storage s and site v combinations. The
parameter is given as a percentage, where “0.07” means 7%.

Storage Depreciation Period, 2,5, (a): The parameter z,, represents the depreciation period of a
storage s in a site v built in support timeframe y. The depreciation period gives the economic and
technical lifetime of a storage investment. It thus features in the calculation of the invest cost factor and
determines the end of operation of the storage. The unit of this parameter is “a”, where “a” represents
a year of 8760 hours. The related section for this parameter in the spreadsheet corresponding to the
support timeframe y can be found under the “Storage” sheet. Here each row represents another storage
s in a site v and the column with the header label “depreciation” represents the parameters 2, of the
corresponding storage s and site v combinations.

Storage Power Investment Costs, kg;if;v, m.storage_dict ['inv-cost-p'] [s]: The parame-

ter kjys represents the book value of the total investment cost for adding one unit new power output
capacity of a storage technology s in a site v in support timeframe y. The unit of this parameter is
€/MW. To get the full impact of the investment within the modeling horizon this parameter is multiplied
with the factor for the investment made in modeled year y I,,. The related section for the storage power
output capacity investment cost in the spreadsheet corresponding to the support timeframe y can be
found under the “Storage” sheet. Here each row represents another storage s in a site v and the column
with the header label “inv-cost-p” represents the storage power output capacity investment cost of the
corresponding storage s and site v combinations.

Annual Storage Power Fixed Costs, kgff m.storage_dict ['fix-cost—-p'] [s]: The param-
eter kgvﬁsx represents the fix cost per one unit power output capacity of a storage technology s in a site
v and support timeframe y, that is charged annually. The unit of this parameter is €/(MW a). The
related section for this parameter in the spreadsheet corresponding to support timeframe y can be found
under the “Storage” sheet. Here each row represents another storage s in a site v and the column with
the header label “fix-cost-p” represents the parameters kgvh;(of the corresponding storage s and site v
combinations.

Storage Power Variable Costs, k},s , m.storage_dict ['var-cost-p'] [s]: The parameter

Kp»s represents the variable cost per unit energy, that is stored in or retrieved from a storage technology
s in a site v in support timeframe y. The unit of this parameter is €/MWh. The related section for this
parameter in the spreadsheet corresponding to support timeframe y can be found under the “Storage”
sheet. Here each row represents another storage s in a site v and the column with the header label

“var-cost-p” represents the parameters kj,s of the corresponding storage s and site v combinations.
Storage Size Investment Costs, k;;i}‘;v, m.storage_dict['inv-cost-c'] [s]: The parameter

k;{gv represents the book value of the total investment cost for adding one unit new storage capacity

to a storage technology s in a site v in support timeframe y. The unit of this parameter is €/MWh.
To get the full impact of the investment within the modeling horizon this parameter is multiplied with

94 Chapter 1. Contents

urbs Documentation, Release 1.0.0

the factor for the investment made in modeled year y I,. The related section for the storage content
capacity investment cost in the spreadsheet corresponding to support timeframe y can be found under
the “Storage” sheet. Here each row represents another storage s in a site v and the column with the
header label “inv-cost-c” represents the storage content capacity investment cost of the corresponding
storage s and site v combinations.

Annual Storage Size Fixed Costs, k;ﬁ;‘, m.storage_dict['fix—cost-c'] [s]: The parameter

k;ﬁ; represents the fix cost per year per one unit storage content capacity of a storage technology s in
a site v in support timeframe y. The unit of this parameter is €/(MWh a). The related section for this
parameter in the spreadsheet corresponding to support timeframe y can be found under the “Storage”
sheet. Here each row represents another storage s in a site v and the column with the header label

“fix-cost-c” represents the parameters k% of the corresponding storage s and site v combinations.

Storage Usage Variable Costs, ky,:", m.storage_dict['var—cost-c'] [s]: The parameter
Kps represents the variable cost per unit energy, that is conserved in a storage technology s in a site v
in support timeframe y. The unit of this parameter is €/MWh. The related section for this parameter in
the spreadsheet corresponding to support timeframe y can be found under the “Storage” sheet. Here each
row represents another storage s in a site v and the column with the header label “var-cost-c” represents
the parameters k" of the corresponding storage s and site v combinations. The value of this parameter
is usually set to zero, but the parameter can be taken advantage of if the storage has a short term usage

or has an increased devaluation due to usage, compared to amount of energy stored.

Transmission Economic Parameters

Weighted Average Cost of Capital for Transmission, ¢, : The parameter i,,; represents the
weighted average cost of capital for a transmission f transferring commodities through an arc a built in
support timeframe y. The weighted average cost of capital gives the interest rate(%) of costs for capital
after taxes. The related section for this parameter in the spreadsheet corresponding to support time-
frame y can be found under the “Transmission” sheet. Here each row represents another transmission f
transferring commodities through an arc a and the column with the header label “wacc” represents the
parameters i, ¢ of the corresponding transmission f and arc a combinations. The parameter is given as
a percentage, where “0.07” means 7%.

Transmission Depreciation Period, z,,f, (a): The parameter z,,; represents the depreciation period
of a transmission f transferring commodities through an arc a built in support timeframe y. The depre-
ciation period of gives the economic and technical lifetime of a transmission investment. It thus features
in the calculation of the invest cost factor and determines the end of operation of the transmission. The
unit of this parameter is “a”, where “a” represents a year of 8760 hours. The related section for this
parameter in the spreadsheet corresponding to support timeframe y can be found under the “Transmis-
sion” sheet. Here each row represents another transmission f transferring commodities through an arc a
and the column with the header label “depreciation” represents the parameters z,, s of the corresponding
transmission f and arc a combinations.

inv

’ yaf’
The parameter k‘y“(;’ represents the book value of the investment cost for adding one unit new transmis-
sion capacity to a transmission f transferring commodities through an arc @ in support timeframe y. To
get the full impact of the investment within the modeling horizon this parameter is multiplied with the
factor for the investment made in modeled year y I,,. The unit of this parameter is €/MW. The related
section for the transmission capacity investment cost in the spreadsheet corresponding to support time-
frame y can be found under the “Transmission” sheet. Here each row represents another transmission
f transferring commodities through an arc a and the column with the header label “inv-cost” represents
the transmission capacity investment cost of the corresponding transmission f and arc a combinations.

Transmission Capacity Investment Costs, m.transmission_dict['inv-cost'][t]:

1.3. Technical documentation 95

urbs Documentation, Release 1.0.0

Annual Transmission Capacity Fixed Costs, k;t’;f m.transmission_dict['fix-cost'][t]:

The parameter kg; represents the annual fix cost per one unit capacity of a transmission f transferring
commodities through an arc a. The unit of this parameter is €/(MW a). The related section for this
parameter in the spreadsheet corresponding to support timeframe y can be found under the “Transmis-
sion” sheet. Here each row represents another transmission f transferring commodities through an arc
a and the column with the header label “fix-cost” represents the parameters kg; ¢ of the corresponding
transmission f and arc a combinations.

Transmission Usage Variable Costs, erf, m.transmission_dict['var—-cost'] [t]: The
parameter ;ﬁ‘;f represents the variable cost per unit energy, that is transferred with a transmission f
through an arc a. The unit of this parameter is €/ MWh. The related section for this parameter in the
spreadsheet corresponding to support timeframe y can be found under the “Transmission” sheet. Here
each row represents another transmission f transferring commodities through an arc a and the column
with the header label “var-cost” represents the parameters k:(‘f}r of the corresponding transmission f and

arc a combinations.

Equations

Objective function

There are two possible choices of objective function for urbs problems, either the costs (default option)
or the total CO2-emissions can be minimized.

If the total CO2-emissions are minimized the objective function takes the form:
w» Y —CB(v,COy,t)
teTm veV

In script model . py the global CO2 emissions are defined and calculated by the following code frag-
ment:

def co2_rule(m):
co2_output_sum = 0
for stf in m.stf:
for tm in m.tm:
for sit in m.sit:
minus because negative commodity_balance represents
creation of that commodity.
co2_output_sum += (- commodity_balance
(m, tm, stf, sit, 'CO2'") =«
m.weight =«
stf_dist(stf, m))

return (co2_output_sum)

In the default case the total system costs are minimized. These variable total system costs (are calculated
by the cost function. The cost function is the objective function of the optimization model. Minimizing
the value of the variable total system cost would give the most reasonable solution for the modelled
energy system. The formula of the cost function expressed in mathematical notation is as following:

)The calculation of the variable total system cost is given in mode 1 . py by the following code fragment.

96 Chapter 1. Contents

urbs Documentation, Release 1.0.0

def cost_rule (m):
if m.type =='sub':
return (pyomo.summation (m.costs) + sum(0.5 * m.rho[(tm, stf, sit_
—in, sit_out)] =
(m.e_tra_in[(tm, stf, sit_in,sit_out, tra, com)]
-m.flow_global[(tm, stf, sit_in,sit_out)]) %2
for tm in m.tm
for stf, sit_in, sit_out, tra, com in m.tra_tuples_
—boun) + sum(m.lamdal (tm, stf, sit_in, sit_out)] =
(m.e_tra_in[(tm,stf, sit_in,sit_out,tra, com)]
-m.flow_globall[(tm, stf, sit_in,sit_out)])
for tm in m.tm
for stf, sit_in, sit_out, tra, com in m.tra_tuples_
—boun))
else:
return pyomo.summation (m.costs)

The variable total system cost (is basically calculated by the summation of every type of total costs. As
previously mentioned in section Cost Types, these cost types are : Investment, Fix, Variable,
Fuel, Revenue, Purchase, Start—-up and Environmental.

In script model . py the individual cost functions are calculated by the following code fragment:

def def_costs_rule(m, cost_type):
#Calculate total costs by cost type.
#Sums up process activity and capacity expansions
#and sums them in the cost types that are specified in the set
#m.cost_type. To change or add cost types, add/change entries
#there and modify the if/elif cases in this function accordingly.
#Cost types are

— Investment costs for process power, Sstorage power and
storage capacity. They are multiplied by the investment
factors. Rest values of units are subtracted.
- Fixed costs for process power, storage power and storage
capacity.
— Variables costs for usage of processes, storage and transmission.
— Fuel costs for stock commodity purchase.
if cost_type == 'Invest':
cost = \
sum(m.cap_pro_newl[p] =*
m.process_dict['inv-cost'] [p] =*
m.process_dict['invcost-factor'] [p]

for p in m.pro_tuples)
if m.mode['int']:

cost —= \
sum(m.cap_pro_new[p] =
m.process_dict['inv-cost'] [p] =*

m.process_dict['overpay-factor'] [p]
for p in m.pro_tuples)
if m.mode['tra']:
transmission_cost is defined in transmission.py
cost += transmission_cost (m, cost_type)
if m.mode['sto']:
storage_cost 1is defined in storage.py
cost += storage_cost (m, cost_type)

(continues on next page)

1.3. Technical documentation 97

urbs Documentation, Release 1.0.0

(continued from previous page)

return m.costs[cost_type] == cost
elif cost_type == 'Fixed':
cost =\
sum(m.cap_pro[p] * m.process_dict['fix-cost'][p] =*

m.process_dict['cost_factor'] [p]
for p in m.pro_tuples)
if m.mode['tra'l:
cost += transmission_cost (m, cost_type)
if m.mode['sto']:
cost += storage_cost (m, cost_type)

return m.costs[cost_type] == cost
elif cost_type == 'Variable':
cost =\
sum(m.tau_prol[(tm,) + pl] * m.weight =*
m.process_dict['var-cost'] [p] =*
m.process_dict['cost_factor'] [p]

for tm in m.tm
for p in m.pro_tuples)
if m.mode['tra']:
cost += transmission_cost (m, cost_type)
if m.mode['sto']:
cost += storage_cost (m, cost_type)

return m.costs[cost_type] == cost
elif cost_type == 'Fuel':
return m.costs[cost_type] == sum(
m.e_co_stock[(tm,) + c] * m.weight =
m.commodity_dict['price'] [c] =
m.commodity_dict['cost_factor'][c]

for tm in m.tm for c in m.com_tuples
if c[2] in m.com_stock)

elif cost_type == 'Start-up':
if m.mode['onoff']:
cost = sum(m.start_up[(tm,) + p] * m.weight =

m.start_price_dict[p] * m.cap_prolpl] =
m.process_dict['cost_factor'] [p]

for tm in m.tm

for p in m.pro_start_up_tuples)

return m.costs[cost_type] == cost

else:
return m.costs[cost_type] == 0

elif cost_type == 'Environmental':

return m.costs[cost_type] == sum(
- commodity_balance(m, tm, stf, sit, com) * m.weight =
m.commodity_dict['price'] [(stf, sit, com, com_type)] =*
m.commodity_dict['cost_factor'][(stf, sit, com, com_type)]

for tm in m.tm
for stf, sit, com, com_type in m.com_tuples
if com in m.com_env)

(continues on next page)

98 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

Revenue and Purchase costs defined in BuySellPrice.py

elif cost_type == 'Revenue':

return m.costs[cost_type] == revenue_costs (m)
elif cost_type == 'Purchase':

return m.costs[cost_type] == purchase_costs (m)
else:

raise NotImplementedError ("Unknown cost type.")

Constraints
Commodity Constraints

Commodity Balance The function commodity balance calculates the in- and outflows into all processes,
storages and transmission of a commodity c in a site v in support timeframe y at a timestep ¢. The value
of the function CB being greater than zero CB > 0 means that the presence of the commodity ¢ in the
site v in support timeframe y at the timestep ¢ is getting by the interaction with the technologies given
above. Correspondingly, the value of the function being less than zero means that the presence of the
commodity in the site at the timestep is getting more than before by the technologies given above. The
mathematical explanation of this rule for general problems is explained in Energy Storage.

In script modelhelper.py the value of the commodity balance function CB(y, v, ¢, t) is calculated
by the following code fragment:

def commodity_balance(m, tm, stf, sit, com):
"""Calculate commodity balance at given timestep.
For a given commodity co and timestep tm, calculate the balance of
consumed (to process/storage/transmission, counts positive) and,_
—provided
(from process/storage/transmission, counts negative) commodity flow._,
—Used
as helper function in create_model for constraints on demand and stock
commodities.
Args:
m: the model object
tm: the timestep
site: the site
com: the commodity
Returns
balance: net value of consumed (positive) or provided (negative)_,
—power
balance = (sum(m.e_pro_in[(tm, stframe, site, process, com)]
usage as input for process increases balance
for stframe, site, process in m.pro_tuples
if site == sit and stframe == stf and
(stframe, process, com) in m.r_in_dict) -
sum (m.e_pro_out|[(tm, stframe, site, process, com)]
output from processes decreases balance
for stframe, site, process in m.pro_tuples
if site == sit and stframe == stf and
(stframe, process, com) in m.r_out_dict))

(continues on next page)

1.3. Technical documentation 99

urbs Documentation, Release 1.0.0

(continued from previous page)

if m.mode['tra']l:

balance += transmission_balance (m, tm, stf, sit, com)
if m.mode['sto']:

balance += storage_balance(m, tm, stf, sit, com)

return balance

where the two functions introducing the partly balances for transmissions and storages, respectively, are
given by:

def transmission_balance(m, tm, stf, sit, com):
"""called in commodity balance
For a given commodity co and timestep tm, calculate the balance of
import and export """

return (sum(m.e_tra_in|[(tm, stframe, site_in, site_out,
transmission, com)]
exports increase balance
for stframe, site_in, site_out, transmission, commodity
in m.tra_tuples
if (site_in == sit and stframe == stf and
commodity == com)) -
sum(m.e_tra_out[(tm, stframe, site_in, site_out,
transmission, com)]
imports decrease balance
for stframe, site_in, site_out, transmission, commodity
in m.tra_tuples
if (site_out == sit and stframe == stf and
commodity == com)))

def storage_balance(m, tm, stf, sit, com):
"""callesd in commodity balance
For a given commodity co and timestep tm, calculate the balance of

storage input and output """

return sum(m.e_sto_in[(tm, stframe, site, storage, com)] -
m.e_sto_out|[(tm, stframe, site, storage, com)]
usage as input for storage increases consumption
output from storage decreases consumption
for stframe, site, storage, commodity in m.sto_tuples
if site == sit and stframe == stf and commodity == com)

Vertex Rule: The vertex rule is the main constraint that has to be satisfied for every commodity. It
represents a version of “Kirchhoff’s current law” or local energy conservation. This constraint is defined
differently for each commodity type. The inequality requires, that any imbalance (CB>0, CB<0) of a
commodity c in a site v and support timeframe y at a timestep ¢ to be balanced by a corresponding source
term or demand. The rule is not defined for environmental or SupIm commodities. The mathematical
explanation of this rule is given in Minimal optimization model.

In script model . py the constraint vertex rule is defined and calculated by the following code fragments:

m.res_vertex = pyomo.Constraint (
m.tm, m.com_tuples,
rule=res_vertex_rule,
doc='storage + transmission + process + source + buy - sell == demand')

100 Chapter 1. Contents

urbs Documentation, Release 1.0.0

def res_vertex_rule(m, tm, stf, sit, com, com_type):
environmental or supim commodities don't have this constraint (yet)
if com in m.com_env:
return pyomo.Constraint.Skip
if com in m.com_supim:
return pyomo.Constraint.Skip

helper function commodity_ balance calculates balance from input to

and output from processes, storage and transmission.

1f power_surplus > 0: production/storage/imports create net positive
amount of commodity com

1f power_surplus < 0: production/storage/exports consume a net

amount of the commodity com

power_surplus = - commodity_balance(m, tm, stf, sit, com)

1f com is a stock commodity, the commodity source term e _co_stock
can supply a possibly negative power_surplus
if com in m.com_stock:

power_surplus += m.e_co_stock[tm, stf, sit, com, com_typel

1if Buy and sell prices are enabled
if m.mode['bsp']:
power_surplus += bsp_surplus(m, tm, stf, sit, com, com_type)

1f com is a demand commodity, the power_ surplus is reduced by the
demand value; no scaling by m.dt or m.weight is needed here, as this
constraint is about power (MW), not energy (Mwh)
if com in m.com_demand:
try:
power_surplus —= m.demand_dict[(sit, com)][(stf, tm)]
except KeyError:
pass

if m.mode['dsm']:
power_surplus += dsm_surplus(m, tm, stf, sit, com)

return power_surplus == 0

where the two functions introducing the effects of Buy/Sell or DSM events, respectively, are given by:

def bsp_surplus(m, tm, stf, sit, com, com_type):
power_surplus = 0

1f com is a sell commodity, the commodity source term e_co_sell
can supply a possibly positive power_surplus
if com in m.com_sell:

power_surplus —= m.e_co_sell[tm, stf, sit, com, com_typel]

if com is a buy commodity, the commodity source term e_co_buy
can supply a possibly negative power_surplus
if com in m.com_buy:

power_surplus += m.e_co_buyl[tm, stf, sit, com, com_type]

return power_surplus

1.3. Technical documentation 101

urbs Documentation, Release 1.0.0

def dsm_surplus(m, tm, stf, sit, com):
"mnocalled in vertex rule
calculate dsm surplus"""
if (stf, sit, com) in m.dsm_site_tuples:
return (- m.dsm_up[tm, stf, sit, com] +
sum(m.dsm_down[t, tm, stf, sit, com]
for t in dsm_time_tuples (
tm, m.timesteps[l:],
max (int (1 / m.dt =
m.dsm_dict['delay'][(stf, sit, com)]), 1))))
else:
return 0

Stock Per Step Rule: The constraint stock per step rule applies only for commodities of type “Stock”
(c € Cy). This constraint limits the amount of stock commodity ¢ € Cy, that can be used by the energy
system in the site v in support timeframe ¥ at the timestep ¢. This amount is limited by the product of
the parameter maximum stock supply limit per hour Zyvc and the timestep length At. The mathematical
explanation of this rule is given in Minimal optimization model.

In script model . py the constraint stock per step rule is defined and calculated by the following code
fragment:

m.res_stock_step = pyomo.Constraint (
m.tm, m.com_tuples,
rule=res_stock_step_rule,
doc="'stock commodity input per step <= commodity.maxperstep')

def res_stock_step_rule(m, tm, stf, sit, com, com_type):
if com not in m.com_stock:
return pyomo.Constraint.Skip
else:
return (m.e_co_stock[tm, stf, sit, com, com_type] <=
m.dt * m.commodity_dict ['maxperhour']
[(stf, sit, com, com_type)])

Total Stock Rule: The constraint total stock rule applies only for commodities of type “Stock” (c € Cy).
This constraint limits the amount of stock commodity ¢ € Cg;, that can be used annually by the energy
system in the site v and support timeframe y. This amount is limited by the parameter maximum annual
stock supply limit per vertex L,,.. The annual usage of stock commodity is calculated by the sum of
the products of the parameter weight w and the parameter stock commodity source term py,c¢, summed
over all timesteps ¢ € T},,. The mathematical explanation of this rule is given in Minimal optimization
model.

In script model.py the constraint total stock rule is defined and calculated by the following code
fragment:

m.res_stock_total = pyomo.Constraint (
m.com_tuples,
rule=res_stock_total_rule,
doc="'total stock commodity input <= commodity.max')

def res_stock_total_rule(m, stf, sit, com, com_type):
if com not in m.com_stock:
return pyomo.Constraint.Skip
else:

(continues on next page)

102 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

calculate total consumption of commodity com
total_consumption = 0
for tm in m.tm:
total_consumption += (
m.e_co_stock[tm, stf, sit, com, com_typel)
total_consumption x= m.weight
return (total_consumption <=
m.commodity_dict['max'][(stf, sit, com, com_type)])

Sell Per Step Rule: The constraint sell per step rule applies only for commodities of type “Sell” (
¢ € Cgn). This constraint limits the amount of sell commodity ¢ € Cg, that can be sold by the energy
system in the site v in support timeframe y at the timestep ¢. The limit is defined by the parameter max-
imum sell supply limit per hour g, ... To satisfy this constraint, the value of the variable sell commodity
source term ¢ must be less than or equal to the value of the parameter maximum sell supply limit
per hour g, multiplied with the length of the time steps A¢. The mathematical explanation of this rule
is given in Trading with an external market.

Inscript BuySellPrice.py the constraint sell per step rule is defined and calculated by the following
code fragment:

m.res_sell_step = pyomo.Constraint (
m.tm, m.com_tuples,
rule=res_sell_step_rule,
doc="sell commodity output per step <= commodity.maxperstep')

def res_sell_step_rule(m, tm, stf, sit, com, com_type):
if com not in m.com_sell:
return pyomo.Constraint.Skip
else:
return (m.e_co_sell[tm, stf, sit, com, com_type] <=
m.dt * m.commodity_dict ['maxperhour']
[(stf, sit, com, com_type)])

Total Sell Rule: The constraint total sell rule applies only for commodities of type “Sell” (¢ € Cgen).
This constraint limits the amount of sell commodity ¢ € Cg, that can be sold annually by the energy
system in the site v and support timeframe y. The limit is defined by the parameter maximum annual
sell supply limit per vertex Gyyc. The annual usage of sell commodity is calculated by the sum of the
products of the parameter weight w and the parameter sell commodity source term 9y,.t, summed over
all timesteps ¢ € T},,. The mathematical explanation of this rule is given in Trading with an external
market.

