

urbs: A linear optimisation model for distributed energy systems

	Author:

	Johannes Dorfner, <johannes.dorfner@tum.de>

	Organization:

	Chair of Renewable and Sustainable Energy Systems [http://www.ens.ei.tum.de/],
Technical University of Munich, <urbs@ens.ei.tum.de>

	Version:

	1.0.0

	Date:

	Dec 27, 2021

	Copyright:

	The model code is licensed under the GNU General Public License 3.0 [http://www.gnu.org/licenses/gpl-3.0].
This documentation is licensed under a Creative Commons Attribution 4.0
International [http://creativecommons.org/licenses/by/4.0/] license.

Contents

User’s manual

These documents give a general overview and help you getting started from after
the installation (which is covered in the README.md [https://github.com/tum-ens/urbs/blob/master/README.md#installation] file on GitHub) to you
first running model.

	Users guide

Mathematical documentation

Continue here if you want to understand the theoretical conception of the model
generator, the logic behind the equations and the structure of the features.

	Mathematical description

Technical documentation

Continue here if you want to understand in detail the model generator
implementation.

	Model Implementation

	‘urbs’ module description

CoTraDis module

Continue here for the usage instructions on the coupled transmission-distribution system (CoTraDis) module.

	Coupling of Transmission and Distribution System Modules

Features

	urbs [https://github.com/tum-ens/urbs] is a linear programming optimization model for multi-commodity energy
systems, their sizing, development and utilization.

	It finds the minimum cost energy system to satisfy given demand timeseries
for possibly multiple commodities (e.g. electricity, heat).

	By default, operates on hourly-spaced timesteps (configurable) and can be
used for intertemporal optimization.

	Thanks to pandas [http://pandas.pydata.org], complex data analysis code is short and extensible.

	The model itself is quite small thanks to relying on the Pyomo [http://www.pyomo.org]
package.

	urbs includes reporting and plotting functions for rapid scenario
development.

Changes

2019-03-13 Version 1.0

	Maintenance: Modularity (only features which are used are build)

	Maintenance: New structure of documentation

	Feature: Time variable efficiency

	Feature: Objective function can be changed to CO2

	Feature: Intertemporal feature (expansion between years)

	Feature: Input validation (having easier to understand error messages due to Excel file)

	Feature: Reconstruction of partial feature

	Feature: Global constraints instead of Hacks

	Bugfixes: Many

2017-01-13 Version 0.7

	Maintenance: Model file urbs.py split into subfiles in folder urbs

	Feature: Usable area in site implemented as possible constraint

	Feature: Plot function (and get_timeseries) now support grouping of
multiple sites

	Feature: Environmental commodity costs (e.g. emission taxes or other
pollution externalities)

	Bugfix: column Overproduction in report sheet did not respect DSM

2016-08-18 Version 0.6

	Demand Side Management Constraints added

	Process Constraints for partial operation added

	Various fixes in examples, docs and tutorials for Pyomo 4/Python 3 changes

2016-02-16 Version 0.5

	Support for Python 3 added

	Support for Pyomo 4 added, while maintaining Pyomo 3 support. Upgrading to
Pyomo 4 is advised, as support while be dropped with the next release to
support new features.

	New feature: maximal power gradient for conversion processes

	Documentation: buyselldoc (expired) long explanation for Buy and Sell
commodity types

	Documentation: Model Implementation full listing of sets, parameter,
variables, objective function and constraints in mathematical notation and
textual explanation

	Documentation: updated installation notes in README.md [https://github.com/tum-ens/urbs/blob/master/README.md#installation]

	Plotting: automatic sorting of time series by variance makes it easier to
read stacked plots with many technologies

2015-07-29 Version 0.4

	Additional commodity types Buy and Sell, which support time-dependent
prices.

	Persistence functions load and save, based on pickle, allow saving
and retrieving input data and problem instances including results, for later
re-plotting or re-analysis without having to solve them again.

	Documenation: workflow tutorial added with example “Newsealand”

2014-12-05 Version 0.3

	Processes now support multiple inputs and multiple output commodities.

	As a consequence plot() now plots commodity balance by processes, not
input commodities.

	urbs now supports input files with only a single site; simply delete all
entries from the ‘Transmission’ spreadsheet and only use a single site name
throughout your input.

	Moved hard-coded ‘Global CO2 limit’ constraint to dedicated “Hacks”
spreadsheet, while the constraint is add_hacks().

	More docstrings and comments in the main file urbs.py.

Screenshots

This is a typical result plot created by urbs.plot(), showing electricity
generation and storage levels in one site over 10 days (240 time steps):

[image: _images/plot.png]
An exemplary comparison script comp.py shows how one can create automated
cross-scenario analyses with very few lines of pandas [http://pandas.pydata.org] code. This resulting
figure shows system costs and generated electricity by energy source over five
scenarios:

[image: _images/comparison.png]

Dependencies

	Python [https://www.python.org/] versions 2.7 or 3.x are both supported.

	pyomo [http://www.pyomo.org] for model equations and as the interface to optimisation solvers
(CPLEX, GLPK, Gurobi, …). Version 4 recommended, as version 3 support
(a.k.a. as coopr.pyomo) will be dropped soon.

	matplotlib [http://matplotlib.org] for plotting due to its capability to customise everything.

	pandas [http://pandas.pydata.org] for input and result data handling, report generation

	Any solver supported by pyomo; suggestion: GLPK [https://www.gnu.org/software/glpk/]

Users guide

Welcome to urbs. The following sections will help you get started.

	Overview model structure
	Commodity

	Process

	Transmission

	Storage

	Time series

	Get started
	Inputs

	runscript explained
	Imports

	Input Settings

	Output Settings

	Scenarios

	Run scenarios

	Business park example explained
	Task

	Input files

	Run script

	Modeling nuggets
	Different operational modes

	Proportional operation

	Scenario generation

Overview model structure

urbs is a generator for linear energy system optimization models.

urbs consists of several model entities. These are commodities, processes,
transmission and storage. Demand and intermittent commodity supply through are
modelled through time series datasets.

Commodity

Commodities are goods that can be generated, stored, transmitted and consumed.
By convention, they are represented by their energy content (in MWh), but can
be changed (to J, kW, t, kg) by simply using different (consistent) units for
all input data. Each commodity must be exactly one of the following six types:

	Stock: Buyable at any time for a given price. Supply can be limited
per timestep or for a whole year. Examples are coal, gas, uranium
or biomass.

	SupIm: Supply intermittent stands for fluctuating resources like
solar radiation and wind energy, which are available according to
a timeseries of values, which could be derived from weather data.

	Demand: These commodities have a timeseries for the requirement
associated and must be provided by output from other process or
from storage. Usually, there is only one demand commodity called
electricity (abbreviated to Elec), but multiple (e.g. electricity, space
heating, process heat, space cooling) demands can be specified.

	Env: The special commodity CO2 is of this type and represents the
amount (in tons) of greenhouse gas emissions from processes. Its
total amount can be limited, to investigate the effect of policies
on the model.

	Buy/Sell: Commodities of these two types can be traded with an external
market. Similar to Stock commodities they can be limited per hour or per
year. As opposed to Stock commodities the price at which they can be traded
is not fixed but follows a user defined time series.

Stock and environmental commodities have three numeric attributes that
represent their price, total annual and per timestep supply or emission limit,
respectively. Environmental commodities (i.e. CO2) have a maximum allowed
quantity that may be created across the entire modeling horizon.

Commodities are defined over the tuple (year, site, commodity, type), for
example (2020, 'Norway', 'Wind', 'SupIm') for wind in Norway with a time
series or (2020, 'Iceland', 'Electricity', 'Demand') for an electricity
demand time series in Iceland.

Process

Processes describe conversion technologies from one commodity to another. They
can be visualised like a black box with input(s) (commodity) and output(s)
(commodity). Process input and output ratios are the main technical parameters
for processes. Fixed costs for investment and maintenance (per capacity)
and variable costs for operation (per output) are the economical parameters.

Processes are defined over two tuples. The first tuple
(year, site, process) specifies the location of a given process e.g.
(2030, 'Iceland', 'Turbine') would locate a process Turbine at site
Iceland. The second tuple (year, process, commodity, direction) then
specifies the inputs and outputs for that process. For example,
(2030, 'Turbine', 'Geothermal', 'In') and
(2030, 'Turbine', 'Electricity', 'Out') describes that the process named
Turbine has a single input Geothermal and the single output
Electricity.

Transmission

Transmission allows instantaneous transportation of commodities between sites.
It is characterised by an efficiency and costs, just like processes.
Transmission is defined over the tuple
(year, site in, site out, transmission, commodity). For example,
(2030, 'Iceland', 'Norway', 'Undersea cable', 'Electricity') would
represent an undersea cable for electricity between Iceland and Norway.

Storage

Storage describes the possibility to deposit a deliberate amount of energy in
the form of one commodity at one time step; with the purpose of retrieving it
later. Efficiencies for charging/discharging depict losses during input/output.
Storage is characterised by capacities both for energy content (in MWh) and
charge/discharge power (in MW). Both capacities have independent sets of
investment, fixed and variable cost parameters to allow for a very flexible
parametrization of various storage technologies; ranging from batteries to hot
water tanks.

Storage is defined over the tuple (year, site, storage, stored commodity).
For example, (2020, 'Norway', 'Pump storage', 'Electricity') represents a
pump storage power plant in Norway that can store and retrieve energy in form
of electricity.

Time series

Demand

Each combination (year, site, demand commodity) may have one time series,
describing the aggregate demand (typically MWh) for a commodity within a given
timestep. They are a crucial input parameter, as the whole optimization aims to
satisfy these demands with minimal costs by the given technologies
(process, storage, transmission). An additional feature for demand commodities
is demand side management (DSM) which allows for the shifting of demands in
time.

Intermittent Supply

Each combination (year, site, supim commodity) must be supplied with one
time series, normalized to a maximum value of 1 relative to the installed
capacity of a process using this commodity as input. For example, a wind power
time series should reach value 1, when the wind speed exceeds the modeled wind
turbine’s design wind speed is exceeded. This implies that any non-linear
behaviour of intermittent processes can already be incorporated while preparing
this timeseries.

Buy/Sell prices

Each combination (year, Buy/sell commodity) must be supplied with one
time series which represents the price for purchasing/selling the given
commodities in the given modeled year.

Time variable efficiency

Each combination (year, site, process) can optionally be supplied with
one time series which multiplies the outputs of the process with an acoording
factor.

Get started

Welcome to urbs! Here you can learn how to use the program and what to do to
create your own optimization problems and run them.

Inputs

There are two different types of inputs the user has to make in order to set up
and solve an optimization problem with urbs.

First, there are the model parameters themselves, i.e. the parameters specifying
the behavior of the different model entities such as commodities or processes.
These parameters are entered into spreadsheets with a standardized structure.
These then have to be placed in the subfolder Input. There can be no
further information given on those parameters here since they make up the
particular energy system models. There are, however, two examples provided with
the code, which are explained elsewhere in this documentation.

Second, there are the settings of the modeling run such as the modeling horizon
or the solver to be employed. These settings are made in a run script. For the
standard example such scripts are given named runme.py for the example
mimo-example and runBP.py for the example Business park. To run a
modeling run you then simply execute the according run script by typing:

$ python3 runscript.py

in the command prompt.

You can immediately test this after the installation by running one of the two
standard examples using the corresponding example run scripts.

runscript explained

The runscript can be subdivided into several parts. These will be discussed
here in detail.

Imports

The script starts with importing the relevant python libraries as well as the
module urbs.

import os
import shutil
import urbs

The included packages have the following functions:

	os [https://docs.python.org/2/library/os.html] and shutil [https://docs.python.org/2/library/shutil.html] are builtin Python modules, included here for their data
path and copying operations.

	urbs [https://github.com/tum-ens/urbs] is the directory which includes the modules, whose functions are used
mainly in this script. These are prepare_result_directory(),
setup_solver() and run_scenario().

More functions can be found in the document API reference [https://pandas.pydata.org/pandas-docs/stable/reference/index.html#api].

In the following sections the user defined input, output and scenario settings
are described.

Input Settings

The script starts with the specification of the input files, which is either a
single .xlsx file located in the same folder as the runscript or a collection
of .xlsx files located in the subfolder Input:

input_files = 'Input'
result_name = 'Mimo-ex'
result_dir = urbs.prepare_result_directory(result_name) # name + time stamp

copy input file to result directory
try:
 shutil.copytree(input_files, os.path.join(result_dir, 'Input'))
except NotADirectoryError:
 shutil.copyfile(input_files, os.path.join(result_dir, input_files))
copy runme.py to result directory
shutil.copy(__file__, result_dir)

The input file/folder and the runscript are automatically copied into the
result folder.

Next variables specifying the desired solver and objective function are set:

choose solver (cplex, glpk, gurobi, ...)
solver = 'glpk'

objective function
objective = 'cost' # set either 'cost' or 'CO2' as objective

The solver has to be licensed for the specific user, where the open source
solver “glpk” is used as the standard. For the objective function urbs
currently allows for two options: “cost” and “CO2” (case sensitive). In the
former case the total system cost and in the latter case the total
CO2-emissions are minimized.

The model parameters are finalized with a specification of timestep length and
modeled time horizon:

simulation timesteps
(offset, length) = (3500, 168) # time step selection
timesteps = range(offset, offset+length+1)
dt = 1 # length of each time step (unit: hours)

The variable timesteps is the list of timesteps to be simulated. Its
members must be a subset of the labels used in input_file’s sheets “Demand”
and “SupIm”. It is one of the function arguments to create_model() and
accessible directly, so that one can quickly reduce the problem size by
reducing the simulation length, i.e. the number of timesteps to be
optimised. Variable dt is the duration of each timestep in the list in
hours, where any positiv real value is allowed.

range() is used to create a list of consecutive integers. The argument
+1 is needed, because range(a,b) only includes integers from a to
b-1:

>>> range(1,11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Output Settings

The desired output is also specified by the user in the runscript. It is split
into two parts: reporting and plotting. The former is used to generate an excel
output file and the latter for standard graphs.

Reporting

urbs by default generates an .xlsx-file as an ouput in result_dir. This file
includes all commodities of interest to the user and can be specified as report
tuples each consisting of a given year, sites and
commodities combination. Information about these commodities is summarized
both in sum (in sheet “Energy sums”) and as individual timeseries
(in sheet “… timeseries”).

detailed reporting commodity/sites
report_tuples = [
 (2019, 'North', 'Elec'),
 (2019, 'Mid', 'Elec'),
 (2019, 'South', 'Elec'),
 (2019, ['North', 'Mid', 'South'], 'Elec'),
 (2024, 'North', 'Elec'),
 (2024, 'Mid', 'Elec'),
 (2024, 'South', 'Elec'),
 (2024, ['North', 'Mid', 'South'], 'Elec'),
 (2029, 'North', 'Elec'),
 (2029, 'Mid', 'Elec'),
 (2029, 'South', 'Elec'),
 (2029, ['North', 'Mid', 'South'], 'Elec'),
 (2034, 'North', 'Elec'),
 (2034, 'Mid', 'Elec'),
 (2034, 'South', 'Elec'),
 (2034, ['North', 'Mid', 'South'], 'Elec'),
]

optional: define names for sites in report_tuples
report_sites_name = {(‘North’, ‘Mid’, ‘South’): ‘All’}

Optionally it is possible to define clusters of sites for aggregated
information and with report_sites_name it is then possible to name these.
If they are empty, the default value will be taken.

Plotting

urbs generates default result images. Which images exactly are desired can be
set by the user. via the following input lines:

plotting commodities/sites
plot_tuples = [
 (2019, 'North', 'Elec'),
 (2019, 'Mid', 'Elec'),
 (2019, 'South', 'Elec'),
 (2019, ['North', 'Mid', 'South'], 'Elec'),
 (2024, 'North', 'Elec'),
 (2024, 'Mid', 'Elec'),
 (2024, 'South', 'Elec'),
 (2024, ['North', 'Mid', 'South'], 'Elec'),
 (2029, 'North', 'Elec'),
 (2029, 'Mid', 'Elec'),
 (2029, 'South', 'Elec'),
 (2029, ['North', 'Mid', 'South'], 'Elec'),
 (2034, 'North', 'Elec'),
 (2034, 'Mid', 'Elec'),
 (2034, 'South', 'Elec'),
 (2034, ['North', 'Mid', 'South'], 'Elec'),
]

optional: define names for sites in plot_tuples
plot_sites_name = {('North', 'Mid', 'South'): 'All'}

plotting timesteps
plot_periods = {
 'all': timesteps[1:]
 }

The logic is similar to the reporting case discussed above. With the setting of
plotting timesteps the exact range of the plotted result can be set. In the
default case shown this range is all modeled timesteps. For larger optimization
timestep ranges this can be impractical and instead the following syntax can be
used to hard code which steps are to be plotted exactly.

plotting timesteps
plot_periods = {
 'win': range(1000:1168),
 'sum': range(5000:5168)
 }

In this example two 1 week long ranges are plotted between the specified time
steps. Using this make sure, that the chosen ranges are subsets of the modeled
time steps themselves.