In script BuySellPrice.py the constraint total sell rule is defined and calculated by the following
code fragment:

m.res_sell_total = pyomo.Constraint (
m.com_tuples,
rule=res_sell_total_rule,
doc='total sell commodity output <= commodity.max')

def res_sell_total_rule(m, stf, sit, com, com_type):
if com not in m.com_sell:
return pyomo.Constraint.Skip
else:
calculate total sale of commodity com

(continues on next page)

1.3. Technical documentation 103

urbs Documentation, Release 1.0.0

(continued from previous page)

total_consumption = 0
for tm in m.tm:
total_consumption += (
m.e_co_sell[tm, stf, sit, com, com_typel)
total_consumption x= m.weight
return (total_consumption <=
m.commodity_dict['max'][(stf, sit, com, com_type)])

Buy Per Step Rule: The constraint buy per step rule applies only for commodities of type “Buy” (
¢ € Cpuy). This constraint limits the amount of buy commodity ¢ € Chyy, that can be bought by the
energy system in the site v in support timeframe y at the timestep ¢. The limit is defined by the param-
eter maximum buy supply limit per time step Eyvc. To satisfy this constraint, the value of the variable
buy commodity source term 1)y, must be less than or equal to the value of the parameter maximum
buy supply limit per time step b,., multiplied by the length of the time steps At. The mathematical
explanation of this rule is given in Trading with an external market.

Inscript BuySellPrice. py the constraint buy per step rule is defined and calculated by the following
code fragment:

m.res_buy_step = pyomo.Constraint (
m.tm, m.com_tuples,
rule=res_buy_step_rule,
doc="'buy commodity output per step <= commodity.maxperstep')

def res_buy_step_rule(m, tm, stf, sit, com, com_type):
if com not in m.com_buy:
return pyomo.Constraint.Skip
else:
return (m.e_co_buy[tm, stf, sit, com, com_type] <=
m.dt * m.commodity_dict ['maxperhour']
[(stf, sit, com, com_type)])

Total Buy Rule: The constraint total buy rule applies only for commodities of type “Buy” (¢ € Cpuy).
This constraint limits the amount of buy commodity ¢ € Chyy, that can be bought annually by the energy
system in the site v in support timeframe y. The limit is defined by the parameter maximum annual buy
supply limit per vertex Byy.. To satisfy this constraint, the annual usage of buy commodity must be
less than or equal to the value of the parameter buy supply limit per vertex B,.. The annual usage of
buy commodity is calculated by the sum of the products of the parameter weight w and the parameter
buy commodity source term)y, summed over all modeled timesteps ¢ € T;,. The mathematical
explanation of this rule is given in Trading with an external market.

In script BuySellPrice.py the constraint total buy rule is defined and calculated by the following
code fragment:

m.res_buy_total = pyomo.Constraint (
m.com_tuples,
rule=res_buy_total_rule,
doc="'total buy commodity output <= commodity.max')

def res_buy_total_rule(m, stf, sit, com, com_type):
if com not in m.com_buy:
return pyomo.Constraint.Skip
else:

(continues on next page)

104 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

calculate total sale of commodity com
total_consumption = 0
for tm in m.tm:
total_consumption += (
m.e_co_buy[tm, stf, sit, com, com_type])
total_consumption x= m.weight
return (total_consumption <=
m.commodity_dict['max'][(stf, sit, com, com_type)])

Environmental Output Per Step Rule: The constraint environmental output per step rule applies only
for commodities of type “Env” (¢ € Ceyy). This constraint limits the amount of environmental commod-
ity ¢ € Cepy, that can be released to environment by the energy system in the site v in support timeframe
y at the timestep ¢. The limit is defined by the parameter maximum environmental output per time step
Myye. To satisfy this constraint, the negative value of the commodity balance for the given environmental
commodity ¢ € Cepy must be less than or equal to the value of the parameter maximum environmental
output per time step 77z,., multiplied by the length of the time steps At. The mathematical explanation
of this rule is given in Minimal optimization model.

In script model . py the constraint environmental output per step rule is defined and calculated by the
following code fragment:

m.res_env_step = pyomo.Constraint (
m.tm, m.com_tuples,
rule=res_env_step_rule,
doc='environmental output per step <= commodity.maxperstep')

def res_env_step_rule(m, tm, stf, sit, com, com_type):
if com not in m.com_env:
return pyomo.Constraint.Skip
else:
environmental_output = - commodity_balance(m, tm, stf, sit, com)
return (environmental_output <=
m.dt * m.commodity_dict ['maxperhour']
[(stf, sit, com, com_type)])

Total Environmental Output Rule: The constraint total environmental output rule applies only for
commodities of type “Env” (¢ € Cepy). This constraint limits the amount of environmental commodity
¢ € Cepy, that can be released to environment annually by the energy system in the site v in support
timeframe y. The limit is defined by the parameter maximum annual environmental output limit per
vertex Myvc. To satisfy this constraint, the annual release of environmental commodity must be less
than or equal to the value of the parameter maximum annual environmental output M,.. The annual
release of environmental commodity is calculated by the sum of the products of the parameter weight
w and the negative value of commodity balance function, summed over all modeled time steps ¢ € T5,.
The mathematical explanation of this rule is given in Minimal optimization model.

In script model .py the constraint total environmental output rule is defined and calculated by the
following code fragment:

m.res_env_total = pyomo.Constraint (
m.com_tuples,
rule=res_env_total_rule,
doc='total environmental commodity output <= commodity.max"')

1.3. Technical documentation 105

urbs Documentation, Release 1.0.0

def res_env_total_rule(m, stf, sit, com, com_type):

if com not in m.com_env:
return pyomo.Constraint.Skip

else:
calculate total creation of environmental commodity com
env_output_sum = 0
for tm in m.tm:

env_output_sum += (- commodity_balance(m, tm, stf, sit, com))
env_output_sum *= m.weight
return (env_output_sum <=
m.commodity_dict|['max'][(stf, sit, com, com_type)])

Demand Side Management Constraints

The DSM equations are taken from the Paper of Zerrahn and Schill “On the representation of demand-
side management in power system models”, DOI: 10.1016/j.energy.2015.03.037.

DSM Variables Rule: The DSM variables rule defines the relation between the up- and downshifted
DSM commodities. An upshift 5;]2@ in site v and support timeframe y of demand commodity c in time
step ¢ can be compensated during a certain time step interval [t — yyuc/At, t + yyoe/At] by multiple
downshifts 6?%2“. Here, vy, represents the allowable delay time of downshifts in hours, which is
scaled into time steps by dividing by the timestep length At¢. Depending on the DSM efficiency ey, an
upshift in a DSM commodity may correspond to multiple downshifts which sum to less than the original

upshift. The mathematical explanation of this rule is given in Demand side management.

In script dsm. py the constraint DSM variables rule is defined by the following code fragment:

m.def_dsm_variables = pyomo.Constraint (
m.tm, m.dsm_site_tuples,
rule=def_dsm_variables_rule,
doc="'DSMup * efficiency factor n == DSMdo (summed) ')

def def_dsm_variables_rule(m, tm, stf, sit, com):
dsm_down_sum = 0
for tt in dsm_time_tuples (tm,
m.timesteps[1l:],
max (int (1 / m.dt =
m.dsm_dict['delay'][(stf, sit, com)]), .
1))
dsm_down_sum += m.dsm_down[tm, tt, stf, sit, com]
return dsm_down_sum == (m.dsm_up[tm, stf, sit, com] =
m.dsm_dict['eff'][(stf, sit, com)])

DSM Upward Rule: The DSM upshift 4, , in site v and support timeframe y of demand commodity

Yuc
c in time step ¢ is limited by the DSM maximal upshift per hour K.Y multiplied by the length of the

yve?
time steps At. The mathematical explanation of this rule is given in Demand side management.

In script dsm. py the constraint DSM upward rule is defined by the following code fragment:

m.res_dsm_upward = pyomo.Constraint (
m.tm, m.dsm_site_tuples,
rule=res_dsm_upward_rule,
doc="'DSMup <= Cup (threshold capacity of DSMup) ')

106 Chapter 1. Contents

http://dx.doi.org/10.1016/j.energy.2015.03.037

urbs Documentation, Release 1.0.0

def res_dsm_upward_rule(m, tm, stf, sit, com):
return m.dsm_up[tm, stf, sit, com] <= (m.dt =
m.dsm_dict['cap-max-up']
[(stf, sit, com)])

DSM Downward Rule: The total DSM downshift 52‘;}“@1}6 in site v and support timeframe y of demand
down

commodity ¢ in time step ¢ is limited by the DSM maximal downshift per hour ?yvc , multiplied by
the length of the time steps A¢. The mathematical explanation of this rule is given in Demand side
management.

In script dsm. py the constraint DSM downward rule is defined by the following code fragment:

m.res_dsm_downward = pyomo.Constraint (
m.tm, m.dsm_site_tuples,
rule=res_dsm_downward_rule,
doc='DSMdo (summed) <= Cdo (threshold capacity of DSMdo) ')

def res_dsm_downward_rule (m, tm, stf, sit, com):
dsm_down_sum = 0
for t in dsm_time_tuples (tm,
m.timesteps[l:],
max (int (1 / m.dt =

m.dsm_dict['delay'][(stf, sit, com)]), .
1)) :
dsm_down_sum += m.dsm_down[t, tm, stf, sit, com]
return dsm_down_sum <= (m.dt % m.dsm_dict['cap-max-do'][(stf, sit,
—com)])

DSM Maximum Rule: The DSM maximum rule limits the shift of one DSM unit in site v in support
timeframe y of demand commodity c in time step ¢t. The mathematical explanation of this rule is given
in Demand side management.

In script dsm. py the constraint DSM maximum rule is defined by the following code fragment:

m.res_dsm_maximum = pyomo.Constraint (
m.tm, m.dsm_site_tuples,
rule=res_dsm_maximum_rule,
doc='DSMup + DSMdo (summed) <= max (Cup,Cdo) ')

def res_dsm_maximum_ rule(m, tm, stf, sit, com):
dsm_down_sum = 0
for t in dsm_time_tuples (tm,
m.timesteps[1l:],
max (int (1 / m.dt =
m.dsm_dict['delay'][(stf, sit, com)]),.
1))
dsm_down_sum += m.dsm_down[t, tm, stf, sit, com]

max_dsm_limit = m.dt * max(m.dsm_dict['cap-max-up'][(stf, sit, com)],
m.dsm_dict['cap-max—-do'][(stf, sit, com)])
return m.dsm_up[tm, stf, sit, com] + dsm_down_sum <= max_dsm_limit

DSM Recovery Rule: The DSM recovery rule limits the upshift in site v and support timeframe y
of demand commodity ¢ during a set recovery period oy,.. Since the recovery period 0y, is input as
hours, it is scaled into time steps by dividing it by the length of the time steps At. The mathematical
explanation of this rule is given in Demand side management.

1.3. Technical documentation 107

urbs Documentation, Release 1.0.0

In script dsm. py the constraint DSM Recovery rule is defined by the following code fragment:

m.res_dsm_recovery = pyomo.Constraint (
m.tm, m.dsm_site_tuples,
rule=res_dsm_recovery_rule,
doc='DSMup (t, t + recovery time R) <= Cup * delay time L'")

def res_dsm_recovery_rule(m, tm, stf, sit, com):
dsm_up_sum = 0
for t in dsm_recovery (tm,
m.timesteps[1l:],
max (int (1 / m.dt =

m.dsm_dict['recov'][(stf, sit, com)]), 1)):
dsm_up_sum += m.dsm_up[t, stf, sit, com]
return dsm_up_sum <= (m.dsm_dict['cap-max-up'][(stf, sit, com)] =
m.dsm_dict['delay'][(stf, sit, com)])

Global Environmental Constraint

Global CO2 Limit Rule: The constraint global CO2 limit rule applies to the whole energy system in
one support timeframe ¥, that is to say it applies to every site and timestep. This constraints restricts
the total amount of CO2 to environment. The constraint states that the sum of released CO2 across all
sites v € V and timesteps ¢ € t,, must be less than or equal to the parameter maximum global annual
CO2 emission limit fcog,y, where the amount of released CO2 in a single site v at a single timestep ¢
is calculated by the product of commodity balance of environmental commodities CB(y, v, CO2,t) and
the parameter weight w. This constraint is skipped if the value of the parameter Lo, is setto inf. The
mathematical explanation of this rule is given in Minimal optimization model.

In script model . py the constraint annual global CO2 limit rule is defined and calculated by the follow-
ing code fragment:

def res_global_co2_limit_rule(m, stf):
if math.isinf (m.global_prop_dict['value'][stf, 'CO2 limit']):
return pyomo.Constraint.Skip
elif m.global_prop_dict['value'][stf, 'CO2 limit'] >= 0:
co2_output_sum = 0
for tm in m.tm:
for sit in m.sit:
minus because negative commodity balance represents,
—creation
of that commodity.
co2_output_sum += (- commodity_balance (m, tm,
stf, sit, 'CO2'"))

scaling to annual output (cf. definition of m.weight)
co2_output_sum x= m.weight
return (co2_output_sum <= m.global_prop_dict['value']
[stf, 'CO2 limit'])
else:
return pyomo.Constraint.Skip

Global CO2 Budget Rule: The constraint global CO2 budget rule applies to the whole energy system
over the entire modeling horizon, that is to say it applies to every support timeframe, site and timestep.
This constraints restricts the total amount of CO2 to environment. The constraint states that the sum of

108 Chapter 1. Contents

urbs Documentation, Release 1.0.0

released CO2 across all support timeframe y € Y, sites v € V' and timesteps ¢ € t,,, must be less than
or equal to the parameter maximum global CO2 emission budget fcomy, where the amount of released
CO2 in a single support timeframe y in a single site v and at a single timestep ¢ is calculated by the
product of the commodity balance of environmental commodities CB(y, v, CO2,t) and the parameter

weight w. This constraint is skipped if the value of the parameter Lo, is set to inf. The mathematical
explanation of this rule is given in Intertemporal optimization model.

In script model . py the constraint global CO2 budget is defined and calculated by the following code
fragment:

def res_global_co2_budget_rule (m) :
if math.isinf (m.global_prop_dict['value'] [min(m.stf_list), 'CO2 budget
%'])Z
return pyomo.Constraint.Skip
elif (m.global_prop_dict['value'][min(m.stf_list), 'CO2 budget']) >= 0:
co2_output_sum = 0
for stf in m.stf:
for tm in m.tm:
for sit in m.sit:
minus because negative commodity balance represents
creation of that commodity.
co2_output_sum += (- commodity_balance
(m, tm, stf, sit, 'CO2'") =«
m.weight =«
stf_dist (stf, m))

return (co2_output_sum <=

m.global_prop_dict['value'] [min(m.stf), 'CO2 budget'])
else:

return pyomo.Constraint.Skip

Process Constraints

Process Capacity Rule: The constraint process capacity rule defines the variable total process capacity
Kyup- The variable total process capacity is defined by the constraint as the sum of the parameter process
capacity installed K, and the variable new process capacity &,.,. The mathematical explanation of this
rule is given in Minimal optimization model.

In script model . py the constraint process capacity rule is defined and calculated by the following code
fragment:

m.def_process_capacity = pyomo.Constraint (
m.pro_tuples,
rule=def_process_capacity_rule,
doc='total process capacity = inst-cap + new capacity')

def def_process_capacity_rule(m, stf, sit, pro):
if m.mode['int']:
if (sit, pro, stf) in m.inst_pro_tuples:

if (sit, pro, min(m.stf)) in m.pro_const_cap_dict:
cap_pro = m.process_dict['inst-cap'][(stf, sit, pro)]
else:
cap_pro \

(sum(m.cap_pro_new|[stf_built, sit, pro]

(continues on next page)

1.3. Technical documentation 109

urbs Documentation, Release 1.0.0

(continued from previous page)

for stf_built in m.stf
if (sit, pro, stf_built, stf)
in m.operational_pro_tuples) +

m.process_dict['inst-cap'] [(min(m.stf), sit, pro)l)
else:
cap_pro = sum/(
m.cap_pro_new[stf_built, sit, pro]
for stf _built in m.stf
if (sit, pro, stf_built, stf) in m.operational_pro_tuples)
else:
if (sit, pro, stf) in m.pro_const_cap_dict:
cap_pro = m.process_dict['inst-cap'][(stf, sit, pro)]
else:
cap_pro = (m.cap_pro_new[stf, sit, pro] +

m.process_dict['inst-cap'][(stf, sit, pro)])
return cap_pro

Process Input Rule: The constraint process input rule defines the variable process input commodity
flow €,pe- The variable process input commodity flow is defined by the constraint as the product
of the variable process throughput 7,,; and the parameter process input ratio r

explanation of this rule is given in Minimal optimization model.

in

ype- Lhe mathematical

In script model . py the constraint process input rule is defined and calculated by the following code
fragment:

m.def_process_input = pyomo.Constraint (
m.tm, m.pro_input_tuples - m.pro_partial_input_tuples,
rule=def_process_input_rule,
doc='"'process input = process throughput * input ratio')

def def_process_input_rule(m, tm, stf, sit, pro, com):
return (m.e_pro_in[tm, stf, sit, pro, com] ==
m.tau_prof[tm, stf, sit, pro] = m.r_in_dict[(stf, pro, com)])

Process Output Rule: The constraint process output rule defines the variable process output commodity
flow eggtcpt. The variable process output commodity flow is defined by the constraint as the product of
the variable process throughput 7,,; and the parameter process output ratio rggtc. The mathematical

explanation of this rule is given in Minimal optimization model.

In script model . py the constraint process output rule is defined and calculated by the following code
fragment:

m.def_process_output = pyomo.Constraint (
m.tm, (m.pro_output_tuples — m.pro_partial_output_tuples -
m.pro_timevar_output_tuples),
rule=def_process_output_rule,
doc="process output = process throughput x output ratio')

def def_process_output_rule(m, tm, stf, sit, pro, com):
return (m.e_pro_out|[tm, stf, sit, pro, com] ==
m.tau_prol[tm, stf, sit, pro] * m.r_out_dict[(stf, pro, com)])

Intermittent Supply Rule: The constraint intermittent supply rule defines the variable process input

commodity flow e;nvcpt for processes p that use a supply intermittent commodity ¢ € Cgp as input.

Therefore this constraint only applies if a commodity is an intermittent supply commodity ¢ € Cyyp.

110 Chapter 1. Contents

urbs Documentation, Release 1.0.0

The variable process input commodity flow is defined by the constraint as the product of the variable
total process capacity k., and the parameter intermittent supply capacity factor s,,.¢, scaled by the
size of the time steps :math: Delta t. The mathematical explanation of this rule is given in Minimal
optimization model.

In script model . py the constraint intermittent supply rule is defined and calculated by the following
code fragment:

m.def_intermittent_supply = pyomo.Constraint (
m.tm, m.pro_input_tuples,
rule=def_intermittent_supply_rule,
doc="'process output = process capacity * supim timeseries')

def def_intermittent_supply_rule(m, tm, stf, sit, pro, coin):
if coin in m.com_supim:
return (m.e_pro_in[tm, stf, sit, pro, coin] ==
m.cap_pro[stf, sit, prol] * m.supim_dict|[(sit, coin)]
[(stf, tm)] * m.dt)
else:
return pyomo.Constraint.Skip

Process Throughput By Capacity Rule: The constraint process throughput by capacity rule limits the
variable process throughput 7,,,:;. This constraint prevents processes from exceeding their capacity.
The constraint states that the variable process throughput must be less than or equal to the variable total
process capacity Ky, scaled by the size of the time steps :math: Delta t. The mathematical explanation
of this rule is given in Minimal optimization model.

In script model . py the constraint process throughput by capacity rule is defined and calculated by the
following code fragment:

m.res_process_throughput_by_capacity = pyomo.Constraint (
m.tm, m.pro_tuples,
rule=res_process_throughput_by_capacity_rule,
doc='"'process throughput <= total process capacity')

def res_process_throughput_by_capacity_rule(m, tm, stf, sit, pro):
return (m.tau_pro[tm, stf, sit, pro] <= m.dt % m.cap_prol[stf, sit,
—prol)

Process Throughput Gradient Rule: The constraint process throughput gradient rule limits the process
power gradient |Tyvpt — Tyup(t—1) ‘ This constraint prevents processes from exceeding their maximal
possible change in activity from one time step to the next. The constraint states that the absolute power
gradient must be less than or equal to the maximal power ramp up gradient overline PG}, parameter
when increasing power or to the maximal power ramp down gradient TG;SP parameter (both scaled
to capacity and by time step duration). The mathematical explanation of this rule is given in Minimal

optimization model.

In script model . py the constraint process throughput gradient rule is split into 2 parts and defined and
calculated by the following code fragments:

m.res_process_rampdown = pyomo.Constraint (
m.tm, m.pro_rampdowngrad_tuples,
rule=res_process_rampdown_rule,
doc="'throughput may not decrease faster than maximal ramp down gradient

")

(continues on next page)

1.3. Technical documentation 111

urbs Documentation, Release 1.0.0

(continued from previous page)

m.res_process_rampup = pyomo.Constraint (
m.tm, m.pro_rampupgrad_tuples,
rule=res_process_rampup_rule,
doc="'throughput may not increase faster than maximal ramp up gradient')

def res_process_rampdown_rule(m, t, stf, sit, pro):
return (m.tau_pro[t - 1, stf, sit, pro] -
m.cap_prol[stf, sit, pro] =
m.process_dict['ramp-down-grad'] [(stf, sit, pro)] % m.dt <=
m.tau_prol[t, stf, sit, prol)

def res_process_rampup_rule(m, t, stf, sit, pro):

return (m.tau_prol[t - 1, stf, sit, pro] +
m.cap_prol[stf, sit, pro] =
m.process_dict['ramp-up-grad'] [(stf, sit, pro)] * m.dt >=

m.tau_prol[t, stf, sit, prol)

Process Capacity Limit Rule: The constraint process capacity limit rule limits the variable total process
capacity Kyqp. This constraint restricts a process p in a site v and support timeframe y from having more
total capacity than an upper bound and having less than a lower bound. The constraint states that the
variable total process capacity k., must be greater than or equal to the parameter process capacity
lower bound K, and less than or equal to the parameter process capacity upper bound K. The
mathematical explanation of this rule is given in Minimal optimization model.

In script model . py the constraint process capacity limit rule is defined and calculated by the following
code fragment:

m.res_process_capacity = pyomo.Constraint (
m.pro_tuples,
rule=res_process_capacity_rule,
doc="process.cap-lo <= total process capacity <= process.cap-up')

def res_process_capacity_rule(m, stf, sit, pro):

return (m.process_dict['cap-lo'][stf, sit, prol,
m.cap_prol[stf, sit, prol,
m.process_dict['cap-up'][stf, sit, prol)

Sell Buy Symmetry Rule: The constraint sell buy symmetry rule defines the total process capacity
Kyup Of @ process p in a site v and support timeframe y that uses either sell or buy commodities (
¢ € Ceep V Chuy), therefore this constraint only applies to processes that use sell or buy commodities.
The constraint states that the total process capacities k., of processes that use complementary buy and
sell commodities must be equal. Buy and sell commodities are complementary, when a commodity c is
an output of a process where the buy commodity is an input, and at the same time the commodity c is an
input commodity of a process where the sell commodity is an output. The mathematical explanation of
this rule is given in Trading with an external market.

In script BuySellPrice.py the constraint sell buy symmetry rule is defined and calculated by the
following code fragment:

m.res_sell_buy_symmetry = pyomo.Constraint (
m.pro_input_tuples,
rule=res_sell_buy_symmetry_rule,
doc='total power connection capacity must be symmetric in both '
'directions')

112 Chapter 1. Contents

urbs Documentation, Release 1.0.0

def res_sell_buy_symmetry_rule(m, stf, sit_in, pro_in, coin):
constraint only for sell and buy processes
and the processes must be in the same site
if coin in m.com_buy:
sell_pro = search_sell_buy_tuple(m, stf, sit_in, pro_in, coin)
if sell_pro is None:
return pyomo.Constraint.Skip
else:
return (m.cap_prol[stf, sit_in, pro_in] ==
m.cap_pro[stf, sit_in, sell_prol])
else:
return pyomo.Constraint.Skip

Process time variable output rule: This constraint multiplies the process efficiency with the parameter
time series ;g;,t. The process output for all commodities is thus manipulated depending on time. This
constraint is not valid for environmental commodities since these are typically linked to an input com-
modity flow rather than an output commodity flow. The mathematical explanation of this rule is given

in Advanced Processes.

In script AdvancedProcesses.py the constraint process time variable output rule is defined and
calculated by the following code fragment:

m.def_process_timevar_output = pyomo.Constraint (
m.tm, m.pro_timevar_output_tuples,
rule=def_pro_timevar_output_rule,
doc='e_pro_out = tau_pro % r_out x eff factor')

def def_pro_timevar_output_rule(m, tm, stf, sit, pro, com):
return (m.e_pro_out[tm, stf, sit, pro, com] ==
m.tau_pro[tm, stf, sit, pro] = m.r_out_dict[(stf, pro, com)] =
m.eff_ factor_dict([(sit, pro)]lstf, tm])

Process Constraints for partial operation

The process constraints for partial operation described in the following are only activated if in the input
file there is a value set in the column ratio-min for an input commodity or for an output commodity
in the process-commodity sheet for the process in question.

It is important to understand that this partial load formulation can only work if its accompanied by a
non-zero value for the minimum partial load fraction P, .

Without activating the on/off feature in the process sheet, the partial load feature can only be used for
processes that are never meant to be shut down and are always operating only between a given part load
state and full load. Please see the next chapter for the combined on/off and partial operation features.

Throughput by Min fraction Rule: This constraint limits the minimal operational state of a process
downward, making sure that the minimal part load fraction is honored. The mathematical explanation
of this rule is given in Advanced Processes.

In script AdvancedProcesses.py this constraint is defined and calculated by the following code
fragment:

m.res_throughput_by_capacity_min = pyomo.Constraint (
m.tm, m.pro_partial_tuples,

(continues on next page)

1.3. Technical documentation 113

urbs Documentation, Release 1.0.0

(continued from previous page)

rule=res_throughput_by_capacity_min_rule,
doc='cap_pro x» min-fraction <= tau_pro')

def res_throughput_by_capacity_min_rule(m, tm, stf, sit, pro):
return (m.tau_prol[tm, stf, sit, pro] >=
m.cap_prol[stf, sit, prol] =
m.process_dict['min-fraction'] [(stf, sit, pro)] * m.dt)

Partial Process Input Rule: The link between operational state Zauy.,; and commodity in/outputs
is changed from a simple linear behavior to a more complex one. Instead of constant in- and output
ratios these are now interpolated linearly between the value for full operation r%g“‘ at full load and the
minimum in/output ratios zzn{}g“‘ at the minimum operation point. The mathematical explanation of this
rule is given in Advanced Processes.

In script model.py this expression is written in the following way for the input ratio (and analogous for
the output ratios):

m.def_partial process_input = pyomo.Constraint (
m.tm, m.pro_partial_input_tuples,
rule=def_partial_process_input_rule,
doc='e_pro_in = cap_pro x min_fraction % (r - R)
'+ tau_pro x* (R - min_fraction % r)

(1 — min_fraction)'

/
/

(1 = min_fraction) ")

def def_partial_process_input_rule(m, tm, stf, sit, pro, com):
input ratio at maximum operation point
R = m.r_in_dict[(stf, pro, com)]
input ratio at lowest operation point

r = m.r_in min fraction_dict[stf, pro, com]
min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]
online_factor = min_fraction * (r — R) / (1 - min_fraction)

throughput_factor = (R - min_fraction % r) / (1 - min_fraction)
return (m.e_pro_in[tm, stf, sit, pro, com] ==
m.dt % m.cap_prol[stf, sit, pro] = online_factor +
m.tau_pro[tm, stf, sit, pro] = throughput_factor)

In case of a process where also a time variable output efficiency is given the code for the output changes
to.

m.def_process_partial_ timevar_output = pyomo.Constraint (
m.tm, m.pro_partial_output_tuples & m.pro_timevar_output_tuples,
rule=def_pro_partial_timevar_output_rule,
doc='e_pro_out = tau_pro % r_out x eff_ factor')

def def_pro_partial_timevar_output_rule(m, tm, stf, sit, pro, com):
Iinput ratio at maximum operation point

R = m.r_out_dict[stf, pro, com]

input ratio at lowest operation point

r = m.r_out_min_fraction_dict[stf, pro, com]

min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]
online_factor = min_fraction * (r — R) / (1 - min_fraction)
throughput_factor = (R - min_fraction % r) / (1 - min_fraction)

return (m.e_pro_out[tm, stf, sit, pro, com] ==

(continues on next page)

114 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

(m.dt * m.cap_prol[stf, sit, pro] = online_factor +
m.tau_prol[tm, stf, sit, pro] = throughput_factor) =«
m.eff factor_dict[(sit, pro)][stf, tm])

Process Constraints for the on/off feature

The process constraints for the on/off feature described in this chapter are only activated if, in the input
file, the value ,,1” is set is set in the column on-off for a process in the process sheet.

Process Throughput and On/Off Coupling Rule: These two constraints couple the variables process
throughput 7, and process on/off marker ;. This is done by turning the marker on (boolean value
1) when the throughput is greater than the minimum load of the process.The mathematical explanation
of this rule is given in Advanced Processes.

In script AdvancedProcesses.py this constraint is defined and calculated by the following code
fragment:

m.res_throughput_by_on_off_ lower = pyomo.Constraint (

m.tm, m.pro_on_off_tuples | m.pro_partial_on_off_ tuples,

rule=res_throughput_by_on_off_ lower_rule,

doc='tau_pro >= min-fraction * cap_pro % on_off'")
m.res_throughput_by_on_off_ upper = pyomo.Constraint (

m.tm, m.pro_on_off_ tuples | m.pro_partial on_off_ tuples,

rule=res_throughput_by_on_off_ upper_rule,

doc="'tau_pro <='

'cap_pro * on_off + min-fraction % cap_pro % (1 - on_off)")

def res_throughput_by_on_off lower_rule(m, tm, stf, sit, pro):
return (m.tau_pro[tm, stf, sit, pro] >=
m.min_fraction_dict[stf, sit, pro] » m.cap_pro[stf, sit, prol] =
m.dt * m.on_off[tm, stf, sit, prol)

def res_throughput_by_on_off_upper_rule(m, tm, stf, sit, pro):
return (m.tau_prol[tm, stf, sit, pro] <=
m.cap_pro[stf, sit, pro] * m.dt % m.on_offl[tm, stf, sit, pro] +
m.min_fraction_dict[stf, sit, pro] * m.cap_prol[stf, sit, pro] =
m.dt * (1 - m.on_off[tm, stf, sit, prol))

Process On/Off Output Rule: This constraint modifies the process output commodity flow ey, when

compared to the original version without the on/off feature in two ways by differentiating between the
output commodity type q. When the commodity type is Env, the output remains the same as without
the on/off feature. Otherwise, the original output equation is multiplied with the variable process on/off
marker ;. The mathematical explanation of this rule is given in Advanced Processes.

In script AdvancedProcesses . py the constraint process on/off output rule is defined and calculated
by the following code fragment:

m.def_process_on_off_output = pyomo.Constraint (
m.tm, m.pro_on_off_output_tuples - m.pro_timevar_output_tuples -
m.pro_partial_on_off_ output_tuples,
rule=def_process_on_off_ output_rule,
doc='e_pro_out = tau_pro % r_out * on_off')

1.3. Technical documentation 115

urbs Documentation, Release 1.0.0

def def_process_on_off_ output_rule(m, tm, stf, sit, pro, com):
r = m.r_out_dict[(stf, pro, com)]
if com in m.com_env:
return (m.e_pro_out[tm, stf, sit, pro, com]
m.tau_pro[tm, stf, sit, pro] * r)

else:
return (m.e_pro_out[tm, stf, sit, pro, com] ==
m.tau_prol[tm, stf, sit, pro] » r %« m.on_offl[tm, stf, sit,
—prol)

In the case of a process where also a time variable output efficiency is given the code for the output
changes to:

m.def_process_on_off_ timevar_output = pyomo.Constraint (
m.tm, m.pro_timevar_output_tuples & m.pro_on_off_ output_tuples -
m.pro_partial_on_off_ output_tuples,
rule=def_process_on_off_timevar_output_rule,
doc='e_pro_out == tau_pro x r_out x on_off x eff_ factor"')

def def_process_on_off_ timevar_output_rule(m, tm, stf, sit, pro, com):
return (m.e_pro_out|[tm, stf, sit, pro, com] ==
m.tau_pro[tm, stf, sit, pro] x m.r_out_dict[(stf, pro, com)] =*
m.on_off[tm, stf, sit, pro] =
m.eff_ factor_dict[(sit, pro)][stf, tm])

Process On/Off Partial Input Rule: This constraint modifies the process input commodity flow eg‘vcpt
when compared to the original partial operation version without the on/off feature in by differentiating
between two possible input functions, depending on the process on/off marker y,,;. When the marker is
on, the input function is the same as in the case of simple partial operation. When the marker is off, the
input function becomes the product of the variable process throughput 7,,; and the parameter process
partial input ratio fynpc. the output commodity type q. When the commodity type. The mathematical
explanation of this rule is given in Advanced Processes.

In script AdvancedProcesses. py the constraint process on/off output rule is defined and calculated

by the following code fragment:

m.def_partial_ process_on_off_ input = pyomo.Constraint (
m.tm, m.pro_partial_on_off_ input_tuples,
rule=def_partial_process_on_off_input_rule,
doc='e_pro_in = '
' (cap_pro * min_fraction * (r — R) / (1 - min_fraction)
' + tau_pro * (R - min_fraction % r) / (1 - min_fraction))"')

|l

def def partial_process_on_off_input_rule(m, tm, stf, sit, pro, com):
input ratio at maximum operation point
R =m.r_in dict[(stf, pro, com)]
input ratio at lowest operation point

r = m.r_in_min_fraction_dict[stf, pro, com]
min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]
online factor = min_fraction * (r — R) / (1 - min_fraction)

throughput_factor = (R - min_fraction = r) / (1 - min_fraction)
return (m.e_pro_in[tm, stf, sit, pro, com] ==
(m.dt » m.cap_pro[stf, sit, pro] = online_factor +
m.tau_prol[tm, stf, sit, pro] *» throughput_factor) =«

(continues on next page)

116 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

m.on_offl[tm, stf, sit, pro] +
m.tau_pro[tm, stf, sit, pro] = r =«
(I = m.on_off[tm, stf, sit, prol))

Process On/Off Partial Output Rule: This constraint modifies the process output commodity flow
ez‘jfcpt when compared to the original partial operation version without the on/off feature in two ways
by differentiating between the output commodity type q. When the commodity type is not Env, the
output remains the same as for the partial operation without the on/off feature. Otherwise, the original
output equation is changes depending on the variable process on/off marker y,,;. When the marker is
off, the output function becomes the product of the variable process throughput 7,,; and the parameter
process partial output ratio zggtc. When the marker is on, the output function for Env type commodities
remains the same as for the partial operation without the on/off feature. The mathematical explanation
of this rule is given in Advanced Processes.

m.def_partial_process_on_off_output = pyomo.Constraint (
m.tm, m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
rule=def_partial_process_on_off_ output_rule,

doc="e_pro_out = on_off x'
' (cap_pro * min_fraction » (r - R) / (1 - min_fraction) '
'+ tau_pro * (R — min_fraction * r) / (1 - min_fraction)) ')

def def_partial_process_on_off_output_rule(m, tm, stf, sit, pro, com):
input ratio at maximum operation point
R = m.r_out_dict[stf, pro, com]
input ratio at lowest operation point
r = m.r_out_min_fraction_dict[stf, pro, com]
min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]
on_off = m.on_off[tm, stf, sit, pro]

online_factor = min_fraction * (r - R) / (1 - min_fraction)
throughput_factor = (R - min_fraction % r) / (1 - min_fraction)
if com in m.com_env:
return (m.e_pro_out[tm, stf, sit, pro, com] ==
(m.dt * m.cap_pro[stf, sit, pro] » online_factor +
m.tau_prol[tm, stf, sit, pro] » throughput_factor) * on_off +
m.tau_prol[tm, stf, sit, pro] » r =«
(1 - on_off))
else:
return (m.e_pro_out[tm, stf, sit, pro, com] ==
(m.dt * m.cap_pro[stf, sit, pro] *» online_factor +
m.tau_prol[tm, stf, sit, pro] » throughput_factor) % on_off)

In the case of a process where also a time variable output efficiency is given the code for the output
changes to:

m.def_process_partial_on_off timevar_output = pyomo.Constraint (
m.tm, m.pro_partial_on_off_ output_tuples & m.pro_timevar_output_tuples,
rule=def_pro_partial_on_off_timevar_output_rule,
doc='e_pro_out == tau_pro x r_out x on_off x eff_ factor"')

def def_partial process_on_off_ output_rule(m, tm, stf, sit, pro, com):
input ratio at maximum operation point
R = m.r_out_dict[stf, pro, com]
input ratio at lowest operation point

(continues on next page)

1.3. Technical documentation 117

urbs Documentation, Release 1.0.0

(continued from previous page)

r = m.r_out_min_fraction_dict[stf, pro, com]

min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]
on_off = m.on_off[tm, stf, sit, pro]

online_factor = min_fraction * (r — R) / (1 - min_fraction)
throughput_factor = (R — min_fraction % r) / (1 - min_fraction)

if com in m.com_env:
return(m.e_pro_out[tm, stf, sit, pro, com] ==
(m.dt * m.cap_pro[stf, sit, pro] » online_factor +
m.tau_pro[tm, stf, sit, pro] » throughput_factor) % on_off +
m.tau_prol[tm, stf, sit, pro] » r =«
(1 — on_off))
else:
return (m.e_pro_out[tm, stf, sit, pro, com] ==
(m.dt * m.cap_pro[stf, sit, pro] *» online_factor +
m.tau_prol[tm, stf, sit, pro] » throughput_factor) * on_off)

Process Starting Ramp-up Rule: This constraint replaces the process throughput ramping rule when
the parameter process starting time ST;tS;t is defined in the input process sheet. This is done only until
the variable process throughput 7, reaches the minimum load value and only while increasing the

process throughput 7. The mathematical explanation of this rule is given in Advanced Processes.

In script AdvancedProcesses.py the constraint process starting ramp-up rule is defined and cal-
culated by the following code fragment:

m.res_starting_ rampup = pyomo.Constraint (
m.tm, m.pro_rampup_start_tuples,
rule=res_starting_rampup_rule,
doc='"'throughput may not increase faster than maximal starting ramp up '
'gradient until reaching minimum capacity')

def res_starting_rampup_rule(m, t, stf, sit, pro):
min_fraction = m.min_fraction_dict[stf, sit, pro]
start_time = m.process_dict['start-time'] [(stf, sit, pro)]
starting_ramp =min_fraction / start_time
return (m.tau_prol[t - 1, stf, sit, pro] +
m.cap_prol[stf, sit, pro] =
m.process_dict['ramp-up-grad'] [(
m.on_off[t - 1, stf, sit, pro] +
m.cap_pro[stf, sit, pro] =
starting _ramp * m.dt =
(I = m.on_off[t - 1, stf, sit, prol)
>=

stf, sit, pro)] * m.dt =

m.tau_prol[t, stf, sit, prol)

Process Output Ramping Rule: These constraints act as a limiter for the process output eZ‘;prt with
the on/off feature because the process on/off marker ,,,; can be both on and off in the minimum load
point. There are three possible cases, as follows, defined in the script AdvanceProcesses.py. The

mathematical explanation of this rule is given in Advanced Processes

Case I: The parameter process minimum load fraction P, is greater than the parameter process maxi-

i yup
mum power ramp up gradient PGZ’;p and is divisible with it. It is defined and calculated by the following
code fragment:

118 Chapter 1. Contents

urbs Documentation, Release 1.0.0

m.res_output_minfraction_rampup = pyomo.Constraint (
m.tm, m.pro_rampup_divides_minfraction_output_tuples -
m.pro_partial on_off_ output_tuples - m.pro_timevar_output_tuples,
rule=res_output_minfraction_rampup_rule,
doc="'Output may not increase faster than the minimal working capacity')

def res_output_minfraction_rampup_rule(m, tm, stf, sit, pro, com):
if tm !'= m.timesteps[1l]:
return (m.e_pro_out[tm - 1, stf, sit, pro, com] +

m.cap_pro[stf, sit, pro] % m.dt =
m.process_dict['min-fraction'] [(stf, sit, pro)] =
m.r_out_dict[(stf, pro, com)] >=

m

.e_pro_out[tm, stf, sit, pro, com])
else:
return pyomo.Constraint.Skip

If the process has partial operation, the code changes to:

m.res_partial output_minfraction_rampup = pyomo.Constraint (
m.tm, m.pro_rampup_divides_minfraction_output_tuples &
m.pro_partial_on_off_ output_tuples - m.pro_timevar_output_tuples,
rule=res_partial_output_minfraction_rampup_rule,
doc="'Output may not increase faster than the minimal working capacity')

def res_partial_ output_minfraction_rampup_rule(m, tm, stf, sit, pro, com):
if tm != m.timesteps([1l]:
return (m.e_pro_out[tm - 1, stf, sit, pro, com] +

m.cap_pro[stf, sit, pro] = m.dt =
m.process_dict['min-fraction'] [(stf, sit, pro)] =
m.r_out_min_fraction_dict[(stf, pro, com)] >=

m

.e_pro_out[tm, stf, sit, pro, com])
else:
return pyomo.Constraint.Skip

If the process has time variable efficiency, the code changes to:

m.res_timevar_output_minfraction_rampup = pyomo.Constraint (
m.tm, m.pro_rampup_divides_minfraction_output_tuples &
m.pro_timevar_output_tuples - m.pro_partial_on_off_ output_tuples,
rule=res_timevar_output_minfraction_rampup_rule,
doc="'Output may not increase faster than the minimal working capacity')

def res_timevar_ output_minfraction_rampup_rule(m, tm, stf, sit, pro, com):
if tm !'= m.timesteps[1l]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
.cap_prol[stf, sit, pro] * m.dt =
.process_dict['min-fraction'] [(stf, sit, pro)] =
.r_out_dict[(stf, pro, com)] =*
.eff factor_dict[(sit, pro)][stf, tm] >=
.e_pro_out[tm, stf, sit, pro, com])

33 3 8 3

else:
return pyomo.Constraint.Skip

If the process has both partial operation and time variable efficiency, the code changes to:

1.3. Technical documentation 119

urbs Documentation, Release 1.0.0

m.res_partial_timevar_output_minfraction_rampup = pyomo.Constraint (
m.tm, m.pro_rampup_divides_minfraction_output_tuples &
m.pro_partial on_off_ output_tuples & m.pro_timevar_output_tuples,
rule=res_partial_timevar_output_minfraction_rampup_rule,
doc="'Output may not increase faster than the minimal working capacity')

def res_partial_timevar_output_minfraction_rampup_rule(m, tm, stf, sit,
—pro, com):
if tm != m.timesteps([1l]:
return (m.e_pro_out[tm - 1, stf, sit, pro, com] +

.cap_pro[stf, sit, pro] x m.dt =
.process_dict['min-fraction'] [(stf, sit, pro)] =
.r_out_min_fraction_dict[(stf, pro, com)] =*

.eff_factor_dict[(sit, pro)]l[stf, tm] >=
.e_pro_out[tm, stf, sit, pro, com])

32353 3 3 3

else:
return pyomo.Constraint.Skip

Case II: The parameter process minimum load fraction P, , is greater than the parameter process max-
imum power ramp up gradient PG;ZP, but is not divisible with it. It is defined and calculated by the

following code fragment:

m.res_output_minfraction_rampup_rampup = pyomo.Constraint (
m.tm, m.pro_rampup_not_divides_minfraction_output_tuples -
m.pro_partial on_off_ output_tuples - m.pro_timevar_output_tuples,
rule=res_output_minfraction_rampup_rampup_rule,
doc='Output may not increase faster than the first multiple of the'
'ramping up gradient greater than the minimal working capacity')

def res_output_minfraction_rampup_rampup_rule(m, tm, stf, sit, pro, com):

ramp_up = m.process_dict['ramp-up-grad'][(stf, sit, pro)]

min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]
first_output_value = (math.floor (min_fraction / ramp_up) + 1) % ramp_up
if tm != m.timesteps([1l]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] * m.dt =*
first_output_value =
m.r_out_dict[(stf, pro, com)] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:

return pyomo.Constraint.Skip

If the process has partial operation, the code changes to:

m.res_partial_output_minfraction_rampup_rampup = pyomo.Constraint (
m.tm, m.pro_rampup_not_divides_minfraction_output_tuples &
m.pro_partial on_off_ output_tuples - m.pro_timevar_output_tuples,
rule=res_partial_output_minfraction_rampup_rampup_rule,
doc='Output may not increase faster than the first multiple of the'
'ramping up gradient greater than the minimal working capacity')

def res_partial_ output_minfraction_rampup_rampup_rule(m, tm, stf, sit, pro,
< com) :
ramp_up = m.process_dict['ramp-up-grad'][(stf, sit, pro)]

(continues on next page)

120 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]
first_output_value = (math.floor (min_fraction / ramp_up) + 1) * ramp_up
if tm != m.timesteps([1l]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] % m.dt =
first_output_value =
m.r_out_min_fraction_dict[(stf, pro, com)] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:
return pyomo.Constraint.Skip