The plot colors can be customized using the module constant COLORS. All
plot colors are user-definable by adding color tuple() (r, g, b) or
modifying existing tuples for commodities and plot decoration elements. Here,
new colors for displaying import/export are added. Without these, pseudo-random
colors are generated in to_color().

create timeseries plot for each demand (site, commodity) timeseries
for sit, com in prob.demand.columns:

Scenarios

This section deals with the definition of different scenarios. Starting from
the same base scenarios, defined by the data in input_file, they serve as a
short way of defining the difference in input data. If needed, completely
separate input data files could be loaded as well.

The scenarios list in the end of the input file allows then to select the
scenarios to be actually run.

scenarios = [
 urbs.scenario_base,
 urbs.scenario_stock_prices,
 urbs.scenario_co2_limit,
 urbs.scenario_co2_tax_mid,
 urbs.scenario_no_dsm,
 urbs.scenario_north_process_caps,
 urbs.scenario_all_together
]

The following scenario functions are specified in the subfolder urbs in
script scenarios.py.

Scenario functions

A scenario is simply a function that takes the input data and modifies it
in a certain way. with the required argument data, the input
data dict [https://docs.python.org/3/library/stdtypes.html#dict].:

SCENARIOS
def scenario_base(data):
 # do nothing
 return data

The simplest scenario does not change anything in the original input file. It
usually is called “base” scenario for that reason. All other scenarios are
defined by 1 or 2 distinct changes in parameter values, relative to this common
foundation.:

def scenario_stock_prices(data):
 # change stock commodity prices
 co = data['commodity']
 stock_commodities_only = (co.index.get_level_values('Type') == 'Stock')
 co.loc[stock_commodities_only, 'price'] *= 1.5
 return data

For example, scenario_stock_prices() selects all stock commodities from
the DataFrame commodity, and increases their price value by 50%.
See also pandas documentation Selection by label [https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-label]
for more information about the .loc function to access fields. Also note
the use of Augmented assignment statements [http://docs.python.org/2/reference/ simple_stmts.html#augmented-assignment-statements] (*=) to modify data
in-place.:

def scenario_co2_limit(data):
 # change global CO2 limit
 hacks = data['hacks']
 hacks.loc['Global CO2 limit', 'Value'] *= 0.05
 return data

Scenario scenario_co2_limit() shows the simple case of changing a single
input data value. In this case, a 95% CO2 reduction compared to the base
scenario must be accomplished. This drastically limits the amount of coal and
gas that may be used by all three sites.:

def scenario_north_process_caps(data):
 # change maximum installable capacity
 pro = data['process']
 pro.loc[('North', 'Hydro plant'), 'cap-up'] *= 0.5
 pro.loc[('North', 'Biomass plant'), 'cap-up'] *= 0.25
 return data

Scenario scenario_north_process_caps() demonstrates accessing single
values in the process DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]. By reducing the amount of
renewable energy conversion processes (hydropower and biomass), this scenario
explores the “second best” option for this region to supply its demand.:

def scenario_all_together(data):
 # combine all other scenarios
 data = scenario_stock_prices(data)
 data = scenario_co2_limit(data)
 data = scenario_north_process_caps(data)
 return data

Scenario scenario_all_together() finally shows that scenarios can also be
combined by chaining other scenario functions, making them dependent. This way,
complex scenario trees can written with any single input change coded at a
single place and then building complex composite scenarios from those.

Run scenarios

This now finally is the function that gets everything going. It is invoked in
the very end of the runscript.

for scenario in scenarios:
prob = urbs.run_scenario(input_files, solver, timesteps, scenario,
 result_dir, dt, objective,
 plot_tuples=plot_tuples,
 plot_sites_name=plot_sites_name,
 plot_periods=plot_periods,
 report_tuples=report_tuples,
 report_sites_name=report_sites_name)

Having prepared settings, input data and scenarios, the actual computations
happen in the function run_scenario() of the script runfunctions.py
in subfolder urbs. It is executed for each of the scenarios included in the
scenario list. The following sections describe the content of function
run_scenario(). In a nutshell, it reads the input data from its argument
input_file, modifies it with the supplied scenario, runs the
optimisation for the given timesteps and writes report and plots to
result_dir.

Reading input

scenario name, read and modify data for scenario
sce = scenario.__name__
data = read_input(input_files,year)
data = scenario(data)
validate_input(data)

Function read_input() returns a dict data of up to 12 pandas
DataFrames with hard-coded column names that correspond to the parameters of
the optimization problem (like eff for efficiency or inv-cost-c for
capacity investment costs). The row labels on the other hand may be freely
chosen (like site names, process identifiers or commodity names). By
convention, it must contain the six keys commodity, process,
storage, transmission, demand, and supim. Each value must be a
pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], whose index (row labels) and columns (column labels)
conforms to the specification given by the example dataset in the spreadsheet
mimo-example.xlsx.

data is then modified by applying the scenario() function to it. To
then rule out a list of known errors, that accumulate through growing user
experience, a variety of validation functions specified in script
validate.py in subfolder urbs is run on the dict data.

Solving

create model
prob = urbs.create_model(data, dt, timesteps)

refresh time stamp string and create filename for logfile
now = prob.created
log_filename = os.path.join(result_dir, '{}.log').format(sce)

solve model and read results
optim = SolverFactory('glpk') # cplex, glpk, gurobi, ...
optim = setup_solver(optim, logfile=log_filename)
result = optim.solve(prob, tee=True)

This section is the “work horse”, where most computation and time is spent. The
optimization problem is first defined (create_model()) and populated
with parameter values with values. The SolverFactory object is an abstract
representation of the solver used. The returned object optim has a method
set_options() to set solver options (not used in this tutorial).

The remaining line calls the solver and reads the result object back
into the prob object, which is queried to for variable values in the
remaining script file. Argument tee=True enables the realtime console
output for the solver. If you want less verbose output, simply set it to
False or remove it.

Business park example explained

In this part the input files of the standard example Business park will be
explained in detail.

Task

The task we set ourselves here is to build our own intertemporal model. The
task is the following:

The technical staff of a business park management company wants you to find the
cost optimal energy system for their business park. You are to provide this
with increasingly stricter CO2 emission limits over time. As the company expects
to operate this business park for a long time still, they want you to help
developing a long term strategy how to transform the energy supply
infrastructure of the business park in cost optimal way over the time frame of
3 decades. The company also expects that the business park will be increasingly
closely interacting with the neighboring small city and its energy system. All
current and expected demand curves are given to you. You also have full access
to regional climate models and all relevant parameters for the energy conversion
units relevant for your problem.

Input files

The task set is intertemporal. That is we need to provide several .xlsx input
files, one for each modeled year. Here we chose to use 3 files representing
modeled years 10 years apart. For the given task this seems to be a good
compromise between accuracy and computational effort. The files are named
2020.xlsx, 2030.xlsx and 2040.xlsx and sit in the folder
Input (Business park). We will now proceed with a detailed walkthrough of
the individual files.

Sheet Global

Here you can now specify the global properties needed for the modeling of the
energy system. Note that this sheet has different entries for the different
input files:

	Support timeframe (All files): Give the value for the modeled year here.

	Discount rate (Only first file): This value gives the discount rate that
is used for intertemporal planning. It stands for the annual devaluation of
money across the modeling horizon.
In the example a discount rate of 3 % is used.

	CO2 limit (All files): This parameter limits the CO2 emissions across
all sites within one modeled year, the CO2 budget sets a cap on the total
emissions across all sites in the entire modeling horizon. If no restriction
is desired enter ‘inf’ here.
In the example increasingly strict values for the CO2 limit are used for the
different modeled years, from 60 kt/a in 2020 over 45 kt/a in 2030 to
30 kt/a in 2040. This represents the will of the company to achieve
milestones in the emission reductions while gradually changing their energy
infrastructure.

	CO2 budget (Only first file): While the CO2 limit specified for each
year limits the CO2 emissions across all sites within one modeled year, the
CO2 budget sets a cap on the total emissions across all sites in the entire
modeling horizon. If no restriction is desired enter ‘inf’ here. The
CO2 budget is only active when the Objective is set to its default value
‘cost’.
In the example a CO2 budget of 1.2 Mt is used. This budget imposes a
stricter limit on the emissions than the combined targets for the individual
modeled year. In terms of climate impact his limit is the more important one.
For all CO2 limitations the business park and the city are considered
together since in the assumed case the company running the business park
wants to act as an electricity provider for the city as well.

	Cost budget (Only first file): With this parameter a limit on the total
system cost over the entire modeling horizon can be set. If no restriction is
desired enter ‘inf’ here. The Cost budget is only active when the
Objective is set to the value ‘CO2’.
In the example no CO2 optimization is considered this parameter is thus set
to infinity.

	Last year weight (Only last file): In intertemporal modeling each modeled
year is repeated until the next modeled year is reached. This is done ba
assigning a weight to the costs accrued in each of the modeled years. For the
last modeled year the number of repetitions has to be set by the user here,
where a high number leads to a stronger weighting of the last modeled year,
i.e. of the final energy system configuration.
In the example the last year has a weight of 10 years. This means that it
will be equally weighted identically to the others which always represent all
years until the ext modeled year.

Sheet Site

In this sheet you can specify the site names and also the area of each site.
The line index represents all the sites. The only site specific property to be
set is then:

	Area: Specifies the usable area for processes in the given site. The area
does not need to be the total floor area. It is used to limit the use of area
consuming processes and can be seen as, e.g., the roof area for solar
technologies.

In the example two sites ‘Business park’ and ‘City’ are given. These and
their respective areas do not change. The areas here represent roof areas for
PV and the city has more of this.

Sheet Commodity

In this sheet all the commodities, i.e. energy or material carriers, are
specified. The line index completes a commodity tuple, i.e. a connection
(year, site, commodity, type). There are three properties to be specified
for all commodities of types Stock, Buy, Sell and
Environmental.

	Price denotes the cost of taking one unit of energy from the stock for
Stock commodities or emitting one unit of Environmental. For Buy
and Sell commodities this is not directly a price but a multiplier for
the time series given in the sheet ‘Buy-Sell-Price’. It is thus typically set
to 1 for these commodity types.

	max limits the total amount of the commodity that may be bought, sold or
emitted per year.

	maxperhaour limits the total amount of the commodity that may be bought,
sold or emitted per hour (not timestep but really hour).

In the site ‘Business park’ there are 9 commodities defined:

	Solar (West/East) is of type SupIm and represents the capacity factor
timeseries of solar panels mounted with a given inclination (10° both West
and East).

	Grid electricity is of type Buy and represents the electricity price as
bought from the regional grid operator. The business park pays constant price
over the year. In the site ‘City’ this price is different and hence a
multiplier is used to increase the wholesale price for households.

	Gas is of type Stock and represents the price for the purchase of
natural gas from the local provider.

	Electricity, Heat and Cooling are of type Demand and represent the
hourly demand for these three energy carriers.

	Intermediate is of type Stock. However, it is not possible to buy this
commodity from the stock. It is introduced to allow for a flexible operation
of a combined heat and power (CHP) plant according to section
Modeling nuggets.

	Intermediate low temperature is of type Stock. It is also not buyable
from an external source. Its purpose is to make the operation of the cooling
processes more realistic by preventing the storage of high temperature
cooling from ambient air cooling in cold storages.

In site ‘City’ one additional commodity, Operation decentral units is
introduced. It is of type SupIm and makes sure that the different heating
technologies usable in the site all operate at a fixed share of the total heat
demand. This is necessary, since these technologies are build up in a decentral
way in the individual houses. The idea behind this is laid out in section
Modeling nuggets.

Sheet Process

In this sheet the energy conversion technologies are described. Here only the
economical and some general technical parameters are set. The interactions with
the commodities are introduced in the next sheet. The following parameters are
set here for the processes:

	Installed capacity (MW) (Only first file) gives the capacity of the
process that is already istalled at the start of the modeling horizon.

	Lifetime of installed capacity (years) (Only first file) gives the rest
lifetime of the installed processes in years. A process can be used in a
modeled year y still if the lifetime plus the first modeled year exceeds
the next year y+1.

	Minimum capacity (MW) denotes a capacity target that has to be met by the
process in a given modeled year. This means that the system will build at
least this capacity.

	Maximum capacity (MW) restricts the capacity that can be built to the
specified value.

	Maximum power gradient (1/h) restricts the ramping of process operational
states, i.e. the change in the throughput variable. The value gives the
fraction of the total capacity that can be changed in one hour. A value of
1 thus restricts the change from idle to full operational state
(or vice versa) to at least a duration of one hour.

	Minimum load fraction gives a lower limit for the operational state of a
process as a fraction of the total capacity. It is only relevant for
processes where part-load behavior is modeled. A value here is only active
when ‘Ratio-Min’ is numerical for at least one input commodity.

	Investment cost (€/MW) denotes the capacity specific investment costs for
the process. You should give the book value here. The program will then
translate this into the correct total, discounted cost within the model
horizon.

	Annual fix costs (€/MW) represent the amount of money that has to be
spent annually for the operation of a process capacity. They can represent,
e.g., labour costs or calendaric ageing costs.

	Variable costs (€/MWh) are linked to the operation of a process and are
to be paid for each unit of throughput through the process. They can
represent anything from usage ageing to taxes.

	Weighted average cost of capital denotes the interest rate or expected
return on investment with which the investor responsible for the energy
system calculates.

	Depreciation period denotes both the economical and technical lifetime of
all units in the system. It thus determines two things: the total costs of a
given investment and the end of operational time for all units in the energy
system modeled.

	Area use per capcacity (m^2/MW) specifies the physical area a given
process takes up at the site it is built. This can be used, e.g. to
restrict the capacity of solar technologies by a total maximal roof area. The
restricting area is defined in sheet ‘Site’.

While the details of the processes will be discussed in more detail in the next
section one mention on the processes ‘Load dump’ and ‘Slack’ is made here.
These processes are not introduced to represent real units but help making
operation more realistic and error fixing more easy. A load dump process just
destroys energy which is sometimes necessary in order to prevent the system from
doing unrealistic gymnastics to keep the vertex rule. A ‘Slack’ process can
create a demand commodity out of thin air for an extremely high price. It thus
indicates when the problem is not feasible, making error fixing much easier.
Both should typically be included in models.

Sheet Process-Commodity

In this sheet the technical properties of processes are set. These properties
are given for each process independent of the site where the process is
located. You need to make an imput for all the processes defined in the
‘Process’ sheet. The line index is a tuple (process, commodity, direction),
where ‘Direction’ has to be set as either ‘In’ or ‘Out’ and specifies wether a
commodity is an in- or an output of a given process. Under the column ‘ratio’
you then have to specify the commodity in- or outflows per installed capacity
and time step at the point of full operation. The efficiency of the process for
the conversion of one input into one output commodity is then given by the
ratio of the chosen values. For example, in the modeled year 2020 the process
‘Gas engine power plant’ converts 2.2 MWh of ‘Gas’ into one MWh each of
‘Electricity’ and ‘Heat’ while emitting 0.2 t of ‘CO2’. This corresponds to an
efficiency of 0.45 for ‘Heat’ and ‘Electricity’ conversion.

If a process has a more complex part load behavior, where, e.g., the efficiency
changes this can be partly captured by setting values in the ‘ratio-min’
column. These specify the commodity flows at the minimum operation point
specified in the ‘Process’ sheet under ‘min-fract’. The process will then no
longer be allowed to turn off so use this carefully. In the present case this
behavior is set for the combined heat and power plant ‘CHP (Operational state)’
only.

There are a few special settings made in the example. First, the CHP plant is
divided into three parts. The idea behind this is described in Modeling nuggets.
The two processes ‘CHP (Electricity driven)’ and ‘CHP (Heat driven)’ specify
the commodity flows in the two extreme operational states. The system can then
chose all linear interpolations between both states by guiding the commodity
flow of ‘Intermediate’ through the two processes in the desired ratio. Second,
the cooling technologies are implemented in a two stage way. The reason for
this is that the process ‘Ambient air cooling’ is extremely efficient and
extremely cheap. While it can only be used in certain time intervals (see
explanation of ‘TimeVarEff’ further below), its output could nevertheless be
stored otherwise which is not realistic. The introduction of commodity
‘Intermediate low temperature’ prevents this. It is the output of all the
cooling technologies except for ‘Ambient air cooling’ and is also the one that
can be stored (see below).

Sheet Transmission

In this sheet the parameters for transmission lines between sites are specified.
The line index is part of a transmission tuple (Site In, Site Out,
Transmission, Commodity). Note that for each transmission the inverse one
with the same properties should also be given. The parameters are the
following:

	Efficiency (1) specifies the transport efficiency of the transmission
line.

	Lifetime of installed capacity (years) (Only first file) gives the rest
lifetime of the installed transmission lines in years. A transmission line
can be used in a modeled year y still if the lifetime plus the first
modeled year exceeds the next year y+1.

	Investment cost (€/MW) denotes the capacity specific investment costs for
the transmission line. You should give the book value here. The program will
then translate this into the correct total, discounted cost within the model
horizon.