If the process has time variable efficiency, the code changes to:

m.res_timevar output_minfraction_rampup_rampup = pyomo.Constraint (
m.tm, m.pro_rampup_not_divides_minfraction_output_tuples &
m.pro_timevar_output_tuples - m.pro_partial_on_off_ output_tuples,
rule=res_timevar_output_minfraction_rampup_rampup_rule,
doc="'Output may not increase faster than the first multiple of the'
'ramping up gradient greater than the minimal working capacity')

def res_timevar_output_minfraction_rampup_rampup_rule(m, tm, stf, sit, pro,
< com) :

ramp_up = m.process_dict['ramp-up-grad'][(stf, sit, pro)]

min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]
first_output_value = (math.floor (min_fraction / ramp_up) + 1) % ramp_up
if tm != m.timesteps([1l]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] x m.dt =
first_output_value =
m.r_out_dict[(stf, pro, com)] =
m.eff factor_dict[(sit, pro)]l[stf, tm] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:

return pyomo.Constraint.Skip

If the process has both partial operation and time variable efficiency, the code changes to:

m.res_partial_timevar_output_minfraction_rampup_rampup = pyomo.Constraint (
m.tm, m.pro_rampup_not_divides_minfraction_output_tuples &
m.pro_partial on_off_ output_tuples & m.pro_timevar_output_tuples,
rule=res_partial_timevar_output_minfraction_rampup_rampup_rule,
doc="'Output may not increase faster than the first multiple of the'
'ramping up gradient greater than the minimal working capacity')

def res_partial_timevar_output_minfraction_rampup_rampup_rule(m, tm, stf,
—sit, pro, com):

ramp_up = m.process_dict['ramp-up-grad'][(stf, sit, pro)]

min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]
first_output_value = (math.floor (min_fraction / ramp_up) + 1) * ramp_up
if tm != m.timesteps([1]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] % m.dt =

(continues on next page)

1.3. Technical documentation 121

urbs Documentation, Release 1.0.0

(continued from previous page)

first_output_value =«
m.r_out_min_fraction_dict[(stf, pro, com)] =
m.eff factor_dict[(sit, pro)][stf, tm] >=
m.e_pro_out[tm, stf, sit, pro, com])
else:
return pyomo.Constraint.Skip

Case III: The parameter process minimum load fraction P, is smaller than the parameter process

yup
. . —=~up . . .
maximum power ramp up gradient PG,,,. It is defined and calculated by the following code fragment:

m.res_output_rampup = pyomo.Constraint (
m.tm, m.pro_rampup_bigger_minfraction_output_tuples -
m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
rule=res_output_rampup_rule,
doc="'Output may not increase faster than the ramping up gradient')

def res_output_rampup_rule(m, tm, stf, sit, pro, com):

if tm != m.timesteps([1l]:
return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] x m.dt =
m.process_dict['ramp-up-grad'][(stf, sit, pro)] =
m.r_out_dict[(stf, pro, com)] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:
return pyomo.Constraint.Skip

If the process has partial operation, the code changes to:

m.res_partial_output_rampup = pyomo.Constraint (
m.tm, m.pro_rampup_bigger_minfraction_output_tuples &«
m.pro_partial_on_off_output_tuples - m.pro_timevar_ output_tuples,
rule=res_partial_output_rampup_rule,
doc='Output may not increase faster than the ramping up gradient')

def res_partial_output_rampup_rule(m, tm, stf, sit, pro, com):

if tm !'= m.timesteps[1l]:
return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] % m.dt =
m.process_dict['ramp-up-grad'][(stf, sit, pro)] =
m.r_out_min_fraction_dict[(stf, pro, com)] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:
return pyomo.Constraint.Skip

If the process has time variable efficiency, the code changes to:

m.res_timevar_ output_rampup = pyomo.Constraint (
m.tm, m.pro_rampup_bigger_minfraction_output_tuples &
m.pro_timevar_output_tuples - m.pro_partial_on_off_ output_tuples,
rule=res_timevar_output_rampup_rule,
doc='"'Output may not increase faster than the ramping up gradient')

def res_timevar_output_rampup_rule(m, tm, stf, sit, pro, com):
if tm != m.timesteps([1l]:

(continues on next page)

122 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
.cap_prol[stf, sit, pro] * m.dt =«
.process_dict['ramp-up-grad'][(stf, sit, pro)] =
.r_out_dict [(stf, pro, com)] =*
.eff_factor_dict[(sit, pro)][stf, tm] >=
.e_pro_out[tm, stf, sit, pro, com])

33 3 3 3

else:
return pyomo.Constraint.Skip

If the process has both partial operation and time variable efficiency, the code changes to:

m.res_partial_timevar_output_rampup = pyomo.Constraint (
m.tm, m.pro_rampup_bigger_minfraction_output_tuples &«
m.pro_partial_on_off_output_tuples & m.pro_timevar_ output_tuples,
rule=res_partial_timevar_output_rampup_rule,
doc='Output may not increase faster than the ramping up gradient')

def res_partial_timevar_output_rampup_rule(m, tm, stf, sit, pro, com):
if tm !'= m.timesteps[1l]:
return (m.e_pro_out[tm - 1, stf, sit, pro, com] +

.cap_prol[stf, sit, pro] * m.dt =
.process_dict['ramp-up-grad'] [(stf, sit, pro)] =
.r_out_min_fraction_dict[(stf, pro, com)] =

.eff factor_dict[(sit, pro)][stf, tm] >=
.e_pro_out[tm, stf, sit, pro, com])

33 3 8 3

else:
return pyomo.Constraint.Skip

Process Start-Up Rule: The constraint process start-up rule marks in the variable process start marker
oyupt Whether a process p started in timestep ¢ or not. The mathematical explanation of this rule is given
in Advanced Processes.

In script AdvancedProcesses . py the constraint process start ups rule is defined and calculated by
the following code fragment:

m.res_start_up = pyomo.Constraint (
m.tm, m.pro_start_up_tuples,
rule=res_start_ups_rule,
doc='start >= on_off(t) - on_off(t-1)")

def res_start_up_rule(m, t, stf, sit, pro):
return (m.start_upl[t, stf, sit, pro] >= m.on_off[t, stf, sit, pro] -
m.on_off[t - 1, stf, sit,
—prol)

Transmission Constraints

Transmission Capacity Rule: The constraint transmission capacity rule defines the variable total trans-
mission capacity k. ¢. The variable total transmission capacity is defined by the constraint as the sum
of the variable transmission capacity installed K, and the variable new transmission capacity Ayq .
The mathematical explanation of this rule is given in Multinode optimization model.

In script t ransmission. py the constraint transmission capacity rule is defined and calculated by the

1.3. Technical documentation 123

urbs Documentation, Release 1.0.0

following code fragment:

m.def_transmission_capacity = pyomo.Constraint (
m.tra_tuples,
rule=def_transmission_capacity_rule,
doc='total transmission capacity = inst-cap + new capacity')

def def_transmission_capacity_rule(m, stf, sin, sout, tra, com):
if m.mode['int']:
if (sin, sout, tra, com, stf) in m.inst_tra_tuples:
if (min(m.stf), sin, sout, tra, com) in m.tra_const_cap_dict:
cap_tra = m.transmission_dict['inst-cap'] I
(min(m.stf), sin, sout, tra, com)]

else:
cap_tra = (
sum(m.cap_tra_new([stf_built, sin, sout, tra, com]
for stf_built in m.stf
if (sin, sout, tra, com, stf built, stf) in
m.operational_ tra_tuples) +
m.transmission_dict['inst-cap']
[(min(m.stf), sin, sout, tra, com)])
else:
cap_tra = (

sum(m.cap_tra_new[stf_built, sin, sout, tra, com]
for stf_built in m.stf
if (sin, sout, tra, com, stf built, stf) in
m.operational_tra_tuples))
else:
if (stf, sin, sout, tra, com) in m.tra_const_cap_dict:
cap_tra = \
m.transmission_dict['inst-cap'][(stf, sin, sout, tra, com)]
else:
cap_tra = (m.cap_tra_new[stf, sin, sout, tra, com] +
m.transmission_dict['inst-cap'] |
(stf, sin, sout, tra, com)])

return cap_tra

Transmission New Capacity Rule: The constraint transmission new capacity rule defines the variable
new trasmission capacity &, s. This variable is defined by the constraint as the product of the parameter
transmission new capacity block KL’LOCI‘ and the variable new transmission capacity units (3,,7. The
mathematical explanation of this rule is given in Multinode optimization model.

In script transmission.py the constraint transmission output rule is defined and calculated by the
following code fragment:

m.def_cap_tra_new = pyomo.Constraint (
m.tra_block_tuples,
rule=def_cap_tra_new_rule,
doc="'cap_tra_new = tra-block % cap_tra_new')

def def_cap_tra_new_rule(m, stf, sin, sout, tra, com):

return (m.cap_tra_new([stf, sin, sout, tra, com] ==

m.tra_cap_unit[stf, sin, sout, tra, com] =
m.transmission_dict['tra-block'][(stf, sin, sout, tra, com)])

Transmission Output Rule: The constraint transmission output rule defines the variable transmission

124 Chapter 1. Contents

urbs Documentation, Release 1.0.0

output commodity flow W;l;tft. The variable transmission output commodity flow is defined by the con-
straint as the product of the variable transmission input commodity flow 7T;/na ft and the parameter trans-
mission efficiency ey, . The mathematical explanation of this rule is given in Multinode optimization

model.

In script transmission.py the constraint transmission output rule is defined and calculated by the
following code fragment:

m.def_transmission_output = pyomo.Constraint (
m.tm, m.tra_tuples,
rule=def_transmission_output_rule,
doc='transmission output = transmission input * efficiency')

def def_transmission_output_rule(m, tm, stf, sin, sout, tra, com):
return (m.e_tra_out[tm, stf, sin, sout, tra, com] ==
m.e_tra_in[tm, stf, sin, sout, tra, com] =
m.transmission_dict['eff'] [(stf, sin, sout, tra, com)])

Transmission Input By Capacity Rule: The constraint transmission input by capacity rule limits the
variable transmission input commodity flow w;na ¢~ This constraint prevents the transmission power
from exceeding the possible power input capacity of the line. The constraint states that the variable
transmission input commodity flow W;“a ¢ Must be less than or equal to the variable total transmission
capacity ryqf, scaled by the size of the time steps :math: Delta t. The mathematical explanation of this

rule is given in Multinode optimization model.

In script transmission.py the constraint transmission input by capacity rule is defined and calcu-
lated by the following code fragment:

m.res_transmission_input_by_capacity = pyomo.Constraint (
m.tm, m.tra_tuples,
rule=res_transmission_input_by_capacity_rule,
doc='transmission input <= total transmission capacity')

def res_transmission_input_by_capacity_rule(m, tm, stf, sin, sout, tra,_
—com) :
return (m.e_tra_in[tm, stf, sin, sout, tra, com] <=
m.dt % m.cap_tralstf, sin, sout, tra, com])

Transmission Capacity Limit Rule: The constraint transmission capacity limit rule limits the variable
total transmission capacity kyqs. This constraint restricts a transmission f through an arc a in support
timeframe y from having more total power output capacity than an upper bound and having less than
a lower bound. The constraint states that the variable total transmission capacity k. must be greater
than or equal to the parameter transmission capacity lower bound K, and less than or equal to the
parameter transmission capacity upper bound Fya - The mathematical explanation of this rule is given
in Multinode optimization model.

In script transmission. py the constraint transmission capacity limit rule is defined and calculated
by the following code fragment:

m.res_transmission_capacity = pyomo.Constraint (
m.tra_tuples,
rule=res_transmission_capacity_rule,
doc='transmission.cap-lo <= total transmission capacity <= '
'transmission.cap-up')

1.3. Technical documentation 125

urbs Documentation, Release 1.0.0

def res_transmission_capacity_rule(m, stf, sin, sout, tra, com):

return (m.transmission_dict['cap-lo']l[(stf, sin, sout, tra, com)],
m.cap_tral[stf, sin, sout, tra, com],
m.transmission_dict['cap-up'][(stf, sin, sout, tra, com)])

Transmission Symmetry Rule: The constraint transmission symmetry rule defines the power capacities
of incoming and outgoing arcs a, a’ of a transmission f in support timeframe y. The constraint states
that the power capacities ¢ of the incoming arc a and the complementary outgoing arc a’ between two
sites must be equal. The mathematical explanation of this rule is given in Multinode optimization model.

In script transmission.py the constraint transmission symmetry rule is defined and calculated by
the following code fragment:

m.res_transmission_symmetry = pyomo.Constraint (
m.tra_tuples,
rule=res_transmission_symmetry_rule,
doc='"'total transmission capacity must be symmetric in both directions')

def res_transmission_symmetry_rule(m, stf, sin, sout, tra, com):
return m.cap_tral[stf, sin, sout, tra, com] == (m.cap_tra
[stf, sout, sin, tra,
—com])

DCPF Transmission Constraints

The following constraints are included in the model if the optional DC Power Flow feature is activated.

DC Power Flow Rule: The constraint DC Power Flow rule defines the power flow of transmission
lines, which are modelled with DCPE. This constraint states that the power flow on a transmission
line is equal to the product of voltage angle differences of two connecting sites voy: and vy, and the
admittance of the transmission line. This constraint is only applied to the transmission lines modelled
with DCPF. The mathematical explanation of this rule is given in Multinode optimization model. In script
transmission.py the constraint DC Power Flow Rule is defined and calculated by the following
code fragment:

m.def_dc_power_flow = pyomo.Constraint (
m.tm, m.tra_tuples_dc,
rule=def_dc_power_flow_rule,
doc='transmission output = (angle (in)-angle(out))/ 57.2958 '
'x -1 *(-1/reactance) * (base voltage)”2"')

def def_dc_power_flow_rule(m, tm, stf, sin, sout, tra, com):
return (m.e_tra_in[tm, stf, sin, sout, tra, com] ==

(m.voltage_angle[tm, stf, sin] - m.voltage_angle[tm, stf,
—sout]) / 57.2958 x -1 «

(-1 / m.transmission_dict|['reactance'][(stf, sin, sout, tra,_
—com)])

* m.transmission_dict['base_voltage'][(stf, sin, sout, tra,_
—com)]

*» m.transmission_dict['base_voltage'][(stf, sin, sout, tra,_
—com)])

DCPF Transmission Input By Capacity Rule: The constraint DCPF transmission input by capacity
rule expands the constraint transmission input by capacity rule for transmission lines modelled with

126 Chapter 1. Contents

urbs Documentation, Release 1.0.0

DCPF. This constraint limits the variable transmission input commodity flow ﬂ;“a ft of DCPF transmis-
sion lines also with a lower bound. This constraint prevents the absolute value of the transmission power
from exceeding the possible power input capacity of the line especially when the transmission power
can be negative. The constraint states that the additive inverse of variable transmission input commodity
flow —W;“a ¢ Must be less than or equal to the variable total transmission capacity .y, scaled by the
size of the time steps :math: Delfa t. This constraint is only applied to the tranmission lines modelled
with DCPF. The mathematical explanation of this rule is given in Multinode optimization model.

In script transmission.py the constraint transmission input by capacity rule is defined and calcu-
lated by the following code fragment:

m.res_transmission_dc_input_by_capacity = pyomo.Constraint (
m.tm, m.tra_tuples_dc,
rule=res_transmission_dc_input_by_capacity_rule,
doc="'-dcpf transmission input <= total transmission capacity')

def res_transmission_dc_input_by_capacity_rule(m, tm, stf, sin, sout, tra,_
—com) :
return (- m.e_tra_in[tm, stf, sin, sout, tra, com] <=
m.dt % m.cap_tralstf, sin, sout, tra, com])

Voltage Angle Limit Rule: The constraint voltage angle limit rule limits the maximum and minimum
difference of voltage angles 0y, of two sites voy and vi, connected with a DCPF transmission line with
the parameter voltage angle difference limit aya ¢- This constraint is only applied to the transmission
lines modelled with DCPF. The mathematical explanation of this rule is given in Multinode optimization
model. In script t ransmission. py the constraint voltage angle limit rule is defined and given by the
following code fragment:

m.def_angle_limit = pyomo.Constraint (
m.tm, m.tra_tuples_dc,
rule=def_angle_limit_rule,
doc='-angle limit < angle(in) - angle(out) < angle limit')

def def_angle_limit_rule(m, tm, stf, sin, sout, tra, com):
return (- m.transmission_dict['difflimit'][(stf, sin, sout, tra, com)],
(m.voltage_angle[tm, stf, sin] - m.voltage_angle[tm, stf,
—sout]),
m.transmission_dict['difflimit'] [(stf, sin, sout, tra, com)])

Absolute Transmission Flow Constraints: The two absolute transmission flow constraints are included
in the model to create the variable absolute value of transmission commodity flow w;na ft/‘ By limiting
the negative —W;“a ft/ and positive W;“a ft/ of substitute variable “’e_tra_abs” with the variable wzi/“a ¢ and
minimizing the substitute value 771;:1 ft/ the absolute value of transmission commodity flow is retrieved.
These constraints are only applied to the transmission lines modelled with DCPF. The mathematical
explanation of these rules are given in Multinode optimization model. In script transmission.py
the constraint Absolute Transmission Flow Constraints are defined and given by the following code
fragment:

m.e_tra_absl = pyomo.Constraint (

m.tm, m.tra_tuples_dc,

rule=e_tra_abs_rulel,

doc='transmission dc input <= absolute transmission dc input')
m.e_tra_abs2 = pyomo.Constraint (

(continues on next page)

1.3. Technical documentation 127

urbs Documentation, Release 1.0.0

(continued from previous page)

m.tm, m.tra_tuples_dc,
rule=e_tra_abs_rule2,
doc='-transmission dc input <= absolute transmission dc input')

def e_tra_abs_rulel (m, tm, stf, sin, sout, tra, com):
return (m.e_tra_in[tm, stf, sin, sout, tra, com] <=
m.e_tra_abs[tm, stf, sin, sout, tra, com])

def e_tra_abs_rule2(m, tm, stf, sin, sout, tra, com):
return (-m.e_tra_in[tm, stf, sin, sout, tra, com] <=
m.e_tra_abs[tm, stf, sin, sout, tra, com])

Transmission Symmetry Rule: The above mentioned constraint transmission symmetry rule is only
applied to the transmission lines modelled with transport model if the DCPF is activated. Since
the DCPF transmission lines do not include the complementary arcs, this constraint is ignored for
these transmission lines. For this reason, the constraint is indexed with the transmission tuple set m.
tra_tuples_tp if the DCPF is activated.

In script transmission.py the constraint transmission symmetry rule is defined as following if the
DCPF is activated:

m.res_transmission_symmetry = pyomo.Constraint (
m.tra_tuples_tp,
rule=res_transmission_symmetry_rule,
doc="'total transmission capacity must be symmetric in both directions')

Storage Constraints

Storage State Rule: The constraint storage state rule is the main storage constraint and it defines the
storage energy content of a storage s in a site v in support timeframe y at a timestep ¢. This constraint
calculates the storage energy content at a timestep ¢ by adding or subtracting differences, such as ingoing
and outgoing energy, to/from a storage energy content at a previous timestep ¢ — 1 multiplied by 1 minus
the self-discharge rate d,s (which is scaled exponentially with the timestep size d¢). Here ingoing en-
ergy is given by the product of the variable storage input commodity flow Ei;v <« and the parameter storage
efficiency during charge eg‘vs. Outgoing energy is given by the variable storage output commodity flow
62‘1’]{9,5 divided by the parameter storage efficiency during discharge e‘y";ts. The mathematical explanation
of this rule is given in Energy Storage.

In script storage . py the constraint storage state rule is defined and calculated by the following code
fragment:

m.def_storage_state = pyomo.Constraint (

m.tm, m.sto_tuples,

rule=def_storage_state_rule,

doc='storage[t] = (1 - selfdischarge) x storage[t-1] + input * eff_in -
— output / eff_out')

def def_storage_state_rule(m, t, stf, sit, sto, com):
return (m.e_sto_con[t, stf, sit, sto, com] ==
m.e_sto_con[t - 1, stf, sit, sto, com] =
(1 — m.storage_dict['discharge']

(continues on next page)

128 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

[(stf, sit, sto, com)]) =+ m.dt.value +
m.e_sto_in[t, stf, sit, sto, com] =
m.storage_dict['eff-in'][(stf, sit, sto, com)] -
m.e_sto_out[t, stf, sit, sto, com] /
m.storage_dict['eff-out'][(stf, sit, sto, com)])

Storage Power Rule: The constraint storage power rule defines the variable total storage power fys.
The variable total storage power is defined by the constraint as the sum of the parameter storage power
installed K}jvs and the variable new storage power f%gvs. The mathematical explanation of this rule is
given in Energy Storage.

In script storage . py the constraint storage power rule is defined and calculated by the following code
fragment:

m.def_storage_power = pyomo.Constraint (
m.sto_tuples,
rule=def_storage_power_rule,
doc='storage power = inst-cap + new power')

def def_storage_power_rule(m, stf, sit, sto, com):
if m.mode['int']:
if (sit, sto, com, stf) in m.inst_sto_tuples:
if (min(m.stf), sit, sto, com) in m.sto_const_cap_p_dict:
cap_sto_p = m.storage_dict['inst-cap-p']I[
(min(m.stf), sit, sto, com)]
else:
cap_sto_p = (
sum(m.cap_sto_p_new[stf_built, sit, sto, com]
for stf_built in m.stf
if (sit, sto, com, stf_built, stf) in
m.operational_sto_tuples) +
m.storage_dict['inst-cap-p'][(min(m.stf), sit, sto,
—com)])
else:
cap_sto_p = (
sum(m.cap_sto_p_new[stf_built, sit, sto, com]
for stf_built in m.stf
if (sit, sto, com, stf_built, stf)
in m.operational_sto_tuples))
else:
if (stf, sit, sto, com) in m.sto_const_cap_p_dict:
cap_sto_p = m.storage_dict['inst-cap-p']l[(stf, sit, sto, com)]
else:
cap_sto_p

(m.cap_sto_p_new[stf, sit, sto, com] +
m.storage_dict['inst-cap-p'][(stf, sit, sto,
—com)])

return cap_sto_p

Storage Capacity Rule: The constraint storage capacity rule defines the variable total storage size Ky,

The variable total storage size is defined by the constraint as the sum of the parameter storage content
installed K7, and the variable new storage size #;,,,. The mathematical explanation of this rule is given
in Energy Storage.