	Annual fix costs (€/MW) represent the amount of money that has
to be spent annually for the operation of a transmission capacity. They can
represent, e.g., labour costs or calendaric ageing costs.

	Variable costs (€/MWh) are linked to the operation of a given
transmission line.

	Installed capacity (MW) (Only first file) gives the transmission capacity
of transmission lines already installed at the start of the modeling horizon.

	Minimum capacity (MW) denotes a transmission capacity target that has
to be met by the transmission lines in a given modeled year. This means that
the system will build at least this transmission capacity.

	Maximum capacity (MW) restricts the transmission capacity that can be
built to the specified value.

	Weighted average cost of capital denotes the interest rate or expected
return on investment with which the investor responsible for the energy
system calculates.

	Depreciation period denotes both the economical and technical lifetime of
all units in the system. It thus determines two things: the total costs of a
given investment and the end of operational time for all units in the energy
system modeled.

In the example the only commodity that can be transported from one site to the
other is electricity.

Sheet Storage

In this sheet the parameters for storage units are specified. Each storage unit
is indexed with parts of a storage tuple (storage, commodity). In storages
charging/discharging power and the capacity are sized independently. The
parameters specifying the storage properties are the following:

	Installed capacity (MWh) (Only first file) gives the storage capacity of
storages already installed at the start of the modeling horizon.

	Installed storage power (MW) (Only first file) gives the
charging/discharging power of storages already installed at the start of the
modeling horizon.

	Lifetime of installed capacity (years) (Only first file) gives the rest
lifetime of the installed storages in years. A storage can be used in a
modeled year y still if the lifetime plus the first modeled year exceeds
the next year y+1.

	Minimum storage capacity (MWh) denotes a storage capacity target that has
to be met by the storage in a given modeled year. This means that the system
will build at least this capacity.

	Maximum storage capacity (MWh) restricts the storage capacity that can be
built to the specified value.

	Minimum storage power (MW) denotes a storage charging/discharging power
target that has to be met by the storage in a given modeled year. This means
that the system will build at least this power.

	Maximum storage power (MW) restricts the storage charging/discharging
that can be built to the specified value.

	Efficiency input (1) specifies the charging efficiency of the storage.

	Efficiency output (1) specifies the discharging efficiency of the
storage.

	Investment cost capacity (€/MWh) denotes the storage capacity specific
investment costs for the storage. You should give the book value here. The
program will then translate this into the correct total, discounted cost
within the model horizon.

	Investment cost power (€/MW) denotes the storage charging/discharging
power specific investment costs for the storage. You should give the book
value here. The program will then translate this into the correct total,
discounted cost within the model horizon.

	Annual fix costs capacity (€/MWh) represent the amount of money that has
to be spent annually for the operation of a storage capacity. They can
represent, e.g., labour costs or calendaric ageing costs.

	Annual fix costs power (€/MW) represent the amount of money that has to
be spent annually for the operation of a storage power. They can represent,
e.g., labour costs or calendaric ageing costs.

	Variable costs capacity (€/MWh) are linked to the operation of a given
storage state, i.e. they lead to costs whenever a storage has a non-zero
state of charge. These costs should typically set to zero but can be used to
manipulate the storage duration or model state-of-charge dependent ageing.

	Variable costs power (€/MWh) are linked to the charging and discharging
of a storage. Each unit of commodity leaving the storage requires the payment
of these costs.

	Weighted average cost of capital denotes the interest rate or expected
return on investment with which the investor responsible for the energy
system calculates.

	Depreciation period denotes both the economical and technical lifetime of
all units in the system. It thus determines two things: the total costs of a
given investment and the end of operational time for all units in the energy
system modeled.

	Initial storage state can be used to set the state of charge of a storages
in the beginning of the modeling time steps. If nan is given this value is
an optimization variable. In any case the storage content in the end is the
same as in the beginning to avoid windfall profits from simply discharging a
storage.

	Discharge gives the hourly discharge of a storage. Over time, when no
charging or discharging occurs, the storage content will decrease
exponentially.

In the example there are no storages in site ‘City’ and there is a storage for
each demand in site ‘Business park’. The commodity ‘Cooling’ is not directly
storable to avoid an unrealistic behavior for the process ‘Ambient air cooling’
as was discussed above in the ‘Process-Commodity’ section.

Sheets Demand, SupIm, Buy/Sell price

In these sheets the time series for all the demands, capacity factors of
processes using commodities of type ‘SupIm’ and market prices for ‘Buy’ and
‘Sell’ commodities are to be specified. For the former two the syntax
‘site.commodity’ has to be used as a column index to specify the corresponding
tuple.

Sheet TimeVarEff

In this sheet a time series for the output of processes can be given. This is
always useful, when processes are somehow dependent on external parameters. The
syntax to be used to specify which process is to be addressed by this is
‘site.process’. In the present example, this is used for the process
‘Ambient air cooling’ which has a boolean ‘TimeVarEff’ curve giving the value
‘1’ for temperatures below a threshold and ‘0’ else.

This concludes the input generation. Of course all parameters have to be set
in all the input sheets.

Run script

To run the example you can make a copy of the file runme.py calling it,
e.g., run_BP.py in the same folder. You now just have to make 3
modifications. First, replace the report tuples by:

report_tuples = [
 (2020, 'Business park', 'Electricity'),
 (2020, 'Business park', 'Heat'),
 (2020, 'Business park', 'Cooling'),
 (2020, 'Business park', 'Intermediate low temperature'),
 (2020, 'Business park', 'CO2'),
 (2030, 'Business park', 'Electricity'),
 (2030, 'Business park', 'Heat'),
 (2030, 'Business park', 'Cooling'),
 (2030, 'Business park', 'Intermediate low temperature'),
 (2030, 'Business park', 'CO2'),
 (2040, 'Business park', 'Electricity'),
 (2040, 'Business park', 'Heat'),
 (2040, 'Business park', 'Cooling'),
 (2040, 'Business park', 'Intermediate low temperature'),
 (2040, 'Business park', 'CO2'),
 (2020, 'City', 'Electricity'),
 (2020, 'City', 'Heat'),
 (2020, 'City', 'CO2'),
 (2030, 'City', 'Electricity'),
 (2030, 'City', 'Heat'),
 (2030, 'City', 'CO2'),
 (2040, 'City', 'Electricity'),
 (2040, 'City', 'Heat'),
 (2040, 'City', 'CO2'),
 (2020, ['Business park', 'City'], 'Electricity'),
 (2020, ['Business park', 'City'], 'Heat'),
 (2020, ['Business park', 'City'], 'CO2'),
 (2030, ['Business park', 'City'], 'Electricity'),
 (2030, ['Business park', 'City'], 'Heat'),
 (2030, ['Business park', 'City'], 'CO2'),
 (2040, ['Business park', 'City'], 'Electricity'),
 (2040, ['Business park', 'City'], 'Heat')
 (2040, ['Business park', 'City'], 'CO2'),
]

optional: define names for sites in report_tuples
report_sites_name = {('Business park', 'City'): 'Together'}

and the plot tuples by:

plot_tuples = [
 (2020, 'Business park', 'Electricity'),
 (2020, 'Business park', 'Heat'),
 (2020, 'Business park', 'Cooling'),
 (2020, 'Business park', 'Intermediate low temperature'),
 (2020, 'Business park', 'CO2'),
 (2030, 'Business park', 'Electricity'),
 (2030, 'Business park', 'Heat'),
 (2030, 'Business park', 'Cooling'),
 (2030, 'Business park', 'Intermediate low temperature'),
 (2030, 'Business park', 'CO2'),
 (2040, 'Business park', 'Electricity'),
 (2040, 'Business park', 'Heat'),
 (2040, 'Business park', 'Cooling'),
 (2040, 'Business park', 'Intermediate low temperature'),
 (2040, 'Business park', 'CO2'),
 (2020, 'City', 'Electricity'),
 (2020, 'City', 'Heat'),
 (2020, 'City', 'CO2'),
 (2030, 'City', 'Electricity'),
 (2030, 'City', 'Heat'),
 (2030, 'City', 'CO2'),
 (2040, 'City', 'Electricity'),
 (2040, 'City', 'Heat'),
 (2040, 'City', 'CO2'),
 (2020, ['Business park', 'City'], 'Electricity'),
 (2020, ['Business park', 'City'], 'Heat'),
 (2020, ['Business park', 'City'], 'CO2'),
 (2030, ['Business park', 'City'], 'Electricity'),
 (2030, ['Business park', 'City'], 'Heat'),
 (2030, ['Business park', 'City'], 'CO2'),
 (2040, ['Business park', 'City'], 'Electricity'),
 (2040, ['Business park', 'City'], 'Heat')
 (2040, ['Business park', 'City'], 'CO2'),
]

optional: define names for sites in plot_tuples
plot_sites_name = {('Business park', 'City'): 'Together'}

In this way you get a meaningful output for the optimization runs. Second, the
scenarios are made for the other example and are as such no longer usable
here. Thus only the base scenario is to be run. Change the list scenario to the
following:

scenarios = [
 urbs.scenario_base
]

Having completed all these steps you can execute the code.

Modeling nuggets

Here you can find a collection of non-trivial modeling ideas that can be used
in linear energy system modeling with urbs. It is meant for more advanced users
and you should fully understand the two standard examples mimo-example and
Business park before proceeding. What follows is a loose collection of
modeling approaches and does not follow any internal logic.

Different operational modes

For many power plants as, e.g., combined heat and power plants (CHP) there are
different modes of operation. These and intermediate states between the
extremes can be well captured in urbs models using the approach sketched in the
following picture:

[image: ../_images/Flex_Op.png]
Here the vertical lines represent the commodities and the rectangle are
processes. The arrows indicate in- and output commodities of the processes. In
the case shown the power plant ‘Unit’ would be able to operate between a state
where only ‘Output 1’ comes out and a state where only ‘Output 2’ comes out.
The two extreme cases can, however, also be chosen as combinations of both
outputs already.

The idea behind the figure is the following:
The commodity ‘Intermediate’ is to be produced exclusively by the process ‘Unit
(operational state)’. It thus simply tracks the throughput of this process. Due
to the vertex rule (Kirchhoff´s current law) the commodity ‘Intermediate’ once
produced needs to be consumed immediately. This can happen either via
‘Unit (Mode 1)’, ‘Unit (Mode 2)’ or a linear combination of both. The result is
then the desired choice for the optimizer between states formed by linear
combinations of the two modes. The commodity ‘Intermediate’ is best chosen as a
Stock commodity where either the price is set to infinity or the maximum
allowed usage per hour, or year (or both) is set to zero. This ensures that the
commodity has to be produced by the process and cannot be bought from an
external source, which for the present case would of course be absurd.

All process parameters and the setting of part load, time variable efficiency
etc. is best done for the ‘Unit (operational state)’ process. The two other
processes should in turn be used as mathematical entities that are defined by
their ‘process commodity’ input only.

Proportional operation

Often many individual consumers are lumped together in one site. If a demand of
these consumers is then met by a collection of decentral units it is important
that the different technology options for these decentral units each fulfill a
fixed fraction of the demand in each time step. This means that the different
technology options are proportional to each other and the demand.

This behavior can be enforced by the following design:

[image: ../_images/Prop_Op.png]
Here the vertical lines represent the commodities and the rectangle are
processes. The arrows indicate in- and output commodities of the processes.

For the desired result the commodity ‘Operational state’ has to be of type
SupIm and the corresponding time series has to be set as the normalized
demand. in this way the optimizer can still size the two technology options
‘Process 1’ and ‘Process 2’ optimally while being forced to operate them
proportionally to each other and to the demand. Other input or output
(not shown) commodities can then be associated with the process operation as
usual and will be dragged along by the forced operation.

Scenario generation

For a sensitivity analysis, it might be helpful to not manually create all scenario definitions automatically. For example, if one is interested in how installed capacities of PV and storage change the output, one might define ranges for each capacity. If there are four thresholds for the PV capacity and five for storage capacity, creating all 20 scenarios by hand is quite tiresome.

In this example, one wants to run an optimization with capacities 20 GW, 30 GW, 40 GW and 50 GW for PV and 50 GW, 60 GW, 70 GW, 80 GW and 90 GW for storage capacities.

Therefore, a function factory is created, which takes the values for PV and storage capacity and creates a scenario function out of it. This is done in the file scenarios.py:

def create_scenario_pv_sto(pv_val, sto_val):
 def scenario_pv_sto(data):
 # set PV capacity for all sites
 pro = data['process']
 solar = pro.index.get_level_values('Process') == 'Photovoltaics'
 pro.loc[solar, 'inst-cap'] = pv_val
 pro.loc[solar, 'cap-up'] = sto_val

 # set storage content capacity
 sto = data['storage']
 for site_sto_tuple in sto.index:
 sto.loc[site_sto_tuple, 'inst-cap-c'] = sto_val
 sto.loc[site_sto_tuple, 'cap-up-c'] = sto_val

 return data
 # define name for scenario dependent on pv and storage values
 scenario_pv_sto.__name__ = f"scenario_pv{int(pv_val/1000)}_sto{int(sto_val/1000)}"
 return scenario_pv_sto

In runme.py the following has to be added:

define range for sensitvity
pv_vals = range(20000, 50001, 10000)
sto_vals = range(50000, 90001, 10000)

create scenario functions
scenarios = []
for pv_val in pv_vals:
 for sto_val in sto_vals:
 scenarios.append(urbs.create_scenario_pv_sto(pv_val, sto_val))

Mathematical description

In this Section the mathematical description of a model generated by urbs
will be explained. The structure here follows the basic code structure and
proceeds as follows:

First, a short introduction into the type of optimization problem solvable with
urbs is given. This is followed by the description of the minimal possible
model in urbs. As a next step the two main expansions of models, which also
increase the index depth of all variables and parameters are discussed in the
parts ‘Intertemporal modeling’ and ‘Multinode modeling’. The description is
then concluded by the additional description of various feature modules. The
latter are discussed in full index depth, i.e., with all features introduced in
minimal, intertemporal and multinode modeling.

	Structure of an urbs model
	Energy system entities

	Minimal optimization model
	Objective

	Costs

	Process expansion constraints

	Commodity dispatch constraints

	Process dispatch constraints

	Intertemporal optimization model
	Costs

	Unit expansion constraints

	Commodity dispatch constraints

	Multinode optimization model
	Transmission capacity constraints

	Commodity dispatch constraints

	Transmission dispatch constraints

	DC Power Flow feature

	Energy Storage
	Costs

	Storage expansion constraints

	Commodity dispatch constraints

	Storage dispatch constraints

	Trading with an external market
	Costs

	Commodity dispatch constraints

	Demand side management
	Example of a DSM process

	Commodity dispatch constraints

	Advanced Processes
	Time Variable Efficiency

	Minimum Load and Part Load Behaviors

	On/off Behavior

	Costs

Structure of an urbs model

urbs is an abstract generator for linear optimization problems. Such
problems can in general be written in the following standard form:

\[\begin{split}\text{min}~c^{\text{T}}x\\
\text{s.t.}~Ax=b\\
Bx\leq d.\end{split}\]

where \(x\) is the variable vector, \(c\) the coefficient vector for
the objective function and \(A\) and \(B\) the matrices for the
equality and inequality constraints, respectively. The equality constraints
could also be represented by inequality constraints, which is not done here for
simplicity reasons. There are two options for the objective function: either
the total system costs or environmental emissions can be used. The structure of
the following parts will be first a description of \(x\) and \(c\) and
subsequently a general formulation of the constraint functions that make up the
matrices \(A\) and \(B\) as well as the vectors \(b\) and
\(d\). All variables and equations will be first presented for a minimally
complex problem and the optional additional variables and equations are
presented in extra parts.

Energy system entities

For all models that can be generated with urbs, the energy system is built up
out of the following entities:

	Commodities, which represent the various forms of material and energy flows
in the system.

	Processes, which convert commodities from one type to another. These
entities are always multiple-input/multiple-output (mimo) that is, a certain
fixed set of input commodities is converted into another fixed set of output
commodities.

	Transmission lines, that allow for the transport of commodities between the
modeled spatial vertices.

	Storages, which allow the storage of a single type of commodity.

	DSM potentials, which make the time shifting of demands possible.

Minimal optimization model

The minimal model in urbs is a simple expansion and dispatch model with only
processes being able to fulfill the given demands. All spatial information is
neglected in this case. The minimal model is already multiple-input/multiple
output (mimo) and the variable vector takes the following form:

\[x^{\text{T}}=(\zeta, \underbrace{\rho_{ct}}_{\text{commodity variables}},
\underbrace{\kappa_{p}, \widehat{\kappa}_{p}, \tau_{pt},
\epsilon^{\text{in}}_{cpt},
\epsilon^{\text{out}}_{cpt}}_{\text{process variables}}).\]

Here, \(\zeta\) represents the total annualized system cost, \(\rho_ct\)
the amount of commodities \(c\) taken from a virtual, infinite stock at
time \(t\), \(\kappa_{p}\) and \(\widehat{\kappa}_{p}\) the total
and the newly installed process capacities of processes \(p\),
\(\tau_{pt}\) the operational state of processes \(p\) at time
\(t\) and \(\epsilon^{\text{in}}_{cpt}\) and
\(\epsilon^{\text{out}}_{cpt}\) the total inputs and outputs of commodities
\(c\) to and from process \(p\) at time \(t\), respectively.

Objective

For any urbs problem as the objective function either the total system costs or
the total emissions of CO2 can be chosen. In the former (standard) case this
leads to an objective vector of:

\[c=(1,0,0,0,0,0,0),\]

where only the costs are part of the objective function. For the latter choice
of objective no such simple structure can be written.

Costs

In the minimal model the total cost variable can be split into the following
sum:

\[\zeta = \zeta_{\text{inv}} + \zeta_{\text{fix}} + \zeta_{\text{var}} +
\zeta_{\text{fuel}} + \zeta_{\text{env}},\]

where \(\zeta_{\text{inv}}\) are the annualized invest costs,
\(\zeta_{\text{fix}}\) the annual fixed costs, \(\zeta_{\text{var}}\)
the total variable costs accumulating over one year,
\(\zeta_{\text{fuel}}\) the accumulated fuel costs over one year and
\(\zeta_{\text{env}}\) the annual penalties for environmental pollution.
These costs are then calculated in the following way:

Annualized invest costs

Investments are typically depreciated over a longer period of time than the
standard modeling horizon of one year. To overcome distortions in the overall
cost function urbs uses the annual cash flow (CAPEX) for the calculation of the
investment costs in the cost function. This is captured by multiplying the
total invest costs for a given process \(C_p\) with the so-called annuity
factor \(f_p\), i.e.:

\[\zeta_{\text{inv},p}=f_p \cdot C_p\]

For an interest rate of \(i\) and a depreciation period of \(n\) years
the annuity factor can be derived using the remaining debt after \(k\)
payments \(C_k\):

\[\begin{split}&\text{After 0 Payments:}~C_0=C(1+i)\\
&\text{After 1 Payment:}~~C_1=(C_0-fC)(1+i)=C(1+i)^2-fC(1+i)\\
&\text{After 2 Payments:}~C_2=(C_1-fC)(1+i)=C(1+i)^3-fC(1+i)^2-fC(1+i)\\
&...\\
&\text{After n Payments:}~C_n=C(1+i)^n+C\sum_{k=0}^{n-1}(1+i)^k=(1+i)^n +
f\left(\frac{1-(1+i)^n}{i}\right).\end{split}\]

Since the outstanding debt becomes \(0\) at the end of the depreciation
period this leads to:

\[f=\frac{(1+i)^n\cdot i}{(1+i)^n-1}\]

The annualized invest costs for all investments made by the optimizer are then
given by:

\[\zeta_{\text{inv}}=\sum_{p \in P_{\text{exp}}}f_p k^{\text{inv}}_p
\widehat{\kappa}_p,\]

where \(k^{\text{inv}}_p\) signifies the specific invest costs of process
\(p\) per unit capacity and \(P_{\text{exp}}\) is the subset of all
processes that are actually expanded.

Annual fixed costs

The annual fixed costs represent maintenance and staff payments the processes
used. They are playing a role for unit expansion only and are given as
parameters for all allowed processes. Fixed costs scale with the capacity
(in W) of the processes, and can be calculated using:

\[\zeta_{\text{fix}}=\sum_{p \in P}k^{\text{fix}}_p\kappa_p,\]

where \(k^{\text{fix}}_p\) represents the specific annual fix costs for
process \(p\).

Annual variable costs

Variable costs represent both, additional maintenance requirements due to usage
of processes and taxes or tariffs. They scale with the utilization of
processes (in Wh) and can be calculated in the following way:

\[\begin{split}\zeta_{\text{var}}=w \Delta t \sum_{t \in T_m\\ p \in P}
k^{\text{var}}_{pt}\tau_{pt},\end{split}\]

where \(k^{\text{var}}_{pt}\) are the specific variable costs per time
integrated process usage, and \(w\) and \(\Delta t\) are a weight
factor that extrapolates the actual modeled time horizon to one year and the
timestep length in hours, respectively.

Annual fuel costs

The usage of fuel adds an additional cost factor to the total costs. As with
variable costs these costs occur when processes are used and are dependent on
the total usage of the fuel (stock) commodities:

\[\begin{split}\zeta_{\text{fuel}}=w \Delta t \sum_{t \in T_m\\ c \in C_{\text{stock}}}
k^{\text{fuel}}_{c}\rho_{c},\end{split}\]

where \(k^{\text{fuel}}_{c}\) are the specific fuel costs. The distinction
between variable and fuel costs is introduced for clarity of the results, both
could in principle be merged into one class of costs.

Annual environmental costs

Environmental costs occur when the emission of an environmental commodity is
penalized by a fine. Environmental commodities do not have to be balanced but
can be emitted to the surrounding. The total production of the polluting
environmental commodity is then given by:

\[\begin{split}\zeta_{\text{env}}=-w \Delta t \sum_{t \in T_m\\ c \in C_{\text{env}}}
k^{\text{env}}_{c}\text{CB}(c,t),\end{split}\]

where \(k^{\text{env}}_{c}\) are the specific costs per unit of
environmental commodity and \(CB\) is the momentary commodity balance of
commodity \(c\) at time \(t\). The minus sign is due to the sign
convention used for the commodity balance which is positive when the system
takes in a unit of a commodity.

After this discussion of the individual cost terms the constraints making up
the matrices \(A\) and \(B\) are discussed now.

Process expansion constraints

The unit expansion constraints are independent of the modeled time. In case of
the minimal model the are restricted to two constraints only limiting the
allowed capacity expansion for each process. The total capacity of a given
process is simply given by:

\[\begin{split}&\forall p \in P:\\
&\kappa_{p}=K_p + \widehat{\kappa}_p,\end{split}\]

where \(K_p\) is the already installed capacity of process \(p\).
The newly installed capacity can also be an integer, expressed as the product
between the parameter process new capacity block \({K}_p^\text{block}\)
and the variable new process capacity units \(\beta_{p}\):

\[\widehat{\kappa}_p= {K}_p^\text{block}\cdot \beta_p\]

Process capacity limit rule

The capacity of each process \(p\) is limited by a maximal and minimal
capacity, \(\overline{K}_p\) and \(\underline{K}_p\), respectively,
which are both given to the model as parameters:

\[\begin{split}&\forall p \in P:\\
&\underline{K}_p\leq\kappa_{p}\leq\overline{K}_p.\end{split}\]

All further constraints are time dependent and are determinants of the unit
commitment, i.e. the time series of operation of all processes and commodity
flows.

Commodity dispatch constraints

In this part the rules governing the commodity flow timeseries are shown.

Vertex rule (“Kirchhoffs current law”)

This rule is the central rule for the commodity flows and states that all
commodity flows, (except for those of environmental commodities) have to be
balanced in each time step. As a helper function the already mentioned
commodity balance is calculated in the following way:

\[\begin{split}&\forall c \in C,~t\in T_m:\\\\
&\text{CB}(c,t)=
 \sum_{(c,p)\in C^{\mathrm{out}}_p}\epsilon^{\text{in}}_{cpt}-
 \sum_{(c,p)\in C^{\mathrm{in}}_p}\epsilon^{\text{out}}_{cpt}.\end{split}\]

Here, the tuple sets \(C^{\mathrm{in,out}}_p\) represent all input and
output commodities of process \(p\), respectively. The commodity balance
thus simply calculates how much more of commodity \(c\) is emitted by than
added to the system via process \(p\) in timestep \(t\). Using
this term the vertex rule for the various commodity types can now be written in
the following way:

\[\forall c \in C_{\text{st}},~t \in T_m:
\rho_{ct} \geq \text{CB}(c,t),\]

where \(C_{\text{st}}\) is the set of stock commodities and:

\[\forall c \in C_{\text{dem}},~ t \in T_m:
-d_{ct} \geq \text{CB}(c,t),\]

where \(C_{\text{dem}}\) is the set of demand commodities and
\(d_{ct}\) the corresponding demand for commodity \(c\) at time
\(t\). These two rules thus state that all stock commodities that are
consumed at any time in any process must be taken from the stock and that all
demands have to be fulfilled at each time step.

Stock commodity limitations

There are two rule that govern the retrieval of stock commodities from stock:
The total stock and the stock per hour rule. The former limits the total amount
of stock commodity that can be retrieved annually and the latter limits the
same quantity per timestep. the two rules take the following form:

\[\begin{split}&\forall c \in C_{\text{st}}:\\
&w \sum_{t\in T_{m}}\rho_{ct}\leq \overline{L}_c\\\\
&\forall c \in C_{\text{st}},~t\in T_m:\\
&\rho_ct\leq \overline{l}_{c},\end{split}\]

where \(\overline{L}_c\) and \(\overline{l}_c\) are the totally allowed
annual and hourly retrieval of commodity \(c\) from the stock,
respectively.

Environmental commodity limitations

Similar to stock commodities, environmental commodities can also be limited
per hour or per year. Both properties are assured by the following two
rules:

\[\begin{split}&\forall c \in C_{\text{env}}:\\
&-w \sum_{t\in T_{m}}\text{CB}(c,t)\leq \overline{M}_c\\\\
&\forall c \in C_{\text{env}},~t\in T_m:\\
& -\text{CB}(c,t)\leq \overline{m}_{c},\end{split}\]

where \(\overline{M}_c\) and \(\overline{m}_c\) are the totally allowed
annual and hourly emissions of environmental commodity \(c\) to the
atmosphere, respectively.

Process dispatch constraints

So far, apart from the commodity balance function, the interaction between
processes and commodities have not been discussed. It is perhaps in order to
start with the general idea behind the modeling of the process operation. In
urbs all processes are mimo-processes, i.e., in general they take in
multiple commodities as inputs and give out multiple commodities as outputs.
The respective ratios between the respective commodity flows remain normally
fixed. The operational state of the process is then captured in just one
variable, the process throughput \(\tau_{pt}\) and is is linked to the
commodity flows via the following two rules:

\[\begin{split}&\forall p\in P,~c\in C,~t \in T_m:\\
&\epsilon^{\text{in}}_{pct}=r^{\text{in}}_{pc}\tau_{pt}\\
&\epsilon^{\text{out}}_{pct}=r^{\text{out}}_{pc}\tau_{pt},\end{split}\]

where \(r^{\text{in, out}}_{pc}\) are the constant factors linking the
commodity flow to the operational state. The efficiency \(\eta\) of the
process \(p\) for the conversion of commodity \(c_1\) into commodity
\(c_2\) is then simply given by:

\[\eta=\frac{r^{\text{out}}_{pc_2}}{r^{\text{in}}_{pc_1}}.\]

Basic process throughput rules

The throughput \(\tau_{pt}\) of a process is limited by its installed
capacity and the specified minimal operational state. Furthermore, the
switching speed of a process can be limited:

\[\begin{split}&\forall p\in P,~t\in T_m:\\
&\tau_{pt}\leq \kappa_{p}\\
&\tau_{pt}\geq \underline{P}_{p}\kappa_{p}\\
&\tau_{pt}-\tau_{p(t-1)}\leq \Delta t\overline{PG}_p^\text{up}\kappa_{p}\\
&\tau_{pt}-\tau_{p(t-1)}\geq - \Delta t\overline{PG}_p^\text{down}\kappa_{p}\\,\end{split}\]

where \(\underline{P}_{p}\) is the normalized, minimal operational state of
the process and \(\overline{PG}_p^\text{up}\) and \(\overline{PG}_p^\text{down}\)
are the normalized, maximal ramping up gradient, respectively ramping down gradient of the
operational state in full capacity per timestep.

Intermittent supply rule

If the input commodity is of type ‘SupIm’, which means that it represents an
operational state rather than a proper material flow, the operational state of
the process is governed by this alone. This feature is typically used for
renewable energies but can be used whenever a certain operation time series of
a given process is desired

\[\begin{split}&\forall p\in P,~c\in C_{\text{sup}},~t\in T_m:\\
&\epsilon^{\text{in}}_{cpt}=s_{ct}\kappa_{p}.\end{split}\]

Here, \(s_{ct}\) is the time series that governs the exact operation of
process \(p\), leaving only its capacity \(\kappa_{p}\) as a free
variable.

This concludes the minimal model.

Intertemporal optimization model

Intertemporal models are a more general type of model than the minimal case.
For such models a second time domain is introduced to capture the behavior of
the system over a timeframe of many years, thus rendering a modeling of the
system development, rather than the optimal system configuration, possible.
To keep the model as small as possible while still capturing most of the
intertemporal behavior, the second time slice is approximated by a number of
support timeframes (years) \(Y=(y_1,...,y_n)\), which is in general smaller
than the total model horizon. Each modeled timeframe is then essentially a
minimal (or multinode-) model in its own right. The basic approximative
assumptions linking the modeled timeframes are then given by:

	Each modeled year is repeated \(k\) times if the next modeled year is
\(k\) years later. The last year is repeated a user specified number of
times.

	The depreciation period is assumed to be also the operational period of any
unit built. There is no operation in an economically fully depreciated state.

	A unit can only be operated in a given modeled year when it is operational
for the entire period that year represents, i.e., until the next modeled
year.

	All payments are exponentially discounted with a discount rate \(j\) that
is set once for the entire modeling horizon.

The variable vector is as a first step only changed in so far, as the second
time domain is entering the index. It now reads:

\[x^{\text{T}}=(\zeta, \underbrace{\rho_{yct}}_{\text{commodity variables}},
\underbrace{\kappa_{yp}, \widehat{\kappa}_{yp}, \tau_{ypt},
\epsilon^{\text{in}}_{ycpt},
\epsilon^{\text{out}}_{ycpt}}_{\text{process variables}}).\]

Here, \(\zeta\) represents the total discounted system costs over the
entire modeling horizon, \(\rho_yct\) the amount of commodities \(c\)
taken from a virtual, infinite stock in year \(y\) at time \(t\),
\(\kappa_{yp}\) and \(\widehat{\kappa}_{yp}\) the total
and the newly installed process capacities in year \(y\) of processes
\(p\), \(\tau_{ypt}\) the operational state in year \(y\) of
processes \(p\) at time \(t\) and \(\epsilon^{\text{in}}_{ycpt}\)
and \(\epsilon^{\text{out}}_{ycpt}\) the total inputs and outputs in year
\(y\) of commodities \(c\) to and from process \(p\) at time
\(t\), respectively.

All dispatch constraint equations for commodities and processes described in
the minimal model section, as well as all such constraints for transmissions,
storages, DSM described in their respective dedicated sections, remain
structurally the same in an intertemporal model. The only modification there
is, that the modeled year shows up as an additional index.

The parts that change in a more meaningful way are the costs and the unit
expansion constraints.

Costs

As in the minimal model the total cost variable can be split into the following
sum:

\[\zeta = \zeta_{\text{inv}} + \zeta_{\text{fix}} + \zeta_{\text{var}} +
\zeta_{\text{fuel}} + \zeta_{\text{env}},\]

where \(\zeta_{\text{inv}}\) are the discounted invest costs accumulated
over the entire modeled period, \(\zeta_{\text{fix}}\) the discounted,
accumulated fixed costs, \(\zeta_{\text{var}}\) the discounted, sum over
the modeled years of all variable costs accumulated over each year,
\(\zeta_{\text{fuel}}\) the discounted sum over the modeled years of
fuel costs accumulated over each year and \(\zeta_{\text{env}}\)
the discounted total penalty for environmental pollution.

All costs are discounted by the same exponent \(j\) for the entire modeling
horizon on a yearly basis. This means that any payment \(x\) that has to be
made in a year \(k\) will be discounted for the cost function \(\zeta\)
by:

\[x_{\text{discounted}}=(1+j)^{-k}\cdot x\]

Since all non-modeled years are just treated as exact copies of the last
modeled year before them, the discounted sum of fix, variable, fuel and
environmental costs can simply be taken as the costs of the representative
modeled year \(m\) multiplied by a factor \(D_m\). If the distance to
the next modeled year is \(k\), it can be calculated via:

\[\begin{split}D_m&=\sum_{l=m}^{m+k-1}(1+j)^{-l}=(1+j)^{-m}\sum_{l=0}^{k-1}(1+j)^{-l}=
(1+j)^{-m}\frac{1-(1+j)^{-k}}{1-(1+j)^{-1}}=\\\\
&=(1+j)^{1-m}\frac{1-(1+j)^{-k}}{j}.\end{split}\]

So for example the variable costs for modeled year \(m\) and its \(k\)
identical, non-modeled copies \(\zeta_{\text{var}}^{\{m,m+1,..,m+k-1\}}\)
are given by:

\[\zeta_{\text{var}}^{\{m,m+1,..,m+k-1\}}=D_m\cdot\zeta_{\text{var}}^{m},\]

if \(\zeta_{\text{var}}^m\) is the sum of all variable costs accumulated by
the use of units in the year \(m\) alone by the model.