In script storage . py the constraint storage capacity rule is defined and calculated by the following
code fragment:

1.3. Technical documentation 129

urbs Documentation, Release 1.0.0

m.def_storage_capacity = pyomo.Constraint (
m.sto_tuples,
rule=def_storage_capacity_rule,
doc='storage capacity = inst-cap + new capacity')

def def_storage_capacity_rule(m, stf, sit, sto, com):
if m.mode['int']:
if (sit, sto, com, stf) in m.inst_sto_tuples:
if (min(m.stf), sit, sto, com) in m.sto_const_cap_c_dict:
cap_sto_c = m.storage_dict['inst-cap-c']|[
(min(m.stf), sit, sto, com)]
else:
cap_sto_c = (
sum(m.cap_sto_c_new[stf_built, sit, sto, com]
for stf_built in m.stf
if (sit, sto, com, stf_built, stf) in
m.operational_ sto_tuples) +
m.storage_dict['inst-cap-c'][(min(m.stf), sit, sto,_
—com)])
else:
cap_sto_c = (
sum(m.cap_sto_c_new[stf_built, sit, sto, com]
for stf_built in m.stf
if (sit, sto, com, stf_built, stf) in
m.operational_sto_tuples))
else:
if (stf, sit, sto, com) in m.sto_const_cap_c_dict:
cap_sto_c = m.storage_dict['inst-cap-c'][(stf, sit, sto, com)]
else:
cap_sto_c = (m.cap_sto_c_new[stf, sit, sto, com] +
m.storage_dict['inst-cap-c'][(stf, sit, sto,_
—com)])

return cap_sto_c

Storage New Capacity Rule: The constraint storage new capacity rule defines the newly installed
capacity of a storage Ay,s. This variable is defined by the constraint as the product of the variable
new storage size units 3y, and the parameter storage new capacity block K;;?sl“k. The mathematical

explanation of this rule is given in Energy Storage.

In script storage. py the constraint storage capacity rule is defined and calculated by the following
code fragment:

m.def_new_cap_sto_c = pyomo.Constraint (
m.sto_block_c_tuples,
rule=def_new_cap_sto_c_rule,
doc='cap_sto_c_new = cap_sto_c_unit * c-block")

def def_new_cap_sto_c_rule(m, stf, sit, sto, com):
return (m.cap_sto_c_new[stf, sit, sto, com] ==
m.sto_cap_c_unit[stf, sit, sto, com] =*
m.sto_block_c_dict([stf, sit, sto, com])

Storage New Power Rule: The constraint storage new power rule defines the newly installed power of

a storage Alys. This variable is defined by the constraint as the product of the variable new power size

units 3}, and the parameter storage new power block KE;PSIOCk. The mathematical explanation of this

130 Chapter 1. Contents

urbs Documentation, Release 1.0.0

rule is given in Energy Storage.

In script storage. py the constraint storage capacity rule is defined and calculated by the following
code fragment:

m.def_new_cap_sto_p = pyomo.Constraint (
m.sto_block_p_tuples,
rule=def_new_cap_sto_p_rule,
doc='"'cap_sto_p_new = cap_sto_p_unit % p-block")

def def_new_cap_sto_p_rule(m, stf, sit, sto, com):
return (m.cap_sto_p_new[stf, sit, sto, com] ==
m.sto_cap_p_unit[stf, sit, sto, com] =
m.sto_block_p_dict[stf, sit, sto, com])

Storage Input By Power Rule: The constraint storage input by power rule limits the variable storage
input commodity flow eiy“vst. This constraint restricts a storage s in a site v and support timeframe y at a
timestep ¢ from having more input power than the storage power capacity. The constraint states that the
variable ef;vst must be less than or equal to the variable total storage power kb5, scaled by the size of

the time steps :math: Delta t. The mathematical explanation of this rule is given in Energy Storage.

In script storage.py the constraint storage input by power rule is defined and calculated by the
following code fragment:

m.res_storage_input_by_power = pyomo.Constraint (
m.tm, m.sto_tuples,
rule=res_storage_input_by_power_rule,
doc='storage input <= storage power')

def res_storage_input_by_power_rule(m, t, stf, sit, sto, com):
return (m.e_sto_in[t, stf, sit, sto, com] <= m.dt =
m.cap_sto_p[stf, sit, sto, com])

Storage Output By Power Rule: The constraint storage output by power rule limits the variable storage
output commodity flow GZ%E%. This constraint restricts a storage s in a site v and support timeframe y at
a timestep ¢ from having more output power than the storage power capacity. The constraint states that
the variable €"% must be less than or equal to the variable total storage power s, scaled by the size of

the time steps At. The mathematical explanation of this rule is given in Energy Storage.

In script storage.py the constraint storage output by power rule is defined and calculated by the
following code fragment:

m.res_storage_output_by_power = pyomo.Constraint (
m.tm, m.sto_tuples,
rule=res_storage_output_by_power_rule,
doc="'storage output <= storage power')

def res_storage_output_by_power_rule(m, t, stf, sit, sto, co):
return (m.e_sto_out[t, stf, sit, sto, co] <= m.dt =
m.cap_sto_pl[stf, sit, sto, col)

Storage State By Capacity Rule: The constraint storage state by capacity rule limits the variable storage

energy content €)%, This constraint restricts a storage s in a site v and support timeframe y at a

timestep ¢ from having more storage content than the storage content capacity. The constraint states that
the variable e, must be less than or equal to the variable total storage size ry, . The mathematical

explanation of this rule is given in Energy Storage.

1.3. Technical documentation 131

urbs Documentation, Release 1.0.0

In script storage.py the constraint storage state by capacity rule is defined and calculated by the
following code fragment.

m.res_storage_state_by_capacity = pyomo.Constraint (
m.t, m.sto_tuples,
rule=res_storage_state_by_capacity_rule,
doc='storage content <= storage capacity')

def res_storage_state_by_capacity_rule(m, t, stf, sit, sto, com):
return (m.e_sto_con[t, stf, sit, sto, com] <=
m.cap_sto_c[stf, sit, sto, com])

Storage Power Limit Rule: The constraint storage power limit rule limits the variable total storage
power kY. This contraint restricts a storage s in a site v and support timeframe y from having more
total power output capacity than an upper bound and having less than a lower bound. The constraint
states that the variable total storage power r},s must be greater than or equal to the parameter storage
power lower bound K7, ; and less than or equal to the parameter storage power upper bound FSUS. The
mathematical explanation of this rule is given in Energy Storage.

In script storage . py the constraint storage power limit rule is defined and calculated by the following
code fragment:

m.res_storage_power = pyomo.Constraint (
m.sto_tuples,
rule=res_storage_power_rule,
doc="'storage.cap-lo-p <= storage power <= storage.cap-up-p')

def res_storage_power_rule(m, stf, sit, sto, com):

return (m.storage_dict['cap-lo-p'][(stf, sit, sto, com)],
m.cap_sto_pl[stf, sit, sto, com],
m.storage_dict['cap-up-p']I[(stf, sit, sto, com)])

Storage Capacity Limit Rule: The constraint storage capacity limit rule limits the variable total storage

size Ky,,s. This constraint restricts a storage s in a site v and support timeframe y from having more total

storage content capacity than an upper bound and having less than a lower bound. The constraint states

that the variable total storage size r;,,, must be greater than or equal to the parameter storage content

lower bound K7, and less than or equal to the parameter storage content upper bound fzvs. The

mathematical explanation of this rule is given in Energy Storage.

In script storage.py the constraint storage capacity limit rule is defined and calculated by the fol-
lowing code fragment:

m.res_storage_capacity = pyomo.Constraint (
m.sto_tuples,
rule=res_storage_capacity_rule,
doc='storage.cap-lo-c <= storage capacity <= storage.cap-up-c')

def res_storage_capacity_rule(m, stf, sit, sto, com):
return (m.storage_dict['cap-lo-c'][(stf, sit, sto, com)],
m.cap_sto_c[stf, sit, sto, com],
m.storage_dict['cap-up-c'][(stf, sit, sto, com)])

Initial And Final Storage State Rule: The constraint initial and final storage state rule defines and

restricts the variable storage energy content €5, of a storage s in a site v and support timeframe y at the

initial timestep ¢; and at the final timestep ¢y. There are two distinct cases:

132 Chapter 1. Contents

urbs Documentation, Release 1.0.0

1. The initial and final storage states are specified by a value of the parameter I, between 0 and 1. 2.
1,45 1s not specified (e.g. by setting it “#NV’ in the input sheet). In this case the initial and final storage
state are still equal but variable.

In case 1 the constraints are written in the following way:

Initial storage state: Initial storage represents the storage state in a storage at the beginning of the simula-
tion. The variable storage energy content €7, at the initial timestep ¢; is defined by this constraint. The
constraint states that the variable €;3; must be equal to the product of the parameters storage content

installed K7y, and initial and final state of charge Iyys.

Final storage state: Final storage represents the storage state in a storage at the end of the simulation.
The variable storage energy content €, at the final timestep ¢ is restricted by this constraint. The
constraint states that the variable €, - must be greater than or equal to the product of the parameters
storage content installed K7, and initial and final state of charge I,,s. The mathematical explanation

of this rule is given in Energy Storage.

In script storage . py the constraint initial and final storage state rule is then defined and calculated
by the following code fragment:

m.res_initial_and_final_ storage_state = pyomo.Constraint (
m.t, m.sto_init_bound_tuples,
rule=res_initial_and_final_storage_state_rule,
doc='"'storage content initial == and final >= storage.init =* capacity')

In case 2 the constraint becomes a lot easier, since the initial and final state are simply compared to each
other by the following inequality:

YoeV,seS: e < e

vsty vst N

In script storage . py the constraint initial and final storage state rule is then defined and calculated
by the following code fragment:

m.res_initial_and_final_storage_state_var = pyomo.Constraint (
m.t, m.sto_tuples - m.sto_init_bound_tuples,
rule=res_initial_and_final_storage_state_var_rule,
doc='storage content initial <= final, both variable')

Storage Energy to Power Ratio Rule: For certain type of storage technologies, the power and energy
capacities cannot be independently sized but are dependent to each other. Hence, the constraint storage
energy to power ratio rule sets a linear dependence between the capacities through a user-defined “energy
to power ratio” k:g{g It has to be noted that this constraint is only active for the storages with a positive
value under the column “ep-ratio” in the input file, and when this value is not given, the power and
energy capacities can be sized independently. The mathematical explanation of this rule is given in

Energy Storage.

In script storage . py the constraint storage energy to power rule is then defined and calculated by the
following code fragment:

m.def_storage_energy_power_ratio = pyomo.Constraint (
m.sto_en_to_pow_tuples,
rule=def_storage_energy_power_ratio_rule,
doc='storage capacity = storage power * storage E2P ratio')

1.3. Technical documentation 133

urbs Documentation, Release 1.0.0

def def_storage_energy_power_ratio_rule(m, stf, sit, sto, com):
return (m.cap_sto_c[stf, sit, sto, com] == m.cap_sto_plstf, sit, sto,
—com] *
m.storage_dict['ep-ratio'][(stf, sit, sto, com)])

Cost Constraints

The variable total system cost (is calculated by the cost function. In cases of CO2-minimization the
total system cost is constrained by the following expression:

Q = Cinv + Cﬁx + Cvar + <fuel + Crev + Cpur + Cstartup + Cenv < Zcost

This constraint is given in mode1 . py by the following code fragment.

def res_global_cost_limit_rule(m):

if math.isinf (m.global_prop_dict["value"] [min(m.stf), "Cost limit"]):
return pyomo.Constraint.Skip

elif m.global_prop_dict["value"] [min(m.stf), "Cost limit"] >= 0:
return (pyomo.summation (m.costs) <= m.global_prop_dict["value"]

[min(m.stf), "Cost limit"])

else:

return pyomo.Constraint.Skip

1.3.2 ‘urbs’ module description

This part gives a brief overview over the architecture of the program. The data flow in an urbs model is

visualized in the following graph:
saveload.py
.h5-file
save

input.py model.py Solver chosen report.py
Input mode
P data . Solved m Report
parameters instance m report

read_excel create_model solve

plot.py

Plots
plot

‘urbs’ uses a modular structure to build and execute the optimization and to automatically generate the
results. All scripts are placed in the folder ‘urbs’. In subfolder ‘features’ constraint expressions for the
mathematical model are defined. These will not be discussed here and only the highest level functions
will be discussed. The scripts used for these are the following (in alphabetical order):

identify.py

In this scripts the dictionary of input dataframes ‘data’ is parsed to conclude the structure of the problem
to be built.

134 Chapter 1. Contents

urbs Documentation, Release 1.0.0

input.py

This file handles the input and prepares the mathematical model itself.

model.py

This file just includes the central function used for model generation.

output.py

This file contains lower level functions to retrieve data from a solved model instance.

plot.py

This script generates automated output pictures using the function

report.py

This script handles the automated generation of an excel data sheet from the solved model instance.

runfunctions.py

This file contains the central function for running a predefined set of inputs or a scenario thereof.

saveload.py

This file contains two functions to save and load a collection of inputs and the corresponding outputs of
a model instance.

scenarios.py

In this script scenario functions are defined. These are used to automatically change the inputs as given
in dictionary ‘data’. In this way multiple runs of similar model instances can be automated.

validation.py

This file makes sure that the input given is not leading to an infeasible or non-sensical model. It generates
error messages for certain known errors. It is a organically growing script.

1.4 ADMM module for regional decomposition

Continue here if you would like to use the regional decomposition module, using the alternating direction
method of multipliers (ADMM).

1.4. ADMM module for regional decomposition 135

urbs Documentation, Release 1.0.0

1.4.1 ADMM module for regional decomposition
Overview

How to use the documentation

You should start with this overview which explains the underlying ideas of the regional decomposition.
To fully comprehend the documentation you should be familiar with the urbs model already (see Package
overview of the urbs documentation). Usually, when some content directly builds on a topic of the urbs
documentation, this part of the documentation is explicitly referenced.

The runscript explained provides a detailed walkthrough of runme_admm. py and explains how to use
decomposition for a model. It also explains the ADMM loop. After the overview you should continue
with the tutorial to understand how to apply the code.

If you want to understand the mathematical background of ADMM, you should next look at the Alfer-
nating direction method of multipliers (ADMM).

The implementation of the asynchronous ADMM method, can be seen in the section Asynchronous
ADMM implementation. This section covers the workflow of the ADMM method, starting from the user-
run runme_urbs script, the preparation script runfunctions_admm.py, the parallel jobs run_Worker.py
and finally the Class urbsADMMmodel.

Finally the ADMM user guide gives ideas on how to improve, use, or extend the code, and on how to
unify it with the urbs master branch.

Decomposition

First the concepts of decomposition are introduced. The idea of decomposition is that a large model
might not fit into working memory, so it is desirable to split it into several smaller models that are
independent to a certain degree. These models are called sub models. As the sub models are not truly
independent there is a master model which coordinates the communication of the sub models.

Decomposition in energy system modelling

First the concepts of decomposition are introduced.

Due to computational and organizational reasons, it may be practical to partition an optimization prob-
lem (such as one depicting an energy system model) to multiple smaller “subproblems” . In case these
smaller problems do not depend on each other, i.e. do not share any common (complicating) variables
or common (complicating) constraints, then the approach is trivial: by solving these smaller problems
independently, we recover the solution to the original problem.

However, energy systems consist often of subsystems which are dependent of each other. In this case, the
solutions of the subproblems need to be consistent with each other, i.e. when one partitions an energy
system model regionally, the interconnector power flows (and their capacities) between two regions
would couple two regions. Mathematical decomposition methods are iterative methods, by which the
subproblems are solved iteratively, and between each iteration, coordination steps are taken so that 1) the
coupled subproblems are in consensus regarding their complicating variables and 2) the complicating
constraints are satisfied. Thereby, these mettods offer here a so far not thoroughly tapped potential:

a) through the parallel solution of these subproblems, the large number of available processors can
be made use of in order to overcome divergent runtimes

136 Chapter 1. Contents

https://pandas.pydata.org/pandas-docs/stable/getting_started/overview.html#overview
https://pandas.pydata.org/pandas-docs/stable/getting_started/overview.html#overview

urbs Documentation, Release 1.0.0

b) through sequential solution of these subproblems, only a subset of the original problem has to be
contained in the working memory simultaneously.

Alternating direction method of multipliers (ADMM)

The decomposition methods implemented in this branch are based on the consensus variant of the alter-
nating direction method of multipliers (ADMM).

Theoretical background of consensus ADMM

ADMM belongs to a family of decomposition methods based on dual decomposition. To understand its
working principle, let’s have a look at the following problem:

min fl(wl,yl) +f2(w27y2)

L1,2L2,Y1,Y2
Ss.t. 1 € X1, T2 € X2
where indices 1, 2 denote the first and second subsystems (e.g. two regions in an energy system model),
with a1, x2 as the sets of variables which are internal to the subsystems 1 and 2 respectively (e.g. set of

generated power by processes in these subregions), y as the coupling variables between the subsystems
1 and 2 (e.g. the power flow between these subregions).

By creating two local copies of the complicating variable (y;, y5) and introducing a “consensus” con-
straint which equates these to a global y,,, this problem can be reformulated as follows:

min fi(x1,y;) + fo(x2,Ys)

1,22,Y1,Y2
S.t. 1 € X1, T2 € X2
Y=Y, N
Yo=Y, Az
where A1, Ao, are the dual variables (Lagrange multipliers) of the two consensus constraints respectively.

The augmented Lagrangian of such a problem looks as follows (with a set penalty parameter p):

L(mly T2,Y1,Y2;s Ala)\2)w1€X1,w2€X2
P 2, P 2
= fi(z1,y1) + fo(z2,y2) +)‘{(?h - yg) +)‘g(yz - yg) + 9 Hyl - ng2 + 9 Hyz - ngQ
From here, the essence of the consensus ADMM lies on decoupling this Lagrangian by fixing the global

value and the Lagrangian multipliers which correspond to the consensus variables. For this, an arbitrary
initialization can be made (yg =90,)\(1)72 =0,

Then the following steps are applied for each iteration v = {1, ..., Umax }:

1) Through the fixing (or initialization, in case of the first step) of the global value and the Lagrangian
multipliers, the decoupled models can be solved independently from each other:

: 14 v p v 2
(@i gy ™) = arg min fi(@y, 1) + A (w1 —y) + 5 v —yglly st @€ xa
»JI1

v 1% : p 2
(%Hv yz+1> = arg 3211;1 fi(@a,) + (N (yy — y,) + 3 HyQ - y;H2 S.t. @2 € X2
1 I 2

2) Using these solutions, an averaging step is made to calculate the global value of the coupling
variable to be used in the next iteration:

y, /= (g st /2

1.4. ADMM module for regional decomposition 137

urbs Documentation, Release 1.0.0

3) Then, the consensus Lagrangian multipliers need to be updated for each subproblem:
>‘11/,—51 =Alpt+p (1/11”51 - ygVH)

4) Using the values obtained from 2) and 3), the primal and dual residuals are calculated for each
subproblem:

5t =t — v,

v+1 _ v+1 vi|2

diy =p Hyg ~— Yy HQ
The steps 1, 2, and 3 and 4 are followed until convergence, which corresponds to the condition of primal
and dual residuals being smaller than a user-set tolerance. For a more detailed description of consensus

ADMM, please refer to the following material: https://stanford.edu/class/ee367/reading/admm_distr_
stats.pdf.

Theoretical background of the asynchronous consensus ADMM

The consensus ADMM, whose steps were described above, is a synchronous algorithm. This means,
each subproblem needs to be solved (step 1), in order for the updates (steps 2, 3) to take place before
moving onto the next iteration. When the subproblems are solved in parallel for runtime benefits, this
may lead to a so-called “straggler effect”, where the performance of the algorithm is constrained by its
slowest subproblem. This is often the case when the subproblems differ in sizes considerables (leading
the small subproblems to have to wait for a larger problem to be solved).

In order to tackle this issue, an asynchronous variant of ADMM is formulated, where:

1) partial information from neighbours (a certain percentage n of the neighbors) is sufficient for each
subproblem to move onto the next iteration, and

ii) the updating steps (2, 3) and the convergence checks take place locally rather than globally.

The specific algorithm is partially based on https://arxiv.org/abs/1710.08938. Here, a brief explanation
of the algorithm will be made. For a more detailed description, please refer to this material.

Let us assume that our problem consists of the subsystems & € {1,..., N}, with each subsystem
k sharing some variable(s) with its neighbors Nj. Asynchronicity takes places by each subproblem
receiving the solutions from only up to [7|| V||| neighbors before moving on to the next iteration. Since
it takes different time for each of these subproblems to receive these information, each subproblem has
their own iteration counters ;. A generalized notation of the problem variables are as follows:

Vari- Description

able

T Internal variables of subsystem k

Yul Set of the coupling variables between subsystems & and [in subproblem &

YL Set of the coupling variables between subsystems k and all its neighbors N}, in subprob-
lem k

Yokl Set of the (now locally defined) global value of y,,; in subproblem k

Yok Set of the (now locally defined) global value of all coupling variables y;, in subproblem &

Akl Set of the Lagrange multipliers for the consensus constraint y;,; = y, j; in the subproblem
k

Ak Set of the Lagrange multipliers for all consensus constraints y;, = y, ;. in the subproblem
k

Pk Quadratic penalty parameter of the subproblem &

138 Chapter 1. Contents

https://stanford.edu/class/ee367/reading/admm_distr_stats.pdf
https://stanford.edu/class/ee367/reading/admm_distr_stats.pdf
https://arxiv.org/abs/1710.08938

urbs Documentation, Release 1.0.0

The asynchronous ADMM algorithm for each subsystem k operates as follows:

1) Through the fixing (or initialization, in case of the first step) of the global values and the La-
grangian multipliers, the decoupled model can be solved independently in parallel to the others:

+1 1 : , Pk .
() = arg min i@, yn) +) (e — v + 5 e — i

2
S.t. T € Xk
Tr,Yp 2

2) Check if at least [n]|Ng||] neighbors have new information to provide. If not, wait for it. If
a problem [had already been solved multiple times since the last time information was received
from it, pick the most recent information (corresponding to its current local iteration v;). (recv ()
is where this step is implemented):

3) For each neighbor [that provided new information, apply a modified averaging step
(update_z () is where this step is implemented).

Xt + Nk + pr Y+ oy
VI € N}, with new information: yZJrkll = H t pk+ykl P Y
' Pk T P

This update step looks differently than that of synchronous ADMM, as it factors for the inaccuricies
which arise from asynchronicity.