Intertemporal calculation of invest costs

In the intertemporal model, invest costs are calculated using the annuity
method. This directly entails that there are no rest values of any units built
by the model that have to be considered for the cost function. It is then
possible to multiply the annuity payments \(fC\) for a unit with investment
costs \(C\) built in year \(m\) simply with the factor \(D_{m}\).
The only difference is, that the investment annuity payments are not restricted
to the modeled years but have to be paid for the entire depreciation period
provided that it is within the modeled time horizon. When the depreciation
period is \(n\) and \(k\) is the number of payments that fall in the
modeled time horizon, the total costs \(C_{\text{total}}\)
of an investment of size \(C\) made in year \(m\) is given by:

\[\begin{split}C^{\text{total}}_{\text{m}}&=D_{m}\cdot f \cdot C =
(1+j)^{1-m}\frac{1-(1+j)^{-k}}{j} \cdot \frac{(1+i)^n\cdot i}{(1+i)^n-1}
\cdot C=\\\\
&=\underbrace{(1+j)^{1-m}\cdot \frac{i}{j}\cdot
\left(\frac{1+i}{1+j}\right)^n\cdot
\frac{(1+j)^n-(1+j)^{n-k}}{(1+i)^n-1}}_{=:I_{\text{m}}}\cdot C\end{split}\]

For either
\(i=0\) or \(j=0\) a distinction has to be made, which takes the
following form:

	\(i=0,~j=0\):

\[C^{\text{total}}_{\text{m}}=\underbrace{\frac{k}{n}}_{=:I_{\text{m}}}\cdot
C\]

	\(i\neq0,~j=0\):

\[C^{\text{total}}_{\text{m}}=k\cdot f\cdot C=\underbrace{k\cdot
\frac{(1+i)^n\cdot i}{(1+i)^n-1}}_{=:I_{\text{m}}}\cdot C\]

	\(i=0,~j\neq0\):

\[C^{\text{total}}_{\text{m}}=\frac 1n \cdot (1+j)^{-m}
\sum_{l=0}^{k-1}(1+j)^{-l} \cdot C=\underbrace{\frac 1n \cdot (1+j)^{-m}
\cdot \frac{(1+j)^k-1}{(1+j)^k\cdot j}}_{=:I_{\text{m}}}\cdot C\]

In any case the total invest costs are then given by:

\[\begin{split}\zeta_{\text{inv}}=\sum_{y\in Y\\p\in P}C^{\text{total}}_{\text{m}}=
\sum_{y\in Y\\p\in P}I_{\text{y}}k^{\text{inv}}_{yp} \widehat{\kappa}_{yp}\end{split}\]

Unit expansion constraints

Apart from the costs there are also changes in the unit expansion constraints
for an intertemporal model. These changes mostly concern how the amount of
installed units is found. This becomes an issue since units built in an earlier
modeled year or already installed in the first modeled year, may or may not be
operational in a given modeled year \(m\) and through \(m+k-1\). Here,
\(k\) is the distance to the next modeled year or the end of the modeled
horizon in case of \(m\) being the last modeled year. To properly calculate
the capacity of a process in a year \(y\) the following two sets are
necessary:

\[\begin{split}O&:=\{(p,y_i,y_j)|p\in P,~\{y_i,y_j\}\in Y,~y_i\leq y_j,~ y_i +
L_p \geq\ y_{j+1}\}\\\\
O_{\text{inst}}&:=\{(p, y_j)|p\in P_0,~y\in Y,~y_0+T_p\geq y_{j+1}\},\end{split}\]

where \(L_p\) is the lifetime of processes \(p\), \(P_0\) the
subset of processes that are already installed in the first modeled year
\(y_0\) and \(T_{p}\) the rest lifetime of already installed processes.
If \(y_j\) is the last modeled year, \(y_{j+1}\) stands for the end of
the model horizon.

With these two sets the installed process capacity in a given year is then
given by:

\[\begin{split}\kappa_{yp}&=\sum_{y^{\prime}\in Y\\(p,y^{\prime},y)\in O}
\widehat{\kappa}_{y^{\prime}p} + K_{p}
~,~~\text{if}~(p,y)\in O_{\text{inst}}\\\\
\kappa_{yp}&=\sum_{y^{\prime}\in Y\\(p,y^{\prime},y)\in O}
\widehat{\kappa}_{y^{\prime}p}~,~~\text{else}\end{split}\]

where \(K_{p}\) is the installed capacity of process \(p\) at the
beginning of the modeling horizon. Since for each modeled year still the
capacity constraint

\[\begin{split}&\forall y\in Y,~ p \in P:\\
&\underline{K}_{yp}\leq\kappa_{yp}\leq\overline{K}_{yp}\end{split}\]

is valid, the set constraints can have effects across years and especially the
modeller has to be careful not to set infeasible constraints.

Commodity dispatch constraints

While in an intertemporal model all commodity constraints within one modeled
year remain valid one addition is possible concerning CO2 emissions. Here, a
budget can be given, which is valid over the entire modeling horizon:

\[\begin{split}-w\sum_{y\in Y\\t\in T_{m}}\text{CB}(y,\text{CO}_2,t)\leq
\overline{\overline{L}}_{\text{CO}_2}\end{split}\]

Here, \(\overline{\overline{L}}_c\) is the global budget for the emission
of the environmental commodity. Currently this is hard coded for CO2 only.

This rule concludes the model additions introduced by intertemporal modeling.

Multinode optimization model

The introduction of multiple spatial nodes into the model is the second big
extension of the minimal model that is possible. Similar to the intertemporal
model expansion it also adds an index level to all variables and parameters.
This addition is perpendicular to the intertemporal modeling and both
extensions do not interact in any complex way with each other. Here, the
multinode model extension will be shown without the intertemporal extension,
i.e., it is shown as an extension to the minimal model. In this case the
variable vector of the optimization problem reads:

\[x^{\text{T}}=(\zeta, \underbrace{\rho_{vct}}_{\text{commodity variables}},
\underbrace{\kappa_{vp}, \widehat{\kappa}_{vp}, \tau_{vpt},
\epsilon^{\text{in}}_{vcpt},
\epsilon^{\text{out}}_{vcpt}}_{\text{process variables}},
\underbrace{\kappa_{af}, \widehat{\kappa}_{af}, \pi^{\text{in}}_{aft},
\pi^{\text{out}}_{aft}}_{\text{transmission variables}}).\]

Here, \(\zeta\) represents the total annualized system cost across all
modeled vertices \(v\in V\), \(\rho_{vct}\) the amount of commodities
\(c\) taken from a virtual, infinite stock at vertex \(v\) and time
\(t\), \(\kappa_{vp}\) and \(\widehat{\kappa}_{vp}\) the total
and the newly installed process capacities of processes \(p\) at vertex
\(v\), \(\tau_{vpt}\) the operational state of processes \(p\) at
vertex \(v\) and time \(t\), \(\epsilon^{\text{in}}_{vcpt}\) and
\(\epsilon^{\text{out}}_{vcpt}\) the total inputs and outputs of
commodities \(c\) to and from process \(p\) at vertex \(v\) and
time \(t\), \(\kappa_{af}\) and \(\widehat{\kappa}_{af}\) the
installed and new capacities of a transmission line \(f\) linking two
vertices with the arc \(a\) and \(\pi^{\text{in}}_{aft}\) and
\(\pi^{\text{out}}_{aft}\) the in- and outflows into arc \(a\) via
transmission line \(f\) at time \(t\).

There are no qualitative changes to the cost function only the sum of all units
now extends over processes and transmission lines.

Transmission capacity constraints

Transmission lines are modeled as unidirectional arcs in urbs. This means that
they have a input site and an output site. Furthermore, an arc already
specifies a commodity that can travel across it. However, from the modelers
point of view the transmissions rather behave like non-directional edges,
linking both sites with the identical capacity in both directions. This
behavior is then ensured by the transmission symmetry rule, which sets the
capacity of both unidirectional arcs to be identical:

\[\begin{split}&\forall a\in V\times V\times C,~f\in F:\\
&\kappa_{af}=\kappa_{a^{\prime}f},\end{split}\]

where \(a^{\prime}\) is the inverse arc of \(a\). The transmission
capacity is then calculated similar to process capacities in the minimal model:

\[\begin{split}&\forall a\in V\times V\times C,~f\in F:\\
&\kappa_{af}=K_{af}+\widehat{\kappa}_{af},\end{split}\]

where \(K_{af}\) represents the already installed and
\(\widehat{\kappa}_{af}\) the new capacity of transmission \(f\)
installed in arc \(a\). The new capacity can also be expressed as the product
of the parameter transmission capacity block \({K}_{yaf}^\text{block}\)
and the variable new transmission capacity units \(\beta_{yaf}\):

\[\widehat{\kappa}_{af}={K}_{yaf}^\text{block}\cdot \beta_{yaf}\]

Transmission capacity limit rule

Completely analogous to processes also transmission line capacities are limited
by a maximal and minimal allowed capacity \(\overline{K}_{af}\) and
\(\underline{K}_{af}\) via:

\[\begin{split}&\forall a\in V\times V\times C,~f\in F:\\
&\underline{K}_{af}\leq \kappa_{af}\leq \overline{K}_{af}\end{split}\]

Commodity dispatch constraints

Apart from these time independent rules, the time dependent rules governing the
unit utilization are amended with respect to the minimal model by the
introduction of transmission lines.

Amendments to the Vertex rule

The vertex rule is changed, since additional commodity flows through the
transmission lines occur in each vertex. The commodity balance function is thus
changed to:

\[\begin{split}&\forall c \in C,~t\in T_m:\\\\
&\text{CB}(c,t)=
 \sum_{(c,p)\in C^{\mathrm{in}}_p}\epsilon^{\text{in}}_{vcpt}+
 \sum_{(a,f)\in A^{\mathrm{in}}_{v}}\pi^{\text{in}}_{aft}-
 \sum_{(c,p)\in C^{\mathrm{out}}_p}\epsilon^{\text{out}}_{vcpt}-
 \sum_{(a,f)\in A^{\mathrm{out}}_{v}}\pi^{\text{out}}_{aft}.\end{split}\]

Here, the new tuple sets \(A^{\mathrm{in,out}}_v\) represent all input and
output arcs \(a\) connecting vertex \(v\), respectively. The commodity
balance is thereby allowing for commodities to leave the system at vertex
\(v\) via arcs as well as processes. Apart from this change to the
commodity balance the vertex rule and the other rules restricting commodity
flows remain unchanged with respect to the minimal model.

Global CO2 limit

In addition to the general vertex specific constraint for the emissions of
environmental commodities as discussed in the minimal model, there is a hard
coded possibility to limit the CO2 emissions across all modeled sites:

\[\begin{split}-w\sum_{v\in V\\t\in T_{m}}\text{CB}(v,\text{CO}_2,t)\leq
\overline{L}_{\text{CO}_2,y}\end{split}\]

Transmission dispatch constraints

There are two main constraints for the commodity flows to and from transmission
lines. The first restricts the total amount of commodity \(c\) flowing in
arc \(a\) on transmission line \(f\) to the total capacity of the line:

\[\begin{split}&\forall a\in V\times V\times C,~f\in F,~t\in T_m:\\
& \pi^{\text{in}}_{aft}\leq \kappa_{af}.\end{split}\]

Here, the input into the arc \(\pi^{\text{in}}_{aft}\) is taken as a
reference for the total capacity. The output of the arc in the target site is
then linked to the input with the transmission efficiency \(e_{af}\)

\[\begin{split}&\forall a\in V\times V\times C,~f\in F,~t\in T_m:\\
& \pi^{\text{out}}_{aft}= e_{af}\cdot \pi^{\text{in}}_{aft}.\end{split}\]

DC Power Flow feature

Transmission lines can be modelled with DC Power Flow as an optional feature to represent the AC network grid.
With the DC Power Flow feature, the variable voltage angle is introduced for the vertices connected with DC Power Flow
transmission lines
The DC Power Flow is defined by the relation between the voltage angle \(\theta_{vt}\) of connecting vertices.

It is possible to combine the default transmission model with the DC Power Flow transmission model.
The DCPF feature can be activated on the selected transmission lines. This way two different sets of transmission
tuples, subject to different constraints, will be modelled. These transmission tuple sets are defined as the set of
transport model (default) transmission lines \(F_{c{v_\text{out}}{v_\text{in}}}^{TP}\) and the set of DCPF transmission
lines \(F_{c{v_\text{out}}{v_\text{in}}}^{DCPF}\)

Usage

This feature can be activated for selected transmission lines by including the following parameters:

	The reactance \(X_{af}\) of a transmission line is required to be included in the model input to model the given
transmission line with DCPF. This parameter should be greater than 0 and given in per-unit system. If this parameter
is excluded from the model input, DCPF will not be activated for the transmission line.

	The voltage angle difference of two connecting sites should be limited with angle difference limit
\(\overline{dl}_{af}\) to create a stable model. This parameter is required to limit the voltage angle difference
between two connecting sites. A degree value between 0 and 91 is allowed.

	The base voltage \(V_{af\text{base}}\) of transmission lines are required to convert the power flow from per-unit
system to MW. The base voltage parameter is required in kV for every transmission line, which should be modelled with
DCPF. The value of this parameter should be greater than 0.

	Since the DC Power Flow model ignores the loss of a transmission line, the efficiency \(e_{af}\) of the
transmission lines modelled with the DCPF should be set to 100% represented with the value “1”.

Contrary to the default transmission line representation, DC Power Flow transmission lines are represented with a single
bidirectional arc between two vertices. The complementary arc of a DC Power Flow transmission line will be excluded from
the model even if it is defined by the user. Depending on the voltage angle difference of two connecting sites, the
power flow \(\pi_{aft}\) on a DC Power Flow transmission line can be both negative or positive indicating the
direction of the flow.

DC Power Flow Equation

Power flow on a transmission line modelled with DCPF:

\[\pi_{aft}^\text{in} = \frac{(\theta_{v_{\text{in}}t}- \theta_{v_{\text{out}}t})}{57.2958}(-\frac{-1}{X_{af}}){V_{af\text{base}}^2}\]

Here \(\theta_{v_{\text{in}}t}\) and \(\theta_{v_{\text{out}}t}\) are the voltage angles of the source site
\({v_{\text{in}}}\) and destinaton site \(v_{\text{out}}\). These are converted to radian from degrees by
dividing by 57,2958. \({X_{af}}\) is the reactance of the transmission line in per unit system and
\((-\frac{-1}{X_{af}})\) is the admittance of the transmission line.

Constraints

Constraints applied to the DCPF transmission lines vary from those applied to the transport transmission lines.

Symmetry rule is ignored for the DCPF transmission lines, since these lines only consist of single bidirectional arcs.
Since the DCPF transmission lines do not have complementary arcs the fixed and investment costs would be halved.
To prevent this error caused by the excluded symmetry constraint for DCPF transmission lines, fixed and investment
prices for DCPF lines are doubled automatically before calculating the costs.

The constraint which restricts the commodity flow \(\pi_{aft}^\text{in}\) on a transmission line with the installed
capacity \(\kappa_{af}\) is expanded for DCPF transmission lines. The additional constraint restricts the lower
limit of the power flow, since the power flow with DCPF can also be negative.

\[-\pi_{aft}^\text{in} \leq \kappa_{af}\]

Voltage angle difference of two connecting vertices \(v_{\text{in}}\) and \(v_{\text{out}}\) is restricted with the angle difference limit parameter \(\overline{dl}_{af}\) given
for a DCPF transmission \(f\) on an arc \(a\)

\[-\overline{dl}_{af} \leq (\theta_{v_{\text{in}}t}- \theta_{v_{\text{out}}t}) \leq \overline{dl}_{af}\]

Two additional constraints are used in DCPF feature to retrieve the absolute value \({\pi_{aft}^{\text{in}}}^\prime\)
of the power flow on a DCPF transmission line, which is included in the variable cost calculation. With the help of
these constraints and minimization of objective function , which includes the substitute variable
\({\pi_{aft}^{\text{in}}}^\prime\), the substitute variable will be equal to the absolute value of the power flow
variable \(|\pi_{aft}^{\text{in}}|\)

\[{\pi_{aft}^{\text{in}}}^\prime \geq \pi_{aft}^{\text{in}}\]

\[{\pi_{aft}^{\text{in}}}^\prime \geq -\pi_{aft}^{\text{in}}\]

Energy Storage

Storages can optionally be set in urbs. They introduce additional variables and
constraints, contribute to the cost function but do not increase the index
depth of all variables and parameters. For this and all the further features
all variables will be written in the full index depth, i.e. for intertemporal
models with multiple vertices. For storages the capacity and the
charging/discharging power are expanded independently. For each storage one
commodity is specified which is stored. It is thus not necessary to specify the
commodity as an extra index in the variables and parameters. With added
storages the variable vector then reads:

\[\begin{split}x^{\text{T}}=(&\zeta, \underbrace{\rho_{yvct}}_{\text{commodity variables}},
\underbrace{\kappa_{yvp}, \widehat{\kappa}_{yvp}, \tau_{yvpt},
\epsilon^{\text{in}}_{yvcpt},
\epsilon^{\text{out}}_{yvcpt}}_{\text{process variables}},
\underbrace{\kappa_{yaf}, \widehat{\kappa}_{yaf}, \pi^{\text{in}}_{yaft},
\pi^{\text{out}}_{yaft}}_{\text{transmission variables}},\\\\
&\underbrace{\kappa^{\text{c}}_{yvs}, \kappa^{\text{p}}_{yvs},
\widehat{\kappa}^{\text{c}}_{yvs}, \widehat{\kappa}^{\text{p}}_{yvs},
\epsilon^{\text{in}}_{yvst}, \epsilon^{\text{out}}_{yvst},
\epsilon^{\text{con}}_{yvst}}_{\text{storage variables}}).\end{split}\]

Here, the new storage variables \(\kappa^{\text{c,p}}_{yvs}\) and
\(\widehat{\kappa}^{\text{c,p}}_{yvs}\) stand for the total and new
capacities of storage capacity and power of storage unit \(s\), in modeled
year \(y\) at vertex \(v\), respectively, the variables
\(\epsilon^{\text{in,out}}_{yvst}\) represent the input and output to
storage \(s\) in year \(y\) at vertex \(v\) at time \(t\) and
\(\epsilon^{\text{con}}_{yvst}\) the storage state.

Costs

The costs are changed in a straightforward way. The invest, fix and variable
costs are now summed over the storage capacities, powers and the total amount
of charged and discharged commodity in addition to the process indices. As in
the case of transmissions there are no qualitative changes to the costs.

Storage expansion constraints

Storages are expanded in their capacity and charging and discharging power
separately. The respective constraints read:

\[\begin{split}\kappa^{\text{c,p}}_{yvs}&=\sum_{y^{\prime}\in Y\\(s,v,y^{\prime},y)\in O}
\widehat{\kappa}^{\text{c,p}}_{y^{\prime}vs} + K_{vs}
~,~~\text{if}~(s,v,y)\in O_{\text{inst}}\\\\
\kappa^{\text{c,p}}_{yvs}&=\sum_{y^{\prime}\in Y\\(s,v,y^{\prime},y)\in O}
\widehat{\kappa}^{\text{c,p}}_{y^{\prime}vs}~,~~\text{else},\end{split}\]

where \(\kappa^{\text{c,p}}_{yvs}\) are the total installed
capacity and power, repectively, in year \(y\) at site \(v\) of storage
\(s\) and \(\widehat{\kappa}^{\text{c,p}}_{yvs}\) the corresponding

newly installed storage capacities and powers. Both newly installed quantities
can also be expressed as the product of the parameter storage new capacity/power
block \(K_{yvs}^\text{c,p block}\) and the variable new storage size/power units
\(\beta_{yvs}^\text{c,p}\):

\[\widehat{\kappa}^{\text{c,p}}_{yvs}= K_{yvs}^\text{c,p block}\cdot
\beta_{yvs}^\text{c,p}\]

Both total installed quantities are then also given an upper and a lower bond via:

\[\begin{split}&\forall y\in Y,~v\in V,~s\in S:\\
&\underline{K}^{\text{c}}_{yvs}\leq \kappa^{\text{c}}_{yvs}\leq
\overline{K}^{\text{c}}_{yvs}\\
&\underline{K}^{\text{p}}_{yvs}\leq \kappa^{\text{p}}_{yvs}\leq
\overline{K}^{\text{p}}_{yvs}\end{split}\]

Commodity dispatch constraints

The commodity unit utilization constraints are expanded by the use of
storages.

Amendments to the Vertex rule

The vertex rule is changed, since additional commodity flows into and out of
the storages can occur. The commodity balance function is thus changed to:

\[\begin{split}&\forall y\in Y,~v\in V,~c \in C,~t\in T_m:\\\\
\text{CB}(y,v,c,t)=&
\sum_{(y,v,c,p)\in C^{\text{in}}_{y,v,c,p}}\epsilon^{\text{in}}_{vcpt}+
\sum_{(y,v,s,c)\in C_{y,v,s,c}}\epsilon^{\text{in}}_{yvst}+
\sum_{(y,a,f)\in A^{\text{in}}_{v}}\pi^{\text{in}}_{aft}-\\\\
&-\sum_{(y,v,c,p)\in C^{\text{out}}_p}\epsilon^{\text{out}}_{vcpt}-
\sum_{(y,v,s,c)\in C_{y,v,s,c}}\epsilon^{\text{out}}_{yvst}-
\sum_{(y,a,f)\in A^{\text{out}}_{v}}\pi^{\text{out}}_{aft}.\end{split}\]

Here, the new tuple sets \(C^{\text{in,out}}_{y,v,s,c}\) represent all
inputs and outputs in year \(y\) at vertex \(v\) of commodity \(c\)
into storage \(s\). The variables \(\epsilon^{\text{in,out}}_{yvst}\)
are then the inputs and outputs of commodities to and from storages.

Storage dispatch constraints

In a storage the energy content \(\epsilon^{\text{con}}_{yvst}\) has to be
calculated. This is achieved by simply adding all inputs to and subtracting all
outputs from the storage content at the previous time step
\(\epsilon^{\text{con}}_{yvs(t-1)}\):

\[\begin{split}&\forall y\in Y,~v\in V,~s\in S,~t\in T_m:\\
&\epsilon^{\text{con}}_{yvst}=\epsilon^{\text{con}}_{yvs(t-1)}\cdot
(1-d_{yvs})^{\Delta t}+e^{\text{in}}_{yvs}\cdot \epsilon^{\text{in}}_{yvst}-
\frac{\epsilon^{\text{out}}_{yvst}}{e^{\text{out}}_{yvs}}.\end{split}\]

Here, \(e^{\text{in,out}}_{yvs}\) are the efficiencies for charging and
discharging, respectively, and \(d_{yvs}\) is the hourly self discharge
rate.

Basic storage dispatch rules

Similar to processes and transmission lines, inputs and outputs are limited by
the power capacity of the storage:

\[\begin{split}&\forall y\in Y,~v\in V,~s\in S,~t\in T_m:\\
&\epsilon^{\text{in,out}}_{yvst}\leq\Delta t \cdot \kappa^{\text{p}}_{yvs}.\end{split}\]

Additionally, the storage content is limited by the total storage energy
capacity:

\[\begin{split}&\forall y\in Y,~v\in V,~s\in S,~t\in T_m:\\
&\epsilon^{\text{con}}_{yvst}\leq\kappa^{\text{c}}_{yvs}.\end{split}\]

Initial and final state

In order to avoid windfall profits for the optimization by, e.g., emptying a
storage over the model horizon, the initial and final storage content are
linked via:

\[\begin{split} &\forall y\in Y,~v\in V,~s\in S:\\
&\epsilon_{yvs(t_1)}^\text{con} \leq \epsilon_{yvst_N}^\text{con},\end{split}\]

where \(t_{1,N}\) are the initial and final modeled timesteps,
respectively. The inequality simplifies the model solving by relaying an
otherwise unnecessarily strict constraint. A small disadvantage arises when the
system can gain costs or save CO2 by filling a storage. This case is, however,
not too common. It is additionally possible for the user to fix the initial
storage content via:

\[\begin{split} &\forall y\in Y,~v\in V,~s\in S:\\
&\epsilon_{vst_1}^\text{con} = \kappa_{yvs}^\text{c} I_{yvs},\end{split}\]

where \(I_{yvs}\) is the fraction of the total storage capacity that is
filled at the beginning of the modeling period.

Fixed energy/power ratio

It is sometimes desirable to fix the ratio between energy capacity and
charging/discharging power for a given storage. This is modeled by the
possibility to set a linear dependence between the capacities through a
user-defined “energy to power ratio” \(k_{yvs}^\text{E/P}\). Note that this
constraint is only active for the storages with a positive value under the
column “ep-ratio” in the input file, and when this value is not given, the
power and energy capacities can be sized independently

\[\begin{split} &\forall y\in Y,~v\in V,~s\in S:\\
&\kappa_{yvs}^c = \kappa_{yvs}^p k_{yvs}^\text{E/P}.\end{split}\]

This concludes the storage feature.

Trading with an external market

In urbs it is possible to model the trade with an external market. For this two
new commodity types, buy and sell commodities, are introduced. For each a time
series representing the momentary cost at each timestep is given. This time
series is of course known to the model in advance, which has two implications.
First, the modeled system is considered too small to influence the external
market and any possible influence is not captured by the model, and, second, the
perfect price foresight can distort the results when compared to a realistic
trader in a market. For models with buy and sell commodities the variable
vector takes the following form:

\[x^{\text{T}}=(\zeta, \underbrace{\rho_{yvct}, \varrho_{yvct}, \psi_{yvct}}
_{\text{commodity variables}},
\underbrace{\kappa_{yvp}, \widehat{\kappa}_{yvp}, \tau_{yvpt},
\epsilon^{\text{in}}_{yvcpt},
\epsilon^{\text{out}}_{yvcpt}}_{\text{process variables}},
\underbrace{\kappa_{yaf}, \widehat{\kappa}_{yaf}, \pi^{\text{in}}_{yaft},
\pi^{\text{out}}_{yaft}}_{\text{transmission variables}}),\]

where \(\varrho_{yvct}\) is the amount of sell commodity \(c\) sold to
the external market in year \(y\) from vertex \(v\) at time \(t\)
and \(\psi_{yvct}\) is the amount of buy commodity \(c\) bought from
the external market in year \(y\) at vertex \(v\) and time \(t\).

Costs

The cost function is amended by two new cost types when the trading with an
external market is modeled, the purchase and the revenue costs

\[\zeta = \zeta_{\text{inv}} + \zeta_{\text{fix}} + \zeta_{\text{var}} +
\zeta_{\text{fuel}} + \zeta_{\text{rev}} + \zeta_{\text{pur}} +
\zeta_{\text{env}}.\]

The two new cost types are then specified by the following equations:

\[\begin{split}\zeta_{\text{rev}}=&-w\Delta t
\sum_{y\in Y\\v\in V\\c\in C_{sell}\\ t\in T_m}D_{m}\cdot
k^{\text{bs}}_{yvct}\cdot \varrho_{yvct}\\\\
\zeta_{\text{pur}}=&w\Delta t\sum_{y\in Y\\v\in V\\c\in C_{buy}\\ t\in T_m}
D_{m}\cdot k^{\text{bs}}_{yvct}\cdot \psi_{yvct},\end{split}\]

where \(k^{\text{bs}}_{yvct}\) represents the time series of the given
buy and sell commodity prices.

Commodity dispatch constraints

Buy and sell commodities change the vertex rule (Kirchhoff’s current law), by
adding a new way for in- an output flows of commodities. The rule is thus
amended by the following two equations:

\[\begin{split}&\forall y\in Y,~v\in V,~c \in C_{\text{sell}},~t \in T_m:\\
&-\varrho_{ct} \geq \text{CB}(c,t)\\\\
&\forall y\in Y,~v\in V,~c \in C_{\text{buy}},~t \in T_m:\\
&\psi_{ct} \geq \text{CB}(c,t).\end{split}\]

The commodity balance itself is not changed. The new rules state that any
amount of energy sold needs to be provided to (negative CB) the system via
processes, storages or transmission lines, while buy commodity consumed by
processes, storages or transmission lines in the system has to be replenished.

Buy/sell commodity limitations

The trade with the market in each modeled year and each vertex can be limited
per time step and for an entire year. This introduces the following constraints:

\[\begin{split}&\forall y\in Y,~v\in V,~c \in C_{\text{sell}}:\\
&w\sum_{t\in T_{m}}\varrho_{ct}\leq \overline{G}_{yvc}\\\\
&\forall y\in Y,~v\in V,~c \in C_{\text{sell}},~t\in T_m:\\
& \varrho_{yvct}\leq \overline{g}_{yvc}\end{split}\]

and

\[\begin{split}&\forall y\in Y,~v\in V,~c \in C_{\text{buy}}:\\
&w \sum_{t\in T_{m}}\psi_{ct}\leq \overline{B}_{yvc}\\\\
&\forall y\in Y,~v\in V,~c \in C_{\text{buy}},~t\in T_m:\\
& \varrho_{yvct}\leq \overline{b}_{yvc}.\end{split}\]

Here, the parameters \(\overline{b}_{yvc}\) and \(\overline{B}_{yvc}\)
limit the hourly and yearly maximums of buy from and \(\overline{g}_{yvc}\)
and \(\overline{G}_{yvc}\) the hourly and yearly maximum of selling to the
external market.

This concludes the discussion of the modeled trading with an external market.

Demand side management

Demand side management allows for the shifting of demands in time. It thus
gives the model the possibility to divert from the strict restriction that all
demands have to be fulfilled at all timesteps. Demand side management adds two
variables to an urbs problem and the variable vector then reads:

\[x^{\text{T}}=(\zeta, \underbrace{\rho_{yvct}}_{\text{commodity variables}},
\underbrace{\kappa_{yvp}, \widehat{\kappa}_{yvp}, \tau_{yvpt},
\epsilon^{\text{in}}_{yvcpt},
\epsilon^{\text{out}}_{yvcpt}}_{\text{process variables}},
\underbrace{\kappa_{yaf}, \widehat{\kappa}_{yaf}, \pi^{\text{in}}_{yaft},
\pi^{\text{out}}_{yaft}}_{\text{transmission variables}},\underbrace{
\delta^{\text{up}}_{yvct}, \delta^{\text{down}}_{yvct(tt)}}_
{\text{DSM variables}}).\]

The new variable \(\delta^{\text{up}}_{yvct}\) represent the upshift of the
momentary demand at time \(t\) and \(\delta^{\text{down}}_{yvct(tt)}\)
the corresponding downshifts. The downshifts need two time indices as they are
referencing to the corresponding upshift with the first index \(t\) and the
timesteps they actually occur via the second time index \(tt\). The latter
is then restricted to an interval around the reference upshift since loads
cannot in general be shifted indefinitely. As it is modeled in urbs, DSM does
not introduce any costs. To clarify the terms used for the DSM feature the
following illustrative example is helpful.

Example of a DSM process

An example scenario with parameters below can be used to clarify the
mathematical structure of a DSM process.

	Site

	Commodity

	delay

	eff

	recov

	cap-max-do

	cap-max-up

	South

	Elec

	3

	1

	1

	2000

	2000

First, an series of three upshifts, i.e. demand increases, indexed with the
modeled timesteps 3,4 and 5 occurs in the example.

DSM upshift process

	\(t\)

	

	1

	0

	2

	0

	3

	1445

	4

	1580

	5

	2000

	6

	0

The corresponding downshifts can then be visualized using a matrix, where the
row index \(t\) corresponds to the upshifts above, that have to be
compensated by downshifts. The modeled timesteps where the downshifts actually
occur are labeled by \(tt\) and represent the column indices.

DSM downshift process

	\(t\) \ \(tt\)

	1

	2

	3

	4

	5

	6

	1

	0

	0

	0

	0

	
	

	2

	0

	0

	0

	0

	0

	

	3

	1445

	0

	0

	0

	0

	0

	4

	555

	0

	555

	0

	0

	470

	5

	
	2000

	0

	0

	0

	0

	6

	
	
	0

	0

	0

	0

The DSM upshift process is relatively easy to understand, for every time step
\(t\) one upshift is made and it can not exceed 2000. The table for DSM
downshift process shows, that the sum over all elements for every row index
\(t\), is equal to the upshift made at time step \(t\). The blank
spaces in the table are because of delay time restriction. For instance, an
upshift in \(t = 1\) may not be compensated with a downshift in
\(tt = 5\), as delay time is equal to 3 in our example. The restriction of
the total DSM downshifts is given by the sum of all column elements for every
index \(tt\). This sum may not exceed 2000 as well, due to given
parameters.

Commodity dispatch constraints

Demand side management changes the vertex rule. Every upshift
\(\delta^{\text{up}}_{yvct}\) leads to an additional demand, i.e., to an
additional required output of the system, and vice versa for the downshifts.
Effectively this changes the vertex rule (Kirchhoff’s current law) for demand
commodities with DSM to:

\[\begin{split}&\forall y\in Y,~v\in V,~c \in C_{\text{dem}},~ t \in T_m:\\\\
&-d_{yvct}-\delta^{\text{up}}_{yvct} \geq \text{CB}(y,v,c,t)\\
&-d_{yvct}+\sum_{tt\in [t - y_{yvc},t + y_{yvc}]}
\delta^{\text{down}}_{yvc(tt)t} \geq \text{CB}(y,v,c,t).\end{split}\]

The downshift equation requires a little elaboration. Here, the total downshift
occurring at a timestep \(t\) can be caused by downshifts linked to
different upshifts, which in the notation above occur at times \(tt\). All
downshift contributions within the delay time \(y_{yvc}\) of their
respective upshifts are then summed up.