3) Update (all) consensus Lagrangian multipliers of subproblem k as usual:
N = (T)
4) Update (all) consensus Lagrangian multipliers of subproblem k as usual:
vip+1 1% vip+1 vEp+1

5) To check the convergence of a subproblem, collect all primal and dual residuals from the neigh-
bors. If the maximum of these residuals is smaller than the convergence tolerance set for this
subproblem, the subproblem converges:

it =l — vl

At =p Iy, = v,

Interpretation of regional decomposition in urbs

In this implementation, the urbs model is regionally decomposed into “region clusters”, where each
model site can be clustered flexibly in separate subproblems. Drawing on the generic problem definition
mentioned above, a specification of this notation can be made for urbs in the following way:

Vari- Description

able

T Process/storage capacities, throughputs, commodity flows:. within the region cluster %k

Yrl Power flows/capacities of transmissions between the region clusters &k and |
(e_tra_in(k, 1), cap_tra(k, 1))

Formulation the global CO2 limit in the consensus form The intuition is that, when two region clusters
are optimized separately, the coupling between them manifests itself in the transmission power flows and
capacities between these clusters. Thereby, they constitute the complicating variables of the problem and
hence the linear and quadratic consensus terms will have to be added to the respective cost functions.
However, a simplification is made here, by ignoring the transmission capacities in the consensus vari-
ables. This simplifies the algorithm without having an influence on the feasibility of the solution, since

1.4. ADMM module for regional decomposition 139

urbs Documentation, Release 1.0.0

when the consensus for the power flows for a transmission line is achieved, the capacity of this trans-
mission line will be set for each subproblem as the largest flow passing through this line to minimize the
costs. In other words, the consensus of the power flows ensures the consensus of the line capacities.

Formulation the global CO2 limit in the consensus form

However, the line flows are not the sole coupling aspect in the urbs model. The global CO2 constraint,
which restricts the total CO2 emissions produced by all of the regions, also couple the operation of
the subproblem with each other. While this is a coupling constraint (and not a coupling variable), a
reformulation into a similar consensus form can be made in the following way:

* A “dummy” region cluster (consisting of a single region) called Carbon site is created,

* A new stock commodity Carbon is created, which can be created in Carbon site for free,
with a max amount equal to the global CO2 limit,

* The Carbon commodity act as “carbon certificates”, such that to each process that emit CO2, it
is added as an additional input commodity with an input ratio same as the output ratio of CO2,

* The Carbon commodity created in the Carbon site can be transported to each other sites for
free. Therefore, new transmission “lines” are defined for this commodity, with unlimited capacity
and no costs.

Now, the commodity flows of Carbon can be treated as an intercluster coupling variable (just like the
power flows) and, as long as the consensus is achieved, the global CO2 limit will be respected.

=== Power line

=== "Carbon" line

Asynchronous ADMM implementation

This section explains the implementation of the asynchronous ADMM module. The workflow of the
asynchronous ADMM module is established in the following way:

runme_admm.py: runme_admm. py is the script that has to be run by the user, where the input file for
the model, modelled time period and the cluster definition is made.

runfunctions_admm.py: runfunctions_admm. py is the script that is called by the runme_ admm.
py script. Here, the data structures for the subproblems is created, the submodels are built, and asyn-
chronous ADMM processes are launched.

run_Worker.py: ADMM_async/run_Worker.py includes the function run_worker (), which is
the parallel ADMM routine that are followed asynchronously by the parallel workers. The major argu-

140 Chapter 1. Contents

admm_implementation.html#runme-section
admm_implementation.html#runfunctions-section
admm_implementation.html#runworker-section

urbs Documentation, Release 1.0.0

ment of this function is a urbsADMMmodel class, whose methods are defined in the ADMM_async/
urbs_admm_model . py script.

Moreover, minor additions/modifications were done on the following, already existing scripts:
* urbs/input.py
* urbs/model.py
* urbs/features/transmission.py

which will also be mentioned here.

The workflow of the ADMM implementation is illustrated as follows:

(Modified)
urbs/input.py

urbs/model .py run worker (N)

urbs/features/ R
transmission.py / e

run_worker (2)

run_worker (1)

runme_admm.py Tr unfunctions_admm.py runfunctions_admm.py
Script run by the user. creating the subproblems parallel ADMM routines collecting and combining
input file setting, (urbsADMMmodel Classes), that are run asynchronously the solutions from the
clustering of regions, launching the parallel parallel processes

choice of time steps processes

In the following, a walkthrough on the scripts involved will be given to establish understanding regarding
how the ADMM implementation works.

runme_admm.py

Let us start with the imported packages:

import os

import shutil

import urbs

from urbs.runfunctions_admm import =

from multiprocessing import freeze_support

Besides the usual urbs imports os, shutil and urbs, the urbs.runfunctions module is im-
ported as it contains the urbs . run_regional function that commences the ADMM routine. More-
over, to allow for parallel operation on Windows systems, the freeze_support function has to be
imported from the multiprocessing package.

Moving on to the input settings:

The script starts with the specification of the input file, which is to be located in the same folder as script
runme_admm.py:

Choose input file

input_files = 'germany.xlsx' # for single year file name, for,
—intertemporal folder name

input_dir = 'Input'

input_path = os.path.join(input_dir, input_files)

1.4. ADMM module for regional decomposition 141

admm_implementation.html#the-urbsadmmmodel-class-admm-async-urbs-admm-model-py
admm_implementation.html#changes-made-in-the-create-model-function-model-py

urbs Documentation, Release 1.0.0

Then the result name and the result directory is set:

result_name = 'Run'
result_dir = urbs.prepare_result_directory (result_name) # name + time_,
—~stamp

Input file is added in the result directory:

copy input file to result directory
try:

shutil.copytree (input_path, os.path.join(result_dir, input_dir))
except NotADirectoryError:

shutil.copyfile (input_path, os.path.join(result_dir, input_files))
copy run file to result directory
shutil.copy(__file_, result_dir)

The objective function to be minimized by the model is then determined (options: ‘cost’ or ‘CO2’):

objective function
objective = 'cost' # set either 'cost' or 'CO2' as objective

Then the specification of time step length and modeled time horizon is made:

simulation timesteps

(offset, length) = (0, 8760) # time step selection
timesteps = range (offset, offset+length+l)

dt = 1 # length of each time step (unit: hours)

Variable t imesteps is the list of time steps to be modelled. Its members must be a subset of the
labels used in input_file’s sheets “Demand” and “Suplm”. It is one of the function arguments to
create_model () and accessible directly, so that one can quickly reduce the problem size by reducing
the simulation 1ength, i.e. the number of time steps to be optimised. Finally, the variable dt gives the
width of each timestep, input in hours.

range () is used to create a list of consecutive integers. The argument +1 is needed, because
range (a, b) only includes integers from a to b—1:

>>> range(1,11)
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

An essential input for the ADMM module is the clustering scheme of the model regions:

clusters = [[('Schleswig-Holstein')], [('Hamburg')], [('Mecklenburg-
—Vorpommern')], [('Offshore')], [('Lower Saxony')], [('Bremen')], [('Saxony-—
—Anhalt')], [('Brandenburg')], [('Berlin')], [('"North Rhine-Westphalia')],

[('Baden-Wiirttemberg')], [('Hesse')], [('Bavaria')], [('"Rhineland-
—Palatinate')], [('Saarland')], [('Saxony')], [('Thuringia')]]

The variable clusters is a list of tuples lists, where each element consists of tuple lists with the
regions to be included in each subproblem. For instance, whereas the clustering given above yields each
federal state of the Germany model having their own subproblems, a scheme as following:

clusters = [[('Schleswig-Holstein'), ('Hamburg'), ('Mecklenburg-Vorpommern'),
— ('Offshore'), ('Lower Saxony'), ('Bremen'), ('Saxony—-Anhalt'), ('Brandenburg
—'), ('Berlin'), ('North Rhine-Westphalia')],

[('Baden-Wirttemberg'), ('Hesse'), ('Bavaria'), ('Rhineland-

4
fall ('Sogrlandly ('S o naz ') (" Thurinagiag V11
D A W e e e o e B B e RS (contmuesonnextpage)

142 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

|

would yield two subproblems, where the northern and southern federal states of Germany are grouped
with each other.

Then the color schemes for output plots is defined:

add or change plot colors

my_colors = {
'South': (230, 200, 200),
'Mid': (200, 230, 200),
'"North': (200, 200, 230)}
for country, color in my_colors.items{() :
urbs.COLORS [country] = color

Scenarios to be run can be then selected:

select scenarios to be run
test_scenarios = [
urbs.scenario_base

]

Finally, the urbs. run_regional function is called, commencing the ADMM routine:

if name == main '

freeze_support ()
for scenario in test_scenarios:
timesteps = range (offset, offset + length + 1)
prob = urbs.run_regional (input_path, timesteps,
scenario,result_dir,dt,objective,
clusters=clusters)

To read about the urbs.run_regional function, please proceed to the next section, where the
runfunctions_admm. py script, where this function resides, is described.

runfunctions_admm.py

Imports:

from pyomo.environ import SolverFactory
from .model import create_model

from .plot import =

from .input import =«

from .validation import =«

import urbs

import pandas as pd

import multiprocessing as mp

import queue

from .ADMM_ async.run_Worker import run_worker

from .ADMM_ async.urbs_admm model import urbsADMMmodel
import time

import numpy as np

from math import ceil

1.4. ADMM module for regional decomposition 143

urbs Documentation, Release 1.0.0

Besides the usual imports of runfunctions.py (first group), additional imports are necessary:

* multiprocessing is a package that supports spawning processes using an API similar to the
threading module. This is used for creating the objects mp .Manager () .Queue () and mp.
Process ().

* queue is used as an exception handling (queue . Empty), see later.

* The function run_worker contains all the ADMM steps that are followed by the submodel
classes urbsADMMmodel.

* time is used as a runtime-profiling (for test purposes).
* numpy and math.ceil are required for array operations and a ceiling function respectively.

Some auxiliary function definitions follow:

def calculate_neighbor_cluster_per_line(boundarying_lines, cluster_idx,
—clusters) :

neighbor_cluster = 99 % np.ones((len(boundarying_lines|[cluster_idx]),
—2))

row_number = 0

for (year, site_in, site_out, tra, com) in boundarying_lines[cluster_

—

—idx].index:
for cluster in clusters:
if site_in in cluster:
neighbor_cluster[row_number, 0]
if site_out in cluster:
neighbor_cluster[row_number, 1]
row_number = row_number + 1
cluster_from = neighbor_cluster[:, 0]
cluster_to = neighbor_cluster[:, 1]
neighbor_cluster = np.sum(neighbor_cluster, 1) - cluster_idx
return cluster_from, cluster_to, neighbor_cluster

clusters.index (cluster)

clusters.index (cluster)

Function calculate_neighbor_cluster_per_line is applied to each cluster, and returns
three arrays:

* cluster_from has a length equal to the boundarying transmission lines of a given cluster, and
each value corresponds to the cluster index, that includes the site that is on the sit_in column
of the transmission line,

* cluster_to has a length equal to the boundarying transmission lines of a given cluster, and
each value corresponds to the cluster index, that includes the site that is on the sit_out column
of the transmission line,

* neighbor_cluster hasalength equal to the boundarying transmission lines of a given cluster,
and each value corresponds to the index of the neighboring cluster that is involved.

def create_qgqueues (clusters, boundarying_lines):
edges = np.empty ((1l, 2))
for cluster_idx in range (0, len(clusters)):
edges = np.concatenate ((edges, np.stack ([boundarying_ lines[cluster_
—idx].cluster_from.to_numpy (),
boundarying_lines[cluster_

—1dx] .cluster_to.to_numpy ()], axis=1)))
edges = np.delete(edges, 0, axis=0)
edges = np.unique (edges, axis=0)
edges = np.array(list ({tuple (sorted(item)) for item in edges}))

(continues on next page)

144 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

queues = {}

for edge in edges.tolist():
fend = mp.Manager () .Queue ()
tend = mp.Manager () .Queue ()
if edge[0] not in gueues:

queues[edge[0]] = {}
queues[edge[0]] [edge[1l]] = fend
if edge[l] not in queues:

queues[edge[1]] = {}
queues[edge[1l]] [edge[0]] = tend

return edges, queues

Function create_queues returns two objects:

* edges is an array with two columns, which expresses the connectivity between the clusters (if
clusters are connected in the following way: 0--1--2, edges would look as follows: [[0,
11, [1, 031, [1, 21, [2, 111]),

* queues is a dictionary of dictionaries populated with mp.Manager () .Queue () objects.
There are as many mp . Manager () .Queue () objects as the rows of edges, and these queues
are used for the unidirectional data transfer between these clusters during the parallel operation.

Class CouplingVars is defined to store some coupling parameters:

class CouplingVars:
flow_global = {}
rhos = {}
lambdas = {}
cap_global = {}
residdual = {}
residprim = {}

Functions prepare_result_directory and setup_solver are unchanged except enforcing
the barrier method for the gurobi solver (method=2). Please note that only gurobi is supported as a
solver in this implementation!:

def prepare_result_directory(result_name) :
""" create a time stamped directory within the result folder.

Args:
result_name: user specified result name

Returns:
a subfolder in the result folder

mmn

timestamp for result directory
now = datetime.now() .strftime ('$YSm2dTSHSM")

create result directory if not existent
result_dir = os.path.join('result', ' - '.format (result_name, now))
if not os.path.exists (result_dir):

os.makedirs (result_dir)

return result_dir

(continues on next page)

1.4. ADMM module for regional decomposition 145

urbs Documentation, Release 1.0.0

(continued from previous page)

def setup_solver (optim, logfile='solver.log'):
mmn nmmn
if optim.name == 'gurobi':
reference with 1list of option names
http://www.gurobi.com/documentation/5.6/reference—-manual/
—parameters
optim.set_options ("logfile={}".format (logfile))
optim.set_options ("method=2")
optim.set_options ("timelimit=7200") # seconds
optim.set_options ("mipgap=5e-4") # default = le—4
elif optim.name == 'glpk':
reference with list of options
execute 'glpsol —--help'
optim.set_options("log={/".format (logfile))
optim.set_options ("tmlim=7200") # seconds
optim.set_options ("mipgap=.0005")

elif optim.name == 'cplex':
optim.set_options ("log={/".format (logfile))
else:
print ("Warning from setup_solver: no options set for solver "
mrfprit format (optim.name))

return optim

Now that the auxiliary functions are explained, the main function of this script, run_regional, will
be explained step by step.

The docstring of the function gives an overview regarding the input and output arguments:

def run_regional (input_file, timesteps, scenario, result_dir,
dt, objective, clusters=None) :
""" run an urbs model for given input, time steps and scenario with
—regional decomposition using ADMM

—

Args:

input_file: filename to an Excel spreadsheet for urbs.read _excel
timesteps: a list of timesteps, e.g. range (0,8761)
scenario: a scenario function that modifies the input data dict
result_dir: directory name for result spreadsheet and plots
dt: width of a time step in hours (default: 1)
objective: the entity which is optimized ('cost' of 'coZ2')
clusters: user—-defined region clusters for regional decomposition,

— (list of tuple 1ists)

Returns:

the urbs model instances
mimwn

First, the model year is hard-coded to be used as the support year (st £) indices. This is a single scalar,
since ADMM, in its current status, does not support intertemporal models:

hard-coded year. ADMM doesn't work with intertemporal models (yet)
year = date.today () .year

Then, similarly to regular urbs, the scenario is set up, the model data is read and and validations are

146 Chapter 1. Contents

urbs Documentation, Release 1.0.0

made in the following steps:

scenario name, read and modify data for scenario

sce = scenario._ name
data_all = read_input (input_file, year)
data_all = scenario(data_all)

validate_input (data_all)
validate_dc_objective (data_all, objective)

If there is a global CO2 limit set in the model, the necessary modifications to the data structure are
made with the add_carbon_supplier function. These are mentioned in the section Formulation
the global CO?2 limit in the consensus form. Then, the Carbon site is added as a separate cluster:

if not data_all['global_prop'].loc[year].loc['CO2 limit', 'value'] == np.
—inf:
data_all = add_carbon_supplier (data_all, clusters)
clusters.append(['Carbon_site'])

A CouplingVars class is initialized:

initiate a coupling-variables Class
coup_vars = CouplingVars ()

In the following code section, the Transmission DataFrame is sliced for each -cluster
(with index cluster_idx), such that boundarying_lines|[cluster_idx] comprises
only the transmission lines which are interfacing with a neighboring cluster and, conversely,
internal_lines[cluster_idx] consists of the transmission lines that connect the sites within
the cluster. Afterwards, the ADMM parameters coup_vars.lambdas, coup_vars.rhos and
coup_vars.flow_global are initialized with the following indices:

e cluster_idx: each cluster index,
* j: each modelled time-step,
* year: the support timeframe (a single year in this case),

e sit_from: first end of the transmission line (obtained from
boundarying_lines[cluster_idx])

* sit_to: second end of the transmission line (obtained from
boundarying_lines[cluster_idx])

identify the boundarying and internal lines
boundarying_lines = {}
internal_lines = {}

boundarying_lines_logic = np.zeros((len(clusters),

data_all['transmission'].shape[0]),
dtype=bool)
internal_lines_logic = np.zeros((len(clusters),
data_all['transmission'].shape[0]),
dtype=bool)

for cluster_idx in range (0, len(clusters)):

for j in range (0, data_all['transmission'].shape[0]):
boundarying_lines_logic[cluster_idx, Jj] = (
(data_all['transmission'].index.get_level_values('Site In

') 4]

(continues on next page)

1.4. ADMM module for regional decomposition 147

urbs Documentation, Release 1.0.0

(continued from previous page)

in clusters|[cluster_idx])
~ (data_all['transmission'].index.get_level_values('Site
—out ') [J]

in clusters([cluster_idx]))

internal_lines_logic[cluster_idx, j] = (

(data_all['transmission'].index.get_level_values('Site In
=")[]J]
in clusters[cluster_idx])
and (data_all['transmission'].index.get_level_values('Site
—out ') [J]
in clusters[cluster_idx]))
boundarying_lines[cluster_idx] = \
data_all['transmission'].loc[boundarying_lines_logic[cluster_idx,
<—>]]
internal_lines[cluster_idx] = \
data_all['transmission'].loc[internal lines_logic[cluster_idx, :1]

for i in range (0, boundarying_lines[cluster_idx] .shape([0]) :
sit_from = boundarying_lines[cluster_idx].iloc[i] .name[1]
sit_to boundarying_lines[cluster_idx].iloc[i] .name[2]

for j in timesteps[l:]:
coup_vars.lambdas[cluster_idx, Jj, year, sit_from, sit_to] = 0
coup_vars.rhos[cluster_idx, Jj, year, sit_from, sit_to] = 5
coup_vars.flow_global[cluster_idx, Jj, year, sit_from, sit_to] |

In the following optional step, the original problem is built and solved. This is the same as the regular
urbs routine, and is used for testing purposes (e.g. comparing the ADMM result against this, making a
runtime test). For your actual usage, feel free to comment this section out:

(optional) create the central problem to compare results
prob = create_model (data_all, timesteps, dt, type='normal')

refresh time stamp string and create filename for logfile
log_filename = os.path.join(result_dir, ' .log") .format (sce)

setup solver

solver_name = 'gurobi'

optim = SolverFactory(solver_name) # cplex, glpk, qgurobi,
optim = setup_solver (optim, logfile=log_filename)

original problem solution (not necessary for ADMM, to compare results)

orig_time_lbefore_solve = time.time ()

results_prob = optim.solve (prob, tee=False)

orig_time_after_solve = time.time ()

orig_duration = orig_time_after_ solve - orig_time_before_solve
flows_from_original_problem = dict ((name, entity.value) for (name, entity)

—in prob.e_tra_in.items())
flows_from_original_problem = pd.DataFrame.from_dict (flows_from_original__
—problem, orient='index',

columns=["'Original'])

In the next code section, problems, a list of urbsADMMmodel Classes and sub, a dictionary for
keeping the Pyomo object of subproblems are initialized. Next, the following steps take place for each

148 Chapter 1. Contents

urbs Documentation, Release 1.0.0

region cluster cluster_idx:

problem which is an instance of the urbsADMMmodel class, is initialized (please see the urb-
sADMMmodel, init Section),

a Pyomo object for the subproblem is created using the urbs.create_model function with
the type="sub"' option, See the modified create_model in the model.py changes). This Pyomo
instance is stored in the attribute sub_pyomo of problem,

initial values for the global coupling variable values are stored in problem.flow_global,
which is a subset of coup_vars.flow_global where the cluster_idx corresponds to
the cluster in question,

initial values for the consensus dual variables are stored in problem. lamda, which is a subset
of coup_vars.lambdas where the cluster_idx corresponds to the cluster in question,

initial value for the quadratic penalty parameter is stored in problem. rho,
the unique index of the cluster is stored in problem. ID,

the result directory and the scenario name are stored in the problem.result_dir and
problem. sce respectively,

the cluster_ from, cluster_to and neighbor_cluster columns are
appended to boundarying_lines[cluster_idx] DataFrame using the
calculate_neighbor_cluster_per_line function. The appended DataFrame is
then stored in problem.boundarying_lines

the information for the total number of clusters is stored in problem.na

the prepared instance problem is added to the list of problems

problems
sub = {}

(]

initiate urbs_admm model Classes for each subproblem
for cluster_idx in range (0, len(clusters)):
problem = urbsADMMmodel ()
sub[cluster_idx] = urbs.create_model (data_all, timesteps,
—type='sub',
sites=clusters|[cluster_
<—>idX] ’
coup_vars=coup_vars,
data_transmission_
—boun=boundarying_lines[cluster_idx],
data_transmission_
—int=internal_lines[cluster_idx],
cluster=cluster_idx)

problem. sub_pyomo = sub[cluster_idx]
problem.flow_global = {(key[1l], key[2], key[3], key[4]): value
for (key, value) in coup_vars.flow_
—~global.items () if key[0] == cluster_idx}
problem.flow_global = pd.Series (problem.flow_global)
problem.flow_global.rename_axis(['t', 'stf', 'sit', 'sit_']l,_

—inplace=True)
problem. flow_global = problem.flow_global.to_frame ()

problem.lamda = {(key[l], key[2], key[3], key[4]): value
for (key, value) in coup_vars.lambdas.