DSM variables rule

This central constraint rule for DSM in urbs links the up- and down shifts of
DSM events. An upshift (multiplied with the DSM efficiency) at time \(t\)
must be compensated with multiple downshifts during a certain time interval.
The lower and upper bounds of this time interval are given by
\(t - y_{yvc}\) and \(t + y_{yvc}\), where \(y_{yvc}\) is the delay
time parameter specifying the allowed duration of a DSM event. Inside this time
interval, another time index \(tt\) is required. It is used to index the
downshift processes that are always linked to one upshift. Of course, the
intervals of several upshifts can overlap. Mathematically, this rule can be
noted like this:

\[\begin{split}&\forall y\in Y,~v\in V,~c\in C^{\text{DSM}}_{dem},~t\in T_m:\\\\
&e_{yvc}\delta^{\text{up}}_{yvct}=\sum_{tt\in [t - y_{yvc},t + y_{yvc}]}
\delta^{\text{down}}_{yvct(tt)},\end{split}\]

where \(e_{yvc}\) is the DSM efficiency. Note here, that the summation is
over the timesteps where the downshifts are occurring as opposed to the vertex
rule above, where the summation is over the timesteps of the corresponding
upshifts.

DSM shift limitations

DSM shifts are limited in size in both directions. This is modeled by

\[\begin{split}&\forall y\in Y,~v\in V,~c\in C^{\text{DSM}}_{\text{dem}}, t\in T_m:\\\\
&\delta^{\text{up}}_{yvct}\leq \overline{K}^{\text{up}}_{yvc}\\\\
&\sum_{tt\in [t - y_{yvc},t + y_{yvc}]}\delta^{\text{down}}_{yvc(tt)t}\leq
\overline{K}^{\text{down}}_{yvc},\end{split}\]

where again the downshifts are summed over the corresponding upshifts, making
sure that at no time there is a total downshift sum larger than the set maximum
value.

In addition to these limitations on the single shift directions, the total sum
of shifts is also limited in an urbs model via:

\[\begin{split}&\forall y\in Y,~v\in V,~c\in C^{\text{DSM}}_{\text{dem}}, t\in T_m:\\\\
&\delta^{\text{up}}_{yvct}+
\sum_{tt\in [t - y_{yvc},t + y_{yvc}]}\delta^{\text{down}}_{yvc(tt)t} \leq
\text{max}
\{\overline{K}^{\text{up}}_{yvc},\overline{K}^{\text{down}}_{yvc}\}.\end{split}\]

DSM recovery

Assuming that DSM is linked to some real physical devices, it is necessary to
allow these devices to have some minimal time between DSM events, where, e.g.,
the ability to perform DSM is recovered. This is modeled in the following way:

\[\begin{split}&\forall y\in Y,~v\in V,~c\in C^{\text{DSM}}_{\text{dem}}, t\in T_m:\\\\
& \sum_{tt=t}^{o_{yvc}/\Delta t-1}\delta^{\text{up}}_{yvc(tt)}\leq
\overline{K}^{\text{up}}_{yvc}\cdot y_{yvc},\end{split}\]

where \(o_{yvc}\) is the recovery time in hours. This constraint limits the
total amount of upshifted energy within the recovery period (lhs) to the
maximum allowed energy shift retained for the maximum amount of allowed
shifting time for one shifting event. This means that only one full shifting
event can occur within the recovery period.

This concludes the demand side management constraints.

Advanced Processes

Several processes have a complicated, non-linear behavior. Those that
can be modelled in urbs are explained here. These are: Time Variable Efficiency,
Minimum Load and Part Load Behaviors and On/Off Behavior.

Time Variable Efficiency

It is possible to exogenously manipulate the output of a process by introducing a time
series, which changes the output ratios and thus the efficiency of a given
process in each given timestep. This introduces an additional set of
constraints in the form:

\[\begin{split}&\forall p \in P^{\text{TimeVarEff}},~c\in C-C^{\text{env}}, t\in T_m:\\\\
&\epsilon^{\text{out}}_{ypct}=r^{\text{out}}_{ypc}f^{\text{out}}_{ypt}
\tau_{ypct}.\end{split}\]

Here, \(f^{\text{out}}_{pt}\) represents the normalized time series of the
varying output ratio. This feature can be helpful when modeling, e.g.,
temperature dependent effects or maintenance intervals. Environmental
commodities are intentionally excluded from the output manipulation. The reason
for this is that they are typically directly linked to inputs as, e.g., CO2
emissions are linked to the fossil inputs. A manipulation of the output for
environmental commodities would thus violate the mass balance of carbon in
this case (e.g. coal).

When the process in question is a process with part load behavior the equation
for the time variable efficiency case takes the following form:

\[\begin{split}&\forall p\in P^{\text{part load}}~\text{and}~ p \in P^{\text{TimeVarEff}},
~c\in C,~t\in T_m:\\\\
&\epsilon^{\text{out}}_{ypct}=\Delta t\cdot f^{\text{out}}_{ypt}\cdot
\left(\frac{\underline{r}^{\text{out}}_{ypc}-r^{\text{out}}_{ypc}}
{1-\underline{P}_{yp}}\cdot \underline{P}_{yp}\cdot \kappa_{yp}+
\frac{r^{\text{out}}_{ypc}-
\underline{P}_p\underline{r}^{\text{out}}_{ypc}}
{1-\underline{P}_{yp}}\cdot \tau_{ypt}\right).\end{split}\]

Minimum Load and Part Load Behaviors

There are some processes which theoretically can be turned on and off, while others
tipically operate as must-run units (e.g. nuclear power plants,
heat-producing plants during the cold season etc.). These processes can either have
a constant and load independent efficiency or a part-load behavior.

In the case of a minimum load behavior with a constant, load independent efficiency,
the values of the input and of the output of a process remain unchanged when compared
except for the fact that their values, together with the value of the throughput, stay
between the following boundaries:

\[\begin{split}&\forall p\in P^{\text{minimum load}},~c\in C,~t\in T_m:\\\\
&\underline{P}_p\cdot \kappa_p\cdot r^{\text{in,out}}\leq
\epsilon^{\text{in,out}}_{pct}\leq \kappa_p\cdot r^{\text{in,out}},\end{split}\]

\[\begin{split}&\forall p\in P^{\text{part load}},~c\in C,~t\in T_m:\\\\
&\underline{P}_p\cdot \kappa_p\cdot \underline{r}^{\text{in,out}}\leq
\epsilon^{\text{in,out}}_{pct}\leq \kappa_p\cdot r^{\text{in,out}},\end{split}\]

where \(\underline{P}_{p}\) is the minimum load fraction, \(\kappa_p\) the
installed capacity, \(r^{\text{in,out}\) the input/output ratios and
\(\underline{r}^{\text{in,out}\) the minimum input/output ratios.

Many processes show a non-trivial part-load behavior. In particular, often a
nonlinear reaction of the efficiency on the operational state is given.
Although urbs itself is a linear program this can with some caveats be captured
in many cases. The reason for this is, that the efficiency of a process is
itself not given as a parameter, but is merely the ratio between input and output
multipliers. It is thus possible to use purely linear functions to get a nonlinear
behavior of the efficiency of the form:

\[\eta=\frac{a+b\tau_{pt}}{c+d\tau_{pt}},\]

where a,b,c and d are some constants. Specifically, the input and output ratios
can be set to vary linearly between their respective values at full load
\(r^{\text{in,out}}_{pc}\) and their values at the minimal allowed
operational state \(\underline{P}_{p}\kappa_p\), which are given by
\(\underline{r}^{\text{in,out}}_{pc}\). This is achieved with the following
equations and exemplified with the following graphic:

\[\begin{split}&\forall p\in P^{\text{part load}},~c\in C,~t\in T_m:\\\\
&\epsilon^{\text{in,out}}_{pct}=\Delta t\cdot\left(
\frac{\underline{r}^{\text{in,out}}_{pc}-r^{\text{in,out}}_{pc}}
{1-\underline{P}_p}\cdot \underline{P}_p\cdot \kappa_p+
\frac{r^{\text{in,out}}_{pc}-
\underline{P}_p\underline{r}^{\text{in,out}}_{pc}}
{1-\underline{P}_p}\cdot \tau_{pt}\right).\end{split}\]

[image: Process with part load behaviour.]
A few restrictions have to be kept in mind when using this feature:

	\(\underline{P}_p\) has to be set larger than 0 otherwise the feature
will work but not have any effect.

	Environmental output commodities have to mimic the behavior of the inputs by
which they are generated. Otherwise the emissions per unit of input would
change together with the efficiency, which is typically not the desired
behavior.

On/off Behavior

Some processes are characterised by a minimum or part-load behavior but still
retain the practical necessity of being turned on and off if this is optimal.
This feature transforms urbs from a linear problem to a quadratic integer problem,
or piecewise linear.
The following graphic illustrates a process with the on/off feature and constant efficiency:

[image: Process with the on/off feature.]
The following graphic illustrates a process with the on/off feature and part load behavior:

[image: Process with the on/off feature and part load behavior.]
Coupling the throughput ant the on/off marker:
The following equation introduces a coupling between \(\omicron_{pt}\),
the boolean on/off marker of a process and its throughput \(\tau_{pt}\), so that
\(\omicron_{pt}\) assumes the value 1 when the process has a non-zero output and 0
otherwise.

\[\begin{split}&\forall p\in P^{\text{on/off}},~t\in T_m:\\\\
&\underline{P}_p\cdot \kappa_p\cdot \omicron_{pt}\leq
\tau_{pt}\leq
\kappa_p\cdot \omicron_{pt}+ \underline{P}_p\cdot \kappa_p\cdot (1 - \omicron_{pt})\end{split}\]

Input:
The following equation describes the alteration of the input equation of a
process with on/off and part-load behaviors due to the necessity of having a continuous,
linear function defined on two intervals. The first interval represents the starting input
of a process, while the second one represents the consumed input while also producing.

\[\begin{split}&\forall p\in P^{\text{on/off with part load}},~c\in C,~t\in T_m:\\\\
&\epsilon^{in}_{pct}=
\tau_{pt}\cdot r^{\text{in}}_{pc}\cdot (1-\omicron_{pt})+
\Delta t\cdot\left(
\frac{\underline{r}^{\text{in}}_{pc}-r^{\text{in}}_{pc}}
{1-\underline{P}_p}\cdot \underline{P}_p\cdot \kappa_p+
\frac{r^{\text{in}}_{pc}-
\underline{P}_p\underline{r}^{\text{in}}_{pc}}
{1-\underline{P}_p}\cdot \tau_{pt}\right)\cdot \omicron_{pt}.\end{split}\]

In order to ensure the continuity property of the function, the input ratio used
for the starting interval has to be one corresponding to the minimum partial load,
using \(\underline{r}^{\text{in}}_{pc}\). This is a realistic value, since processes
normally use, percentagewise, more fuel in relationship to the throughput when
starting than at higher throughput values.

Output differentiation:
The following equations differentiate whether an output commodity needs to be
produced when a process is starting (e.g. environmental commodities) or not (e.g. electricity):

\[\begin{split}&\forall p\in P^{\text{on/off}},~c\in C^{\text{environmental}},~t\in T_m:\\\\
&\epsilon^{out}_{pct}= \tau_{pt}\cdot r^{\text{out}}_{pc}\\
&\forall p\in P^{\text{on/off}},~c\in C^{\text{non-environmental}},~t\in T_m:\\\\
&\epsilon^{out}_{pct}= \tau_pt\cdot r^{\text{out}}_{pc}\cdot \omicron_{pt}.\end{split}\]

If the process also shows part-load behavior, the previous two equations change to a
similarly adapted version of the part-load output equation:

\[\begin{split}&\forall p\in P^{\text{on/off with part load}},~c\in C^{\text{environmental}},~t\in T_m:\\\\
&\epsilon^{out}_{pct}=
\tau_pt\cdot r^{\text{out}}_{pc}\cdot (1-\omicron_{pt})+
\Delta t\cdot\left(
\frac{\underline{r}^{\text{out}}_{pc}-r^{\text{out}}_{pc}}
{1-\underline{P}_p}\cdot \underline{P}_p\cdot \kappa_p+
\frac{r^{\text{out}}_{pc}-
\underline{P}_p\underline{r}^{\text{out}}_{pc}}
{1-\underline{P}_p}\cdot \tau_{pt}\right)\cdot \omicron_{pt}\\\\
&\forall p\in P^{\text{on/off}},~c\in C^{\text{non-environmental}},~t\in T_m:\\\\
&\epsilon^{\text{out}}_{pct}=\Delta t\cdot\left(
\frac{\underline{r}^{\text{out}}_{pc}-r^{\text{out}}_{pc}}
{1-\underline{P}_p}\cdot \underline{P}_p\cdot \kappa_p+
\frac{r^{\text{out}}_{pc}-
\underline{P}_p\underline{r}^{\text{out}}_{pc}}
{1-\underline{P}_p}\cdot \tau_{pt}\right)\cdot \omicron_{pt}.\end{split}\]

Here, it is important to notice that the output of the environmental commodities becomes
a continuous, piecewise linear function defined on two intervals. In order to ensure the
continuity property of the function, the output ratio used for the starting interval has
to be the partial one, \(\underline{r}^{\text{in}}_{pc}\). This is a realistic value,
since processes normaly produce, percentagewise, more CO2 and/or other environmental
commodities in relationship to the throughput when starting then at higher throughput values.

Output ramping-up limit:
While ramping up a process which can be turned on and off with a defined ramping up
gradient, the following unrealistic situation might occur: Due to the fact that in the minimum
working point the process on/off marker \(\omicron_{pt}\) can be both 0 and 1, the output
of a process might have unrealistic jumps after the starting process is completed. There are 3
possible cases, each solved with its own output ramping equation, as follows:

Case I: When

\[\begin{split}&\underline{P}_p\geq \overline{PG}_p^{\text{up}}\\
&\underline{P}_p\ \text{is a multiple of} \overline{PG}_p^\text{up}.\end{split}\]

Here, in order to ensure that the process behaves
realistically, it is needed to ensure that the process starts producing in the minimum working
point, \(\underline{P}_p\kappa_p\ r^{\text{out}}_{pc}\), and not at a higher value. This is
done by the following equation:

\[\begin{split}&\forall p\in P^{\text{on/off, case I}},~c\in C,~t\in T_m:\\\\
&\epsilon^{out}_{pct}-\epsilon^{out}_{pc(t-1)}\leq
\Delta t\underline{P}_p\kappa_{p} r^{\text{out}}_{pc}.\end{split}\]

If the process shows a part load behavior, the equation changes to:

\[\begin{split}&\forall p\in P^{\text{on/off with part load, case I}},~c\in C,~t\in T_m:\\\\
&\epsilon^{out}_{pct}-\epsilon^{out}_{pc(t-1)}\leq
\Delta t\underline{P}_p\kappa_{p}\underline{r}^{\text{out}}_{pc}.\end{split}\]

If the process has a time variable efficiency, the equation changes to:

\[\begin{split}&\forall p\in P^{\text{on/off with TimeVarEff, case I}},~c\in C,~t\in T_m:\\\\
&\epsilon^{out}_{pct}-\epsilon^{out}_{pc(t-1)}\leq
\Delta t\underline{P}_p\kappa_{p} r^{\text{out}}_{pc} f^{\text{out}}_{pt}.\end{split}\]

If the process has both a part load behavior and a time variable efficiency, the equation changes
to:

\[\begin{split}&\forall p\in P^{\text{on/off with TimeVarEff, case I}},~c\in C,~t\in T_m:\\\\
&\epsilon^{out}_{pct}-\epsilon^{out}_{pc(t-1)}\leq
\Delta t\underline{P}_p\kappa_{p}\underline{r}^{\text{out}}_{pc} f^{\text{out}}_{pt}.\end{split}\]

Case II: When

\[\begin{split}&\underline{P}_{p}>\overline{PG}_p^\text{up}\\
&\underline{P}_p\ \text{is not a multiple of} \overline{PG}_p^\text{up}.\end{split}\]

Here, in order to ensure that the process behaves realistically, it is needed to ensure that the
process starts somewhere in the interval between the minimum working point
\(\underline{P}_p\kappa_p\) and the point of the first multiple of
\(\overline{PG}_p^\text{up}\) greater than \(\underline{P}_p\kappa_p\), which is
\((⌊\frac{\underline{P}_p}{\overline{PG}_p^\text{up}}⌋ +1)\cdot \overline{PG}_p\), where ⌊ ⌋ is
the rounded down number. This is done by the following equation:

\[\begin{split}&\forall p\in P^{\text{on/off, case II}},~c\in C,~t\in T_m:\\\\
&\epsilon^{out}_{pct}-\epsilon^{out}_{pc(t-1)}\leq
\Delta t (⌊\frac{\underline{P}_p}{\overline{PG}_p^\text{up}}⌋+1)
\overline{PG}_p\kappa_{p} r^{\text{out}}_{pc}.\end{split}\]

If the process shows a part load behavior, the equation changes to:

\[\begin{split}&\forall p\in P^{\text{on/off, case II}},~c\in C,~t\in T_m:\\\\
&\epsilon^{out}_{pct}-\epsilon^{out}_{pc(t-1)}\leq
\Delta t (⌊\frac{\underline{P}_p}{\overline{PG}_p^\text{up}}⌋ +1)
\overline{PG}_p\kappa_{p}\underline{r}^{\text{out}}_{pc}.\end{split}\]