—items() if Key {01 == cluster_idx} (continues on next page)

1.4. ADMM module for regional decomposition 149

urbs Documentation, Release 1.0.0

(continued from previous page)

problem.lamda = pd.Series (problem.lamda)

problem.lamda.rename_axis(['t', 'stf', 'sit', 'sit_']
—inplace=True)

problem.lamda = problem.lamda.to_frame ()

r o

problem.rho = 5

problem.ID = cluster_idx
problem.result_dir = result_dir
problem.sce = sce
boundarying_lines|[cluster_idx]['cluster_from'], boundarying__
—lines[cluster_idx]['cluster_to']l, \
boundarying_lines[cluster_idx] ['neighbor_cluster'] =
—~calculate_neighbor_cluster_per_line (boundarying_lines,

—

— cluster_idx,

[N clusters)
problem.boundarying_lines = boundarying_lines[cluster_idx]
problem.na = len(clusters)

problems.append (problem)

In the next step, queues are created for each communication channel using the create_queues
function. These are then stored in the respective problem, along with the following attributes:

* neighbors: the indices of clusters that neighbor the cluster in question,
* nneighbors: the number of neighboring clusters,

* nwait: the number of neighboring subproblems, that the subproblem has to wait for in order to
move on to the next iteration. This is calculated using the product admmopt .nwaitPercent
of nneighbors, rounded up.

edges, queues = create_queues (clusters, boundarying_lines)

define further necessary fields for the subproblems
for cluster_idx in range (0, len(clusters)):

problems[cluster_idx] .neighbors = sorted(set (boundarying_lines[cluster_
—~1dx] .neighbor_cluster.to_list()))
problems|[cluster_idx] .nneighbors = len (problems[cluster_idx] .neighbors)
problems[cluster_idx].queues = dict ((key, value) for (key, value) in_
—queues.items () if key == cluster_idx)
problems[cluster_idx] .queues.update (dict (
(key0, {key: value}) for (key0O, n) in queues.items () for (key,
—value) in n.items () if
key == cluster_idx) .items())
problems[cluster_idx].nwait = ceil(

problems[cluster_idx] .nneighbors * problems[cluster_idx].admmopt.
—nwaitPercent)

Then, another Queue is created, which is used by each subproblem after they converge to send their
solutions:

define a Queue class for collecting the results from each subproblem,,
—after convergence

(continues on next page)

150 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

output = mp.Manager () .Queue ()

Afterwards, a list (proc) is initialized, and populated by mp.Process which take the function
run_worker, to be run for each cluster. The arguments here are:

* cluster_idx + 1: ordinality of the cluster,
* problems[cluster_idx]: the urbsADMMmodel instance corresponding to the cluster,
* output: the Queue to be used for sending the subproblem solution

The processes are then launched using the . start () method.:

define the asynchronous jobs for ADMM routines
procs = []
for cluster_idx in range (0, len(clusters)):
procs += [mp.Process (target=run_worker, args=(cluster_idx + 1,
—problems[cluster_idx], output))]

start_time = time.time ()

start_clock = time.clock ()

for proc in procs:
proc.start ()

While the processes are running, attempts to fetch results from output is made in constant intervals
(0.5 seconds by default), until all child processes are finished (while liveprocs:). A soon as this
is the case, we return to the parent thread (proc. join ()):

collect results as the subproblems converge
results = []
while liveprocs:
try:
while 1:
results.append (output.get (False))
except queue.Empty:
pass

time.sleep (0.5)
if not output.empty () :
continue

liveprocs = [p for p in liveprocs if p.is_alive ()]

for proc in procs:
proc. join ()

Finally, the subproblem results are recovered and compared against the original problem in the following
code section:

get results ———————————————————————————
ttime = time.time ()

tclock = time.clock ()

totaltime = ttime - start_time

clocktime = tclock - start_clock

results = sorted(results, key=lambda x: x[0])

(continues on next page)

1.4. ADMM module for regional decomposition 151

urbs Documentation, Release 1.0.0

(continued from previous page)

obj_total = 0
obj_cent = results_prob['Problem'][0] ['Lower bound']

for cluster_idx in range (0, len(clusters)):

if cluster_idx != results[cluster_idx][0]:
print ('Error: Result of worker not returned!' % (cluster_idx +_,
—=1,))
break
obj_total += results[cluster_idx][1]['cost']
gap = (obj_total - obj_cent) / obj_cent % 100
print ('The convergence time for original problem is ' % (orig_duration,))
print ('The convergence time for ADMM 1is ' % (totaltime,))
print ('The convergence clock time is "' % (clocktime,))
print ('The objective function value is ' % (obj_total,))
print ('The central objective function value is ' % (obj_cent,))
print ('The gap in objective function is "% (gap,))

The run_worker function (ADMM_async/run_worker.py)

In this section, the steps followed by the function run_worker is explained. This function is run in
parallel by each subproblem, and it consists of some initialization steps, ADMM iterations and post-
convergence steps.

The function takes three input arguments:
* ID: ordinality of the cluster (1 for the first subproblem, 2 for the second etc.),
* s: the urbsADMMmodel instance corresponding to the cluster,
* output: the Queue to be used for sending the subproblem solution

Since ADMM is an iterative method, the subproblems are expected to be solved multiple times (in the
order of 10’s, possibly 100’s), with slightly different parameters in each iteration. The pyomo model
which defines the optimization problem, first needs to be converted into a lower-level problem formu-
lation (ultimately a set of matrices and vectors), which may take a very long time. Therefore, it is
more practical that this conversion step happens only once, and the adjustments between iterations are
made on the low-level problem formulation. Pyomo supports the usage of persistent solver interfaces
(https://pyomo.readthedocs.io/en/stable/advanced_topics/persistent_solvers.html) for Gurobi, which ex-
actly serves this purpose. These instances are created from the pyomo object with the following code
section, and stored in the sub_persistent attribute:

s.sub_persistent = SolverFactory('gurobi_persistent')
s.sub_persistent.set_instance(s.sub_pyomo, symbolic_solver_labels=False)

Afterwards, the solver parameters can be directly set on the persistent solver instance (Method=2 for
barrier method, Thread=1 for allowing the usage of a single CPU):

s.sub_persistent.set_gurobi_param('Method', 2)
s.sub_persistent.set_gurobi_param('Threads', 1)

The .unique () method is applied to .neighbor_cluster attribute to retrieve the unique neigh-
bors:

152 Chapter 1. Contents

https://pyomo.readthedocs.io/en/stable/advanced_topics/persistent_solvers.html

urbs Documentation, Release 1.0.0

s.neighbor_clusters = s.boundarying_lines.neighbor_cluster.unique ()

The local iteration counter nu is initialized, and the maximum number of iterations maxit is retrieved
from the admmopt attribute of the subproblem:

nu = 0 # iteration count
maxit = s.admmopt.iterMaxlocal # get maximum iteration

The convergence flag is initialized as False, the convergence gap as 10« x 8 and an array keeping track
of the objective function value of the solutions as np . zeros:

s.flag = False
s.gapAll = [10 x%x 8] * s.na
cost_history = np.zeros (maxit)

The absolute convergence tolerance is calculated by scaling s . conv_rel (user input for relative con-
vergence tolerance, set in the admmopt attribute of the subproblem) with the number of the coupling
variables in the subproblem (len (s.flow_global), added 1 to ensure convergence for the sub-
problems without any coupling variables):

s.convergetol = s.conv_rel * (len(s.flow_global)+l) # # convergence,
—wcriteria for maximum primal gap

Now, the local ADMM iterations take place:

while nu <= maxit-1 and not s.flag:

First, if any message from neighbors is received (if s.recvmsg is not empty), the global values of
the coupling variables are updated (with the . update_z method), along with choosing the quadratic
penalty value that corresponds to the maximum among all the neighbors (with the . choose_max_rho
method):

if s.recvmsg:
s.update_z () # update global flows
s.choose_max_rho () # update choose max rho

Then, to prepare the model for the next run, the updated global values, consensus Lagrange multipliers
and penalty parameters are set for the Gurobi instance of the subproblem. For these steps, the methods
.fix_flow_global, .fix_lambda and set_quad_cost is applied respectively:

s.fix_flow_global ()
s.fix_lambda ()

if nu > O:
s.set_quad_cost (rhos_old)

Now the subproblem can be solved, using the . solve_problem method:

s.result = s.solve_problem()

After solving the problem, the optimal values of the coupling variables are extracted using the method
.retrieve_boundary_flows. The output of this method are twofold:

* s.flows_all: apd.MultiIndex containing all the coupling variables,

1.4. ADMM module for regional decomposition 153

urbs Documentation, Release 1.0.0

e s.flows_with_neighbor: a dictionary of pd.MultiIndex' ‘es , whose
elements are subsets of " “flows_all that are shared with a certain neighbor.
For instance, for the subproblem with indexs 0, s.flows_with_neighbor[2] will return the values
of all coupling variables for the flows between the cluster 0 and 2.

Additionally, the objective value of the optimum is saved in cost_history:

retrieve
s.flows_all, s.flows_with _neighbor = s.retrieve_boundary_flows ()
cost_history[nu] = s.sub_persistent._solver_model.objval

After obtaining the solutions, the consensus Lagrange multiplier and quadratic penalty parameter is
updated with the method .update_y and the method .update_rho respectively:

rhos_old = s.rho

if s.recvmsg: # not the initialization
s.update_y () # update lambda
s.update_rho (nu)

Convergence is checked with the . converge method:

check convergence
s.flag = s.converge ()

At the last step of each iteration, the recvmsg cache is emptied. Afterwards, relevant messages are sent
to every neighbor, and are received from neighbors with the . send method and the . recv method
respectively. For receiving methods, an optional argument pollrounds can be given. This gives
the number of queries made for each message reception per neighbor (default value is 5), and thereby
ensures that the message received is as up-to-date as possible.:

s.recvmsg = {} # clear the received messages

s.send ()
s.recv (pollrounds=5)

The local iteration counter is updated before moving onto the next iteration:

nu += 1

When the algorithm converges, the final pyomo model of the subproblem and the corresponding solution
is saved with the save function:

save (s.sub_pyomo, os.path.join(s.result_dir, '_{}_'.format (ID),"' .h5'.
—format (s.sce)))

Additionally, a dictionary consisting of the final objective value, the values of coupling variables and
primal/dual residuals is created and put into the Queue called output:

output_package = {'cost': cost_history[nu - 1], 'coupling flows': s.flow_
—global,

'primal_residual': s.primalgap, 'dual_residual': s.
—dualgap}

output.put ((ID - 1, output_package))

154 Chapter 1. Contents

urbs Documentation, Release 1.0.0

The urbsADMMmodel Class (ADMM_async/urbs_admm_model.py)

In this section, the initialization attributes and methods of the urbsADMMmode1 class will be explained.
This class is the main argument of the parallel calls of the run_worker function, encapsulates the
local urbs subproblem and implements the ADMM steps including solving the subproblem, sending
and recieving data to/from neighbors, updating global values of the coupling variables, the consensus
Lagrange multipliers and the quadratic penalty parameters.

While the order in which these ADMM steps are followed is listed in the previous section, here the steps
themselves will be described.

Starting with the attributes list of an urbsADMMmodel instance:

class urbsADMMmodel (object) :

def _ init__ (self):
initialize all the fields
self.boundarying_lines = None
self.flows_all = None
self.flows_with_neighbor = None
self.flow_global = None
self.sub_pyomo = None
self.sub_persistent = None
self.neighbors = None
self.nneighbors = None
self.nwait = None
self.var = {'flow_global': None, 'rho': None}
self.ID = None
self.nbor = {}
self.pipes = None

self.gueues = None
self.admmopt = admmoption ()
self.recvmsg = {}
self.primalgap = [9999]
self.dualgap = [9999]

self.gapAll = None
self.rho = None
self.lamda = None

These attributes are described as follows:

* self.boundarying_lines: A pd.Multilntex, that is a subset of Transmission lines that
connect this cluster with other clusters,

* self.flows_all: a pd.MultiIndex containing the optimized values of all the coupling
variables (Elec and Carbon flows) after a subproblem solution

e self.flows_with_neighbor: a dictionary of pd.MultiIndex “es , whose
elements are subsets of " flows_all thatare shared with a certain neighbor

* self.flow_global: a pd.MultiIndex containing the global values of all the coupling
variables (Elec and Carbon flows)

* self.sub_pyomo: a pyomo.environ.ConcreteModel object that represents the sub-
problem

* self.sub_persistent: a GurobiPersistent object, a persistent solver interface on
which the model adjustments are made

* self.neighbors: the indices of clusters that neighbor the cluster in question

1.4. ADMM module for regional decomposition 155

urbs Documentation, Release 1.0.0

self.nneighbors: the number of neighboring clusters

self.nwait: the number of neighboring subproblems, that the subproblem has to wait for
in order to move on to the next iteration. This is calculated using the product admmopt .
nwaitPercent of nneighbors, rounded up.

self.ID: the subproblem ID. An integer starting from O (for the first subproblem).

self.queues: a dictionary of dictionary of mp.Manager () .Queue () objects, which has
the cluster in question either as the receiving or the sending end

self.admmopt: an instance of the admmopt ion class. These include the ADMM parameters,
which can be modified by the user. They will be listed below.

self.recvmsg: an instance of the message class. This class is sent and received between the
workers, and its attributes will be listed below.

self.primalgap: an array which extends which each iteration, and keeps track of the primal
residual of the solution

self.dualgap: an array which extends which each iteration, and keeps track of the dual resid-
ual of the solution

self.gapAll: alist which includes: primal residual of the subproblem, along with the primal
residuals of neighboring clusters

self.rho: areal number which represents the current value of the quadratic penalty parameter

self.lamda: a pd.MultiIndex containing the values of the current consensus Lagrange
multipliers

Before explaining the methods of urbsADMMmodel class, let us have a look at the two auxiliary classes
admmoption and message:

class admmoption (object) :

mmn

""" This class defines all the parameters to use in admm

def init_ (self):
self.rho_max = 10 # upper bound for penalty rho

self.tau_max = 1.5 # parameter for residual balancing of rho

self.tau = 1.05 # multiplier for increasing rho

self.zeta = 1 # parameter for residual balancing of rho

self.theta = 0.99 # multiplier for determining whether to update,
—rho

self.mu = 10 # multiplier for determining whether to update rho

self.pollWaitingtime = 0.001 # waiting time of receiving from one
—pipe

self.nwaitPercent = 0.2 # waiting percentage of neighbors (0, 1]

self.iterMaxlocal = 20 # local maximum iteration

self.rho_update_nu = 50 # rho is updated only for the first 50,

—lterations

self.conv_rel = 0.1 # the relative convergece tolerance, to be_

—multiplied with (len(s.flow_global)+1)

The admmopt ion class includes numerous parameters that specify the ADMM method, which can be
set by the user:

* self.rho_max: A positive real number, that sets an upper bound for the quadratic penalty

parameter (see . update_rho for its usage)

156

Chapter 1. Contents

urbs Documentation, Release 1.0.0

self.tau_max: A positive real number, that sets an upper bound for the per-iteration modifier
of the quadratic penalty parameter (see . update_rho for its usage)

self.tau: A positive real number, that scales the quadratic penalty parameter up or down (see
.update_rho for its usage)

self.zeta: A positive real number, that is used for the residual balancing of the quadratic
penalty parameter (not in use currently)

self.theta: A positive real number, that is used for the residual balancing of the quadratic
penalty parameter (not in use currently)

self.mu: A positive real number, that is used for the scaling of the quadratic penalty parameter
(see .update_rho for its usage)

self.pollWaitingtime: A positive real number, which represents the waiting time for re-
ceiving a message from a neighbor (see recv for its usage)

self.nwaitPercent: A real number within (0, 1], that gives the percentage of its neighbors
that a subproblem needs to receive a message in order to move onto the next iteration (see line
258 of runfunctions_admm.py for its usage)

self.iterMaxlocal: A positive integer, that sets the maximum number of local iterations
(see line 25 of run_Worker. py for its usage)

self.rho_update_nu: A positive integer, that sets the last iteration number where the
quadratic penalty parameter is updated. After this iteration number, it will not be updated anymore
(see .update_rho for its usage)

self.conv_rel: A positive real number, that is multiplied with (len(s.
flow_global) +1) to set the absolute convergence tolerance of a local subproblem

Moving onto the message class:

class message (object) :

""" This class defines the message region 1 sends to/receives from j ""

”
—

def _ init_ (self):

self.fID = 0 # source region ID
self.tID = 0 # destination region ID
self.fields = {

'flow': None,

'rho': None,

'lambda': None,

'convergeTable': None}

def config(self, f, t, var_flow, var_rho, var_lambda,

—AVall and var are local variables of f region
self.fID = £
self.tID = t

self.fields['flow'] = var_flow
self.fields['rho'] = wvar_rho
self.fields['lambda'] = var_lambda
self.fields['convergeTable'] = gapall

gapall): #

—

Instances of this class are the packets that are communicated between the workers and contain the fol-

lowing attributes:

1.4. ADMM module for regional decomposition

157

urbs Documentation, Release 1.0.0

* fID: the index of the sending subproblem
* £ ID: the index of the receiving subproblem

* fields: a dictionary which consists of the exchanged message (the local optimizing values of
coupling variables f1ow, the local quadratic parameter value rho, the local consensus Lagrange
multiplier 1ambda and the local primal residual gapall)

Now let us return to the class urbsADMMmodel and go through its methods.

.solve_problemtakes the persistent solver interface and solves it with the options save_results
and load_solutions as False to save runtime. warmstart is set as True, even though the
barrier solver does not support this feature yet.:

def solve_problem(self):
self.sub_persistent.solve (save_results=False, load_solutions=False,
—warmstart=True)

Three following methods (. fix_flow_global, .fix_lambda and .set_quad_cost) inter-
face with the pyomo object and persistent solver interface of the subproblem, and modify the cost func-
tion with the updated global values of the coupling variable, consensus Lagrange multiplier and the
quadratic penalty parameter. Observe that in the model, 1amda (consensus Lagrange multiplier) and
flow_global (global value of the coupling variable) are defined as Variables whose values are
then fixed in the model with the . fix method, whereas the quadratic penalty parameter rho is a real
number.:

def fix_ flow_global (self):
for key in self.flow_global.index:
if not isinstance(self.flow_global.locl[key], pd.core.series.
—Series):
self.sub_pyomo.flow_globallkey].fix(self.flow_global.loclkey])
self.sub_persistent.update_var (
self.sub_pyomo.flow_global[key])
else:
self.sub_pyomo.flow_global [key].fix(self.flow_global.locl[key,
self.sub_persistent.update_var (
self.sub_pyomo.flow_globall[key])

def fix lambda(self):
for key in self.lamda.index:

if not isinstance(self.lamda.loclkey], pd.core.series.Series):
self.sub_pyomo.lamdal[key].fix(self.lamda.loclkey])
self.sub_persistent.update_var(self.sub_pyomo.lamdalkey])

else:
self.sub_pyomo.lamdal[key].fix(self.lamda.loc[key, 0])
self.sub_persistent.update_var (self.sub_pyomo.lamda[key])

def set_quad_cost (self, rhos_old):

quadratic_penalty_change = 0

Hard coded transmission name: 'hvac', commodity 'Elec' for,
—performance.

Caution, as these need to be adjusted if the transmission of other,
—commodities exists!

for key in self.flow_global.index:

if (key[2] == 'Carbon_site') or

(key[3] == 'Carbon_site'):
quadratic_penalty_change += 0.5 =

(

(continues on next page)

158 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

self.rho - rhos_old) * \
(self.sub_pyomo.e_tra_in|
key, 'CO2_line', 'Carbon'] -
self.sub_pyomo.flow_global[key])
okx 2
else:
quadratic_penalty_change += 0.5 % (
self.rho - rhos_old) = \
(self.sub_pyomo.e_tra_in[key, 'hvac
—', 'Elec'] -
self.sub_pyomo.flow_globallkey])

axx 2

old_expression = self.sub_persistent._pyomo_model.objective_function.
—eXpr
self.sub_persistent._pyomo_model.del_component ('objective_function')
self.sub_persistent._pyomo_model.add_component ('objective_function',
pyomo.Objective (expr =

—o0ld_expression + quadratic_penalty_change,

—»sense=pyomo.minimize))
self.sub_persistent.set_objective (
self.sub_persistent._pyomo_model.objective_function)
self.sub_persistent._solver_model.update ()

With the methods send and recv, the message transfer bwetween subproblems take place. Let us start
with send:

def send(self):
dest = self.queues[self.ID].keys ()
for k in dest:
prepare the message to be sent to neighbor k
msg = message ()
msg.config(self.ID, k, self.flows_with_neighbor[k], self.rho,
self.lamda[self.lamda.index.isin(self.flows_with_
—neighbor[k].index)],
self.gapAll)
self.queues[self.ID] [k].put (msqg)

The send method prepares a message for each neighbor k, where only the subset of the
coupling variable and Lagrange multiplier values which are relevant to this neighbor are sent
(self.flows_with_neighbor[k] and self.lamda[self.lamda.index.isin (self.
flows_with_neighbor[k].index)]). Additionally, the quadratic penalty parameter self.
rho and the local residual gap self.gapAll is also communicated. These values are inserted into
the message with the . config method, and the message is sent (put into the Queue) using the . put
method.

Next, the . recv method:

def recv(self, pollrounds=5):
twait = self.admmopt.pollWaitingtime
dest = list (self.queues[self.ID].keys())
recv_flag = [0] * self.nneighbors
arrived = 0 # number of arrived neighbors
pollround = 0

(continues on next page)

1.4. ADMM module for regional decomposition 159

urbs Documentation, Release 1.0.0

(continued from previous page)

keep receiving from nbor 1 to nbor K in round until nwait neighbors,
—arrived
while arrived < self.nwait and pollround < pollrounds:
for i in range(len(dest)):
k = dest[i]
while not self.queues[k] [self.ID].empty () : # read from queue
—until get the last message
self.recvmsgl[k] = self.queues[k][self.ID].
—get (timeout=twait)
recv_flag[i] =1
print ("Message received at %d from %d" % (self.ID, k))
arrived = sum(recv_flag)
pollround += 1

The recv method attempts to receive the message from at least self.nwait neighbors. Within the
loop for i in range (len(dest)), the message-reception queue from each neighbor is queried
(with the . get method) until the queue is empty (hence while not self.queues[k] [self.
ID] .empty ()). When the arrived counter is at least self.nwait, the . recv procedure fin-
ishes.

Then we come to the three methods that update the global values of the coupling variable (. update_z),
consensus Lagrange multiplier (. update_y) and the quadratic penalty parameter (. update_rho).
Note that these methods are used to obtain new values for these variables, and their application to
the problem takes place afterwards with the methods . fix_flow_global, .fix_lambda and .
set_quad_cost as explained earlier.

Starting with update_ z:

def update_z (self):
srcs = self.queues[self.ID].keys()
flow_global_old = deepcopy(self.flow_global)
for k in srcs:

if k in self.recvmsg and self.recvmsglk].tID == self.ID: # target,
—1s this Cluster
nborvar = self.recvmsglk].fields # nborvar/['flow'], nborvar|

— "convergeTable']
self.flow_global.loc[self.flow_global.index.isin(self.flows_
—with_neighbor[k].index)] = \
(self.lamda.loc[self.lamda.index.isin(self.flows_with_
—neighbor[k].index)] +
nborvar(['lambda'] + self.flows_with_neighbor[k] * self.
—rho + nborvar['flow'] % nborvar['rho'l) \
/ (self.rho + nborvar['rho'])
self.dualgap += [self.rho * (np.sgrt(np.square(self.flow_global - flow_
—global_old) .sum(axis=0) [0]))]

For updating the global variable, a loop is made, checking for each source (neighboring cluster) whether
a new message is present that is meant for the cluster in question (self.recvmsg and self.
recvmsg[k] .tID == self.ID),and if yes, the global variable is updated using the equation pro-
vided in the theoretical section of the documentation. After the global value is updated using information
from all sending neighbors, the new value for the dual residual is also calculated.

After updating the global flow value, the Lagrange multiplier update can be made by the update_y
method using the equation provided in the theoretical section of the documentation:

160 Chapter 1. Contents

urbs Documentation, Release 1.0.0

def update_y(self):
self.lamda = self.lamda + self.rho = (self.flows_all.loc[:, [0]] -
—self.flow_global)

—

Then the quadratic penalty parameter is updated by the .update_rho method and then replaced by
the maximum quadratic penalty parameter across all neighbors by the . choose_max_rho method:

update rho and primal gap locally
def update_rho(self, nu):

self.primalgap += [np.sqrt (np.square(self.flows_all - self.flow_
—global) .sum(axis=0) [0])]

update rho (only in the first rho _iter_nu iterations)

if nu <= self.admmopt.rho_update_nu:

if self.primalgap[-1] > self.admmopt.mu » self.dualgap[-1]:
self.rho = min(self.admmopt.rho_max, self.rho » self.admmopt.

—tau)
elif self.dualgap[-1] > self.admmopt.mu » self.primalgap[-1]:
self.rho = min(self.rho / self.admmopt.tau, self.admmopt.rho_
—max)
update local converge table
self.gapAll[self.ID] = self.primalgap[-1]
use the maximum rho among neighbors for local update
def choose_max_rho(self):
srcs = self.recvmsg.keys ()
for k in srcs:
rho_nbor = self.recvmsgl[k].fields['rho']
self.rho = maximum(self.rho, rho_nbor) # pick the maximum one

Whether the quadratic penalty parameter has to increase or decrease depends on the relation be-
tween primalgap and dualgap, admmopt . tau, admmopt .tau_max admmopt . rho_max and
admmopt . tau_max. Therefore, before updating rho, the primal residual primalgap is also calcu-
lated within this method. For a mathematical description of the rho update, please refer to page 20 of
https://stanford.edu/class/ee367/reading/admm_distr_stats.pdf.

The convergence is checked with the method . converge:

def converge (self):
first update local converge table using received converge tables
if self.recvmsg is not None:
for k in self.recvmsg:
table = self.recvmsglk].fields['convergeTable']
self.gapAll = list (map(min, zip(self.gapAll, table)))
check if all local primal gaps < tolerance
if max(self.gapAll) < self.convergetol:
return True
else:
return False

Here, a convergence table is updated (or created, in case the first iteration) which consists of the primal
residuals of all the neighboring subproblems and the subproblem in question itself (self.gapAll
= list (map(min, zip(self.gapAll, table)))). If all of these local primal residuals are
smaller than the absolute tolerance (max (self.gapAll) < self.convergetol), the method
returns a True, and False otherwise.

The last method defined for urbsADMMmodel is retrieve_boundary_flows:

1.4. ADMM module for regional decomposition 161

https://stanford.edu/class/ee367/reading/admm_distr_stats.pdf

urbs Documentation, Release 1.0.0

def retrieve_boundary_flows (self):
e_tra_in_per_neighbor = {}

self.sub_persistent.load _vars(self.sub_pyomo.e_tra_infl:, :, :, =, :,
<—>])

[}

boundary_lines_pairs = self.boundarying_lines.reset_index () .set_index ([
—~'Site In', 'Site Out']) .index

e_tra_in_dict = {(tm, stf, sit_in, sit_out): v.value for (tm, stf, sit_
—in, sit_out, tra, com), v in

self.sub_pyomo.e_tra_in.items() if ((sit_in, sit_out)

—in boundary_lines_pairs)}

e_tra_in_dict = pd.DataFrame (list(e_tra_in_dict.values()),
index=pd.MultiIndex.from_ tuples(e_tra_in_
—~dict.keys())) .rename_axis (
['t', 'stf', 'sit', 'sit_'])

for (tm, stf, sit_in, sit_out) in e_tra_in_dict.index:
e_tra_in_dict.loc[(tm, stf, sit_in, sit_out), 'neighbor_ cluster'] |
—= self.boundarying_lines.reset_index (). \
set_index (['support_timeframe', 'Site In', 'Site Out']).
—loc[(stf, sit_in, sit_out), 'neighbor_cluster']

for neighbor in self.neighbors:

e_tra_in_per_neighbor[neighbor] = e_tra_in_dict.loc[e_tra_in_dict|
— 'neighbor_cluster'] == neighbor]

e_tra_in_per_neighbor[neighbor].reset_index () .set_index(['t', 'stf
', 'sit', 'sit_'], inplace=True)

e_tra_in_per_neighbor[neighbor] .drop('neighbor_cluster', axis=1,
—inplace=True)

return e_tra_in_dict, e_tra_in_per_neighbor

This method loads the optimized flow variables from the model solution (self.sub_persistent.
load_vars (self.sub_pyomo.e_tra_in|[:, :, 2, :, :, : 1)), and then applies
to it a series of pd . DataFrame operations to produce the necessary data structures.

Changes made in the create_model function (model.py)

In the ADMM implementation, several adjustments were made in the model creation, for the specific
case of creating the subproblems. Therefore, the create_model function now takes several additional
optional input arguments:

def create_model (data_all, timesteps=None, dt=1, objective='cost',
—~dual=False, type='normal', sites = None, coup_vars=None, data_
—transmission_boun=None, data_transmission_int=None, cluster=None) :

Here, the type=="sub' specifies the case of creating a subproblem, sites are the model re-
gions contained by the given cluster, coup_vars are the initialized values of the global flow values,
data_transmission_boun and data_transmission_int are the data sets of transmission
lines which include the intercluster and internal lines that are present for the considered subproblem,
cluster is the index of the considered subproblem.

In the following, only the changes made on the create_model function for the ADMM implementa-
tion are mentioned.

162 Chapter 1. Contents

urbs Documentation, Release 1.0.0

The model preperation function pyomo_model_prep takes the model type as an argument, and
creates a subset of the whole data structure data_all which is then passed to data:

if type == 'sub':
m, data = pyomo_model_prep (data_all, timesteps, sites, type,
pd.concat ([data_transmission_boun,data_transmission_
—int])) # preparing pyomo model

Note: Changes made in the ‘‘pyomo_model_prep‘¢ function (input.py, line 185)

In case the model type is sub, the cross-sections of the whole data structure which contains the speci-
ficed sites are taken:

data = deepcopy (data_all)

m.timesteps = timesteps
data['site_all']=data_all['site']
if type =='sub':
m.global_prop = data_all['global prop'].drop('description', axis=1)
data['site'] = data_all['site'].loc(axis=0)[:,sites]
data['commodity'] = data_all['commodity'].loc(axis=0)/[:,sites]
datal['process'] = data_all['process'].loc(axis=0) [:,sites]
datal['storage'] = data_all['storage'].loc(axis=0) [:,sites]
if sites != ['Carbon_site']:
data['demand'] = data_all['demand'] [sites]
data['supim']= data_all['supim'][sites]
else:
data['demand'] = pd.DataFrame ()
data['supim'] = pd.DataFrame ()
data['transmission'] = data_transmission

Returning to create_model, in case the model type is sub, the quadratic penalty parameter rho is
specified as the value that corresponds to the cluster in question:

if m.type =='sub':
rho = dict((keyl[l:],value) for key, value in coup_vars.rhos.items () if |
—~key[0] == cluster)

which is then set as a pyomo.environ.Parameter, along with f1ow_global (global values of
coupling variables) and 1amda (consensus Lagrange multipliers) as ‘‘pyomo.environ. Variable‘‘s:

if type=='sub':

m.flow_global = pyomo.Var (
m.tm,m.stf,m.sit,m.sit,
within=pyomo.Reals,
doc='flow global in'")

m.lamda = pyomo.Var (
m.tm,m.stf,m.sit,m.sit,
within=pyomo.Reals,
doc="'lambda in'")

m.rho = pyomo.Param
m.tm,m.stf,m.sit,m.sit,
initialize=rho,
doc='rho in'")

In ADMM, the objective function is adjusted by the linear and quadratic penalty terms. This is imple-

1.4. ADMM module for regional decomposition 163

urbs Documentation, Release 1.0.0

mented via the following lines:

def cost_rule(m):
if m.type =='sub':
return (pyomo.summation (m.costs) + sum (0.5 * m.rho[(tm, stf, sit_
—~in, sit_out)] =
(m.e_tra_in[(tm, stf, sit_in,sit_out, tra, com)]
-m.flow_global[(tm, stf, sit_in,sit_out)]) %2
for tm in m.tm
for stf, sit_in, sit_out, tra, com in m.tra_tuples_
—boun) + sum(m.lamdal[(tm, stf, sit_in, sit_out)] =
(m.e_tra_in[(tm,stf, sit_in,sit_out,tra, com)]
-m.flow_globall[(tm, stf, sit_in,sit_out)])
for tm in m.tm
for stf, sit_in, sit_out, tra, com in m.tra_tuples_
—boun))

In urbs, the transmission line capacities are built twice (once in both directions). Therefore, a halving of
the investment and fixed costs has to be made in the pre-processing part of the data input. However, when
the subsystems are decomposed, we have to introduce a further halving of the intercluster transmission
lines, so that we avoid both clusters having to pay for this line twice as this would disrupt the costs of
the whole system Therefore, the system costs m. cost s are also defined with a slight difference:

elif m.type == 'sub':
m.def_costs = pyomo.Constraint (
m.cost_type,
rule=def_costs_rule_sub,
doc="main cost function by cost type')

One can see that the cost rule differs in name (def_costs_rule_sub). In this adjusted
rule, the transmission costs are called via the function transmission_cost_sub instead of
transmission_costs. This function is located in urbs/features/transmission.py at
line 429 (note the coefficients 0. 5)

def transmission_cost_sub(m, cost_type):
"""returns transmission cost function for the different cost types"""

if cost_type == 'Invest':
cost = (sum(m.cap_tra_new[t] =
m.transmission_dict['inv-cost'] [t] =
m.transmission_dict['invcost—-factor'][t]

for t in m.tra_tuples - m.tra_tuples_boun)

+ 0.5 % sum(m.cap_tra_new[t] =
m.transmission_dict['inv—-cost'] [t] =
m.transmission_dict['invcost—-factor'][t]
for t in m.tra_tuples_boun))

if m.mode['int']:

cost —= (sum(m.cap_tra_new[t] =
m.transmission_dict['inv—-cost'] [t] =
m.transmission_dict['overpay-factor'][t]
for t in m.tra_tuples_internal)

+ 0.5 % sum(m.cap_tra_newl[t] =
m.transmission_dict['inv-cost'] [t] =
m.transmission_dict|['overpay-factor'][t]
for t in m.tra_tuples_boun))

return cost

elif cost_type == 'Fixed':

(continues on next page)

164 Chapter 1. Contents

urbs Documentation, Release 1.0.0

(continued from previous page)

return (sum(m.cap_tralt] * m.transmission_dict['fix-cost'][t] =
m.transmission_dict['cost factor'][t]
for t in m.tra_tuples_internal)
+ 0.5 % sum(m.cap_tral[t] * m.transmission_dict['fix-cost

='1[t] »
m.transmission_dict['cost_factor'] [t]
for t in m.tra_tuples_boun))
elif cost_type == 'Variable':

if m.mode['dpf']:

return (sum(m.e_tra_in[(tm,) + t] » m.weight =«
m.transmission_dict['var-cost'][t] =*
m.transmission_dict['cost_factor'] [t]
for tm in m.tm
for t in m.tra_tuples_tp) + \

sum(m.e_tra_abs[(tm,) + t] * m.weight =

m.transmission_dict['var-cost'][t] =*
m.transmission_dict['cost_factor'] [t]
for tm in m.tm
for t in m.tra_tuples_dc))

else:
return (sum(m.e_tra_in[(tm,) + t] » m.weight =«
m.transmission_dict['var-cost'] [t] =
m.transmission_dict['cost_factor'] [t]

for tm in m.tm

for t in m.tra_tuples_internal)

+ 0.5 % sum(m.e_tra_in[(tm,) + t] * m.weight =
m.transmission_dict['var-cost'][t] =*
m.transmission_dict['cost_factor'] [t]

for tm in m.tm

for t in m.tra_tuples_boun))

This concludes the documentation of the ADMM implementation on urbs.

ADMM user guide

This section serves as a guide for those who would like to use the regional decomposition module by
ADMM.

Setting the modelled time steps

As with the usual urbs, the modelled time steps has to be set on runme_admm. py in the corresponding
line

Clustering scheme for the regional decomposition

Regional decomposition only makes sense if the energy system model contains multiple sites. These
sites then need to be assigned to different subproblems in “clusters”, whose scheme has to be input on
runme_admm. py within the variable clusters in the corresponding /ine:

1.4. ADMM module for regional decomposition 165

urbs Documentation, Release 1.0.0

clusters = [[('site 1 of cluster 1'), ('site 2 of cluster 1'), ('site 3 of
—cluster 1'")],
[('"site 1 of cluster 2'), ('site 2 of cluster 2')1]1]

Any number of clusters is possible, from two to the total number of sites (each site forming its own
cluster). For the trivial case of having only a single cluster, the regional decomposition is obviously not
necessary.

The input of ADMM parameters

The initialized values of ADMM parameters can be set in the following /ine on the
runfunctions_admm. py script:

for j in timesteps[l:]:
coup_vars.lambdas[cluster_idx, j, year, sit_from, sit_to] = 0
coup_vars.rhos|[cluster_idx, Jj, year, sit_from, sit_to] = 5
coup_vars.flow_global[cluster_idx, Jj, year, sit_from, sit_to] = 0

as well as here again for the quadratic penalty parameter:

problem.rho = 5

ADMM settings (admmoption)

Lastly, the ADMM settings, which are input as attributes of the class admmoption of
urbsADMMmodel can be fine tuned depending on the problem type. These settings can be found
in the corresponding section of ADMM_async/urbs_admm_model.py:

#HA-———————— ADMM parameters specification —————————————————————————————————

class admmoption (object) :
"mm This class defines all the parameters to use in admm """

def @ init_ (self):
self.rho_max = 10 # upper bound for penalty rho

self.tau_max = 1.5 # parameter for residual balancing of rho

self.tau = 1.05 # multiplier for increasing rho

self.zeta = 1 # parameter for residual balancing of rho

self.theta = 0.99 # multiplier for determining whether to update,
—rho

self.mu = 10 # multiplier for determining whether to update rho

self.pollWaitingtime = 0.001 # waiting time of receiving from one_
—plipe

self.nwaitPercent = 0.2 # waiting percentage of neighbors (0, 1]

self.iterMaxlocal = 20 # local maximum iteration

#self.convergetol = 365 + 10 x+ 1# convergence criteria for,

—maximum primal gap

self.rho_update_nu = 50 # rho is updated only for the first 50,
—iterations

self.conv_rel = 0.1 # the relative convergece tolerance, to be_
—smultiplied with len(s.flow_global)

166 Chapter 1. Contents

urbs Documentation, Release 1.0.0

Commenting out the original problem solution

The runfunctions_admm. py includes the routines for building and solution of the original, unde-
composed model for testing purposes. When the problem is solved in a decomposed way, the original
problem doesn’t need to be solved. Therefore, the following code section has to be commented out in
actual operation:

(optional) create the central problem to compare results
prob = create_model (data_all, timesteps, dt, type='normal')

refresh time stamp string and create filename for logfile
log_filename = os.path.join(result_dir, '{/.log').format (sce)

setup solver

solver_name = 'gurobi'

optim = SolverFactory(solver_name) # cplex, glpk, gurobi,
optim = setup_solver (optim, logfile=log_filename)

original problem solution (not necessary for ADMM, to compare results)
orig_time_before_solve = time.time ()

results_prob = optim.solve (prob, tee=False)

orig_time_after_solve = time.time ()

orig_duration = orig_time_after_solve - orig_time_before_solve

dict ((name, entity.value) for (name, entity),,

flows_from_original_problem
—in prob.e_tra_in.items())
flows_from_original_problem = pd.DataFrame.from_dict (flows_from_original__
—problem, orient='index',

columns=["'Original'])

as well as the rest procedure at the end of runfunctions_admm.py:

get results ———————————————————————————
ttime = time.time ()

tclock = time.clock ()

totaltime = ttime - start_time

clocktime tclock - start_clock

results = sorted(results, key=lambda x: x[0])

obj_total = 0
obj_cent = results_prob['Problem'][0]["'Lower bound']

for cluster_idx in range (0, len(clusters)):
if cluster_idx != results[cluster_idx] [0]:
print ('Error: Result of worker &d not returned!' % (cluster_idx +_
—1,))
break
obj_total += results[cluster_idx][1]['cost']

gap = (obj_total - obj_cent) / obj_cent = 100

print ('The

print ('The convergence time for ADMM is 2f' % (totaltime,))

print ('The convergence clock time is 2f' % (clocktime,))

print ('The £
("The
('The

Q

convergence time for original problem is %f' % (orig_duration,))

objective function value is ¢f' % (obj_total,))

L)

central objective function value is %f' % (obj_cent,))

[

gap in objective function is %f $%' % (gap,))

'T
'T

print
print

1.4. ADMM module for regional decomposition 167

urbs Documentation, Release 1.0.0

168 Chapter 1. Contents

CHAPTER 2

Features

urbs is a linear programming optimization model for multi-commodity energy systems, their siz-
ing, development and utilization.

It finds the minimum cost energy system to satisfy given demand timeseries for possibly multiple
commodities (e.g. electricity, heat).

By default, operates on hourly-spaced timesteps (configurable) and can be used for intertemporal
optimization.

Thanks to pandas, complex data analysis code is short and extensible.
The model itself is quite small thanks to relying on the Pyomo package.

urbs includes reporting and plotting functions for rapid scenario development.

169

https://github.com/tum-ens/urbs
http://pandas.pydata.org
http://www.pyomo.org

urbs Documentation, Release 1.0.0

170 Chapter 2. Features

CHAPTER 3

Changes

3.1 2019-03-13 Version 1.0

Maintenance: Modularity (only features which are used are build)

Maintenance: New structure of documentation

Feature:
Feature:
Feature:
Feature:
Feature:

Feature:

Time variable efficiency

Objective function can be changed to CO2

Intertemporal feature (expansion between years)

Input validation (having easier to understand error messages due to Excel file)
Reconstruction of partial feature

Global constraints instead of Hacks

Bugfixes: Many

2017-01-13 Version 0.7

Maintenance: Model file urbs . py split into subfiles in folder urbs

Feature:
Feature:

Feature:

Usable area in site implemented as possible constraint
Plot function (and get_timeseries) now support grouping of multiple sites

Environmental commodity costs (e.g. emission taxes or other pollution externalities)

Bugfix: column Overproduction in report sheet did not respect DSM

171

urbs Documentation, Release 1.0.0

3.3

3.5

3.6

2016-08-18 Version 0.6

Demand Side Management Constraints added
Process Constraints for partial operation added

Various fixes in examples, docs and tutorials for Pyomo 4/Python 3 changes

2016-02-16 Version 0.5

Support for Python 3 added

Support for Pyomo 4 added, while maintaining Pyomo 3 support. Upgrading to Pyomo 4 is
advised, as support while be dropped with the next release to support new features.

New feature: maximal power gradient for conversion processes
Documentation: buyselldoc (expired) long explanation for Buy and Sell commodity types

Documentation: Model Implementation full listing of sets, parameter, variables, objective function
and constraints in mathematical notation and textual explanation

Documentation: updated installation notes in README.md

Plotting: automatic sorting of time series by variance makes it easier to read stacked plots with
many technologies

2015-07-29 Version 0.4

Additional commodity types Buy and Sell, which support time-dependent prices.

Persistence functions load and save, based on pickle, allow saving and retrieving input data and
problem instances including results, for later re-plotting or re-analysis without having to solve
them again.

Documenation: workflow tutorial added with example “Newsealand”

2014-12-05 Version 0.3

Processes now support multiple inputs and multiple output commodities.
As a consequence plot () now plots commodity balance by processes, not input commodities.

urbs now supports input files with only a single site; simply delete all entries from the ‘Transmis-
sion’ spreadsheet and only use a single site name throughout your input.

Moved hard-coded ‘Global CO2 limit’ constraint to dedicated “Hacks” spreadsheet, while the
constraint is add_hacks ().

More docstrings and comments in the main file urbs. py.

172

Chapter 3. Changes

https://github.com/tum-ens/urbs/blob/master/README.md#installation

cHAPTER 4

Screenshots

This is a typical result plot created by urbs.plot (), showing electricity generation and storage levels
in one site over 10 days (240 time steps):

120,000 Scenario All Together: Elec in North, Mid, South

Photovoltaics
Storage

Wind park
Purchase
Hydro plant
Lignite plant
Biomass plant
Feed-in

100,000

80,000

60,000

nipi

40,000

Power (MW)

20,000

-20,000

-40,000 ‘
2,000,000 |

1,500,000 ‘

1,000,000

Energy (MWh)

500,000

3,000
2000}
1,000
0
1,000
2,000

-3,000.
5000 5024 5048 5072 5096 5120 5144
Time in year (h)

Energy (MWh)

An exemplary comparison script comp . py shows how one can create automated cross-scenario analy-
ses with very few lines of pandas code. This resulting figure shows system costs and generated electricity
by energy source over five scenarios:

173

http://pandas.pydata.org

urbs Documentation, Release 1.0.0

W Environmental Fuel BN Purchase WM Variable
Il Invest I Startup N Revenue

B Fixed

base

all together

co2 limit

co2 tax mid

no dsm

north process caps

stock prices

5

0 5 10 15 20 25 30 35
Total costs (billion EUR/a)

40

B Biomass plant

I Coal plant

Gas plant I Lignite plant I Purchase
Hydro plant =55 Photovoltaics ~ ## Wind park

0

2,000

4,000

6,000

8,000 10,000 12,000 14,000 16,000 18,000
Total energy produced (GWh)

174

Chapter 4. Screenshots

CHAPTER B

Dependencies

Python versions 2.7 or 3.x are both supported.

pyomo for model equations and as the interface to optimisation solvers (CPLEX, GLPK, Gurobi,
...). Version 4 recommended, as version 3 support (a.k.a. as coopr.pyomo) will be dropped soon.

matplotlib for plotting due to its capability to customise everything.
pandas for input and result data handling, report generation

Any solver supported by pyomo; suggestion: GLPK

175

https://www.python.org/
http://www.pyomo.org
http://matplotlib.org
http://pandas.pydata.org
https://www.gnu.org/software/glpk/

urbs Documentation, Release 1.0.0

176 Chapter 5. Dependencies

Python Module Index

u
urbs, 12

177

urbs Documentation, Release 1.0.0

178 Python Module Index

Index

C

commodity_subset () (in module urbs), 63

U

urbs (module), 1, 3, 5, 12, 20, 22, 23, 28, 31, 35,
38, 39,42, 49, 68, 77, 89, 96

179

	Contents
	User’s manual
	Users guide

	Mathematical documentation
	Mathematical description

	Technical documentation
	Model Implementation
	‘urbs’ module description

	ADMM module for regional decomposition
	ADMM module for regional decomposition

	Features
	Changes
	2019-03-13 Version 1.0
	2017-01-13 Version 0.7
	2016-08-18 Version 0.6
	2016-02-16 Version 0.5
	2015-07-29 Version 0.4
	2014-12-05 Version 0.3

	Screenshots
	Dependencies
	Python Module Index
	Index