If the process has a time variable efficiency, the equation changes to:

\[\begin{split}&\forall p\in P^{\text{on/off with TimeVarEff, case II}},~c\in C,~t\in T_m:\\\\
&\epsilon^{out}_{pct}-\epsilon^{out}_{pc(t-1)}\leq
\Delta t (⌊\frac{\underline{P}_p}{\overline{PG}_p^\text{up}}⌋ +1)
\overline{PG}_p\kappa_{p} r^{\text{out}}_{pc} f^{\text{out}}_{pt}.\end{split}\]

If the process has both a part load behavior and a time variable efficiency, the equation changes
to:

\[\begin{split}&\forall p\in P^{\text{on/off with part load and TimeVarEff, case II}},~c\in C,~t\in T_m:\\\\
&\epsilon^{out}_{pct}-\epsilon^{out}_{pc(t-1)}\leq
\Delta t (⌊\frac{\underline{P}_p}{\overline{PG}_p^\text{up}}⌋ +1)
\overline{PG}_p\kappa_{p}\underline{r}^{\text{out}}_{pc} f^{\text{out}}_{pt}.\end{split}\]

Case III: When

\[\underline{P}_{p}<\overline{PG}_p^\text{up}.\]

Here, in order to ensure that the process behaves realistically, it is needed to ensure that the
process starts somewhere in the interval between the minimum working point
\(\underline{P}_p\kappa_p\) and the first ramping up point greater than 0,
\(\overline{PG}_p^\text{up}\kappa_p\). This is done by the following equation:

\[\begin{split}&\forall p\in P^{\text{on/off, case III}},~c\in C,~t\in T_m:\\\\
&\epsilon^{out}_{pct}-\epsilon^{out}_{pc(t-1)}\leq
\Delta t\overline{PG}_p^\text{up}\kappa_{p} r^{\text{out}}_{pc}.\end{split}\]

If the process shows a part load behavior, the equation changes to:

\[\begin{split}&\forall p\in P^{\text{on/off, case III}},~c\in C,~t\in T_m:\\\\
&\epsilon^{out}_{pct}-\epsilon^{out}_{pc(t-1)}\leq
\Delta t\overline{PG}_p^\text{up}\kappa_{p}\underline{r}^{\text{out}}_{pc}.\end{split}\]

If the process has a time variable efficiency, the equation changes to:

\[\begin{split}&\forall p\in P^{\text{on/off with TimeVarEff, case III}},~c\in C,~t\in T_m:\\\\
&\epsilon^{out}_{pct}-\epsilon^{out}_{pc(t-1)}\leq
\Delta t\overline{PG}_p^\text{up}\kappa_{p} r^{\text{out}}_{pc}\ f^{\text{out}}_{pt}.\end{split}\]

If the process has both a part load behavior and a time variable efficiency, the equation changes
to:

\[\begin{split}&\forall p\in P^{\text{on/off with part load and TimeVarEff, case III}},~c\in C,~t\in T_m:\\\\
&\epsilon^{out}_{pct}-\epsilon^{out}_{pc(t-1)}\leq
\Delta t\overline{PG}_p^\text{up}\kappa_{p}\underline{r}^{\text{out}}_{pc} f^{\text{out}}_{pt}.\end{split}\]

Starting ramp-up:
There are some processes which have a different ramping up gradient while starting
than while producing. This is usually defined with the help of a so called starting time. The
following equations transform the starting time into a starting ramp and implement the starting
ramp only during start, either as the only ramping constraint when no ramp up gradient is defined
or by replacing during start the rampiong up constraint which uses the ramping up gradient:

\[\begin{split}&\forall p\in P^{\text{on/off with start time}},~t\in T_m:\\\\
&SR_{p}= \frac{\underline{P}_p}{ST_{p}}\\
&\tau_{pt}-\tau_{p(t-1)}\leq \Delta t\overline{PG}_p^{\text{up}}\kappa_{p}\omicron_{p(t-1)}+
\Delta t\ SR_p \kappa_{p}(1-\omicron_{p(t-1)}).\end{split}\]

Start-up costs:
For those processes which have a fix start-up cost, it is necessary to identify
whether a process has completed its starting phase and begins to produce or not. The following
equation does this by turning the boolean variable process start-up marker \(\sigma_{pt}\)
to 1 when the process on/off marker switches from 0 to 1:

\[\begin{split}&\forall p\in P^{\text{on/off with start cost}},~t\in T_m:\\\\
&\sigma_{pt}\geq \omicron_{pt}-\omicron_{p(t-1)}.\end{split}\]

The following table shows the possible values of \(\sigma_{pt}\):
.. table:: Table: Process Start-up Marker Values

	\(\omicron_{pt}\)

	\(\omicron_{p(t-1)}\)

	\(\sigma_{pt}\)

	0

	0

	0 or 1 (0 is optimal)

	0

	1

	0

	1

	0

	1

	1

	1

	0

Costs

The cost function is ammended with one cost type, the start-up cost:

\[\zeta = \zeta_{\text{inv}} + \zeta_{\text{fix}} + \zeta_{\text{var}} +
\zeta_{\text{fuel}} + \zeta_{\text{startup}} + \zeta_{\text{env}}.\]

Turning on a process requires sometime an additional fix cost besides the fuel
used for the starting. As the variable costs, these costs occur when processes
are used:

\[\begin{split}\zeta_{\text{startup}}=w \Delta t \sum_{t \in T_m\\ p \in P_{\text{on/off}}}
{P}_p^\text{start}\sigma_{pt},\end{split}\]

where \({P}_p^\text{start}\) is the fix start-up cost and \(\sigma_{pt}\)
is the process start-up marker. This cost type can also be merged into the same
class of costs as the variable and fuel costs.

Model Implementation

In this Section the implementation of the theoretical concepts of the model
is described. This includes listing and describing all relevant sets,
parameters, variables and constraints linking mathematical notation with the
corresponding code fragment.

	Sets
	Elementary sets

	Tuple Sets

	Commodity Type Subsets

	Operational state tuples

	Variables
	Cost Variables

	Commodity Variables

	Process Variables

	Transmission Variables

	DCPF Transmission Variables

	Storage Variables

	Demand Side Management Variables

	Parameters
	Technical Parameters

	Economic Parameters

	Equations
	Objective function

	Constraints

Sets

Since urbs is a linear optimization model with many objects
(e.g variables, parameters), it is reasonable to use sets to define the groups
of objects. With the usage of sets, many facilities are provided, such as
understanding the main concepts of the model. Many objects are represented by
various sets, therefore sets can be easily used to check whether some object
has a specific characteristic or not. Additionally sets are useful to define a
hierarchy of objects. Mathematical notation of sets are expressed with
uppercase letters, and their members are usually expressed with the same
lowercase letters. Main sets, tuple sets and subsets will be introduced in this
respective order.

Elementary sets

Table: Model Sets

	Set

	Description

	\(t \in T\)

	Timesteps

	\(t \in T_\text{m}\)

	Modelled Timesteps

	\(y \in Y\)

	Support timeframes

	\(v \in V\)

	Sites

	\(c \in C\)

	Commodities

	\(q \in Q\)

	Commodity Types

	\(p \in P\)

	Processes

	\(s \in S\)

	Storages

	\(f \in F\)

	Transmissions

	\(r \in R\)

	Cost Types

Time Steps

The model urbs is considered to observe a energy system model and calculate the
optimal solution within a limited span of time. This limited span of time is
viewed as a discrete variable, which means values of variables are viewed as
occurring only at distinct timesteps. The set of time steps
\(T = \{t_0,\dots,t_N\}\) for \(N\) in \(\mathbb{N}\) represents
Time. This set contains \(N+1\) sequential time steps with equal spaces.
Each time step represents another point in time. At the initialisation of the
model this set is fixed by the user by setting the variable timesteps in
script runme.py. Duration of space between timesteps
\(\Delta t = t_{x+1} - t_x\), length of simulation \(\Delta t \cdot N\)
and time interval \([t_0,t_N]\) can be fixed to satisfy the needs of the
user. In code this set is defined by the set t and initialized by the
section:

m.t = pyomo.Set(
 initialize=m.timesteps,
 ordered=True,
 doc='Set of timesteps')

Where:

	Initialize: A function that receives the set indices and model to return
the value of that set element, initializes the set with data.

	Ordered: A boolean value that indicates whether the set is ordered.

	Doc: A string describing the set.

Modelled Timesteps

The Set, modelled timesteps, is a subset of the time steps set. The only
difference between modelled timesteps set and the timesteps set is that the
initial timestep \(t_0\) is not included. All other features of the set
time steps also apply to the set of modelled timesteps. This set is the main
time set used in the model. The distinction with the set timesteps is only
required to facilitate the definition of the storage state equation. In script
model.py this set is defined by the set tm and initialized by the code
fragment:

m.tm = pyomo.Set(
 within=m.t,
 initialize=m.timesteps[1:],
 ordered=True,
 doc='Set of modelled timesteps')

Where:

	Within: The option that supports the validation of a set array.

	m.timesteps[1:] represents the timesteps set starting from the second
element, excluding the first timestep \(t_0\)

Support timeframes

Support timeframes are represented by the set \(Y\). They represent the
explicitly modeled support timeframes, e.g., years, for intertemporal models.
In script model.py the set is defined as:

m.stf = pyomo.Set(
 initialize=(m.commodity.index.get_level_values('support_timeframe')
 .unique()),
 doc='Set of modeled support timeframes (e.g. years)')

Sites

Sites are represented by the set \(V\). A Site \(v\) can be any
distinct location, a place of settlement or activity (e.g process,
transmission, storage).A site is for example an individual building,
region, country or even continent. Sites can be imagined as nodes(vertices) on
a graph of locations, connected by edges. Index of this set are the
descriptions of the Sites (e.g north, middle, south). In script model.py
this set is defined by sit and initialized by the code fragment:

m.sit = pyomo.Set(
 initialize=m.commodity.index.get_level_values('Site').unique(),
 doc='Set of sites')

Commodities

As explained in the Overview section, commodities are goods that can be
generated, stored, transmitted or consumed. The set of Commodities represents
all goods that are relevant to the modelled energy system, such as all energy
carriers, inputs, outputs, intermediate substances. (e.g Coal, CO2, Electric,
Wind) By default, commodities are given by their energy content (MWh). Usage of
some commodities are limited by a maximum value or maximum value per timestep
due to their availability or restrictions, also some commodities have a price
that needs to be compensated..(e.g coal, wind, solar).In script model.py
this set is defined by com and initialized by the code fragment:

m.com = pyomo.Set(
 initialize=m.commodity.index.get_level_values('Commodity').unique(),
 doc='Set of commodities')

Commodity Types

Commodities differ in their usage purposes, consequently commodity types
are introduced to subdivide commodities by their features. These Types are hard
coded as SupIm, Stock, Demand, Env, Buy, Sell. In
script model.py this set is defined as com_type and initialized by the
code fragment:

m.com_type = pyomo.Set(
 initialize=m.commodity.index.get_level_values('Type').unique(),
 doc='Set of commodity types')

Processes

One of the most important elements of an energy system is the process. A
process \(p\) can be defined by the action of changing one or more forms of
energy, i.e. commodities, to others. In our modelled energy system, processes
convert input commodities into output commodities. Process technologies are
represented by the set processes \(P\). Different processes technologies
have fixed input and output commodities. These input and output commodities can
be either single or multiple regardless of each other. Some example members of
this set can be: Wind Turbine,`Gas Plant`, Photovoltaics. In script
model.py this set is defined as pro and initialized by the code
fragment:

m.pro = pyomo.Set(
 initialize=m.process.index.get_level_values('Process').unique(),
 doc='Set of conversion processes')

Storages

Energy Storage is provided by technical facilities that store energy to
generate a commodity at a later time for the purpose of meeting the demand.
Occasionally, on-hand commodities may not be able to satisfy the required
amount of energy to meet the demand, or the available amount of energy may be
much more than required.Storage technologies play a major role in such
circumstances. The Set \(S\) represents all storage technologies (e.g
Pump storage). In script model.py this set is defined as sto and
initialized by the code fragment:

m.sto = pyomo.Set(
 initialize=m.storage.index.get_level_values('Storage').unique(),
 doc='Set of storage technologies')

Transmissions

Transmissions \(f \in F\) represent possible conveyances of commodities
between sites. Transmission process technologies can vary between different
commodities, due to distinct physical attributes and forms of commodities. Some
examples for Transmission technologies are: hvac, hvdc, pipeline) In
script model.py this set is defined as tra and initialized by the code
fragment:

m.tra = pyomo.Set(
 initialize=m.transmission.index.get_level_values('Transmission').unique(),
 doc='Set of transmission technologies')

Cost Types

One of the major goals of the model is to calculate the costs of a simulated
energy system. There are 6 different types of costs. Each one has different
features and are defined for different instances. Set of cost types is
hardcoded, which means they are not considered to be fixed or changed by the
user. The Set \(R\) defines the Cost Types, each member \(r\) of this
set \(R\) represents a unique cost type name. The cost types are hard coded
as: Investment, Fix, Variable, Fuel, Revenue, Purchase,
Startup. In script model.py this set is defined as cost_type and
initialized by the code fragment:

m.cost_type = pyomo.Set(
 initialize=['Inv', 'Fix', 'Var', 'Fuel','Revenue','Purchase','Startup'],
 doc='Set of cost types (hard-coded)')

Tuple Sets

A tuple is finite, ordered collection of elements. For example, the tuple
(hat,red,large) consists of 3 ordered elements and defines another element
itself. Tuples are needed in this model to define the combinations of elements
from different sets. Defining a tuple lets us assemble related elements and use
them as a single element. These tuples are then collected into tuple sets.
These tuple sets are then immensely useful for efficient indexing of model
variables and parameters and for defining the constraint rules.

Commodity Tuples

Commodity tuples represent combinations of defined commodities.
These are represented by the set \(C_{yvq}\). A member \(c_{yvq}\) in
set \(C_{yvq}\) is a commodity \(c\) of commodity type \(q\) in
support timeframe \(y\) and site \(v\). For example, (2020, Mid, Elec,
Demand) is interpreted as commodity Elec of commodity type Demand in the
year 2020 in site Mid. This set is defined as com_tuples and given by
the code fragment:

m.com_tuples = pyomo.Set(
 within=m.stf*m.sit*m.com*m.com_type,
 initialize=m.commodity.index,
 doc='Combinations of defined commodities, e.g. (2020,Mid,Elec,Demand)')

Process Tuples

Process tuples represent possible placements of processes within the model.
These are represented by the set \(P_v\). A member \(p_{yv}\) in set
\(P_{yv}\) is a process \(p\) in support timeframe \(y\) and site
\(v\). For example, (2020, North, Coal Plant) is interpreted as process
Coal Plant in site North in the year 2020. This set is defined as
pro_tuples and given by the code fragment:

m.pro_tuples = pyomo.Set(
 within=m.stf*m.sit*m.pro,
 initialize=m.process.index,
 doc='Combinations of possible processes, e.g. (2020,North,Coal plant)')

There are several subsets defined for process tuples, which each activate a
different set of modeling constraints.

The first subset is formed in order to capture all processes that take up a
certain area and are thus subject to the area constraint at the given site.
These processes are identified by the parameter area-per-cap set in table
Process, if at the same time a value for area is set in table Site. The
tuple set is defined as:

m.pro_area_tuples = pyomo.Set(
 within=m.stf*m.sit*m.pro,
 initialize=m.proc_area.index,
 doc='Processes and Sites with area Restriction')

The second subset is formed in order to capture all processes which have the
parameter process new capacity block cap-block \({K}_{yvp}^\text{block}\)
set in the table Process, used for building new capacity in blocks. The tuple
set is defined as:

m.pro_cap_new_block_tuples = pyomo.Set(
 within=m.stf * m.sit * m.pro,
 initialize=[(stf, site, process)
 for (stf, site, process) in m.pro_tuples
 for (s, si, pro) in tuple(m.cap_block_dict.keys())
 if process == pro and si == site and s == stf],
 doc='Processes with new capacities built in blocks')

The third subset of the process tuples pro_minfraction_tuples
\(P_{yv}^\text{minfraction}\) is formed in order to identify processes
that have a minimum fraction defined without having partial operation
properties and cannot be turned off. Programatically, they are identified by
those processes which have the parameter min-fraction set and the parameter
on-off set to 0 in the table Process. The tuple set is defined in
AdvancedProcesses.py as:

m.pro_minfraction_tuples = pyomo.Set(
 within=m.stf * m.sit * m.pro,
 initialize=[(stf, site, process)
 for (stf, site, process) in m.pro_tuples
 for (st, sit, pro) in tuple(m.min_fraction_dict.keys())
 if stf == st and sit == site and process ==pro and
 m.process_dict['on-off'][stf, site, process] != 1],
 doc='Processes with constant efficiency and minimum working load which'
 'cannot be turned off')

The fourth subset of the process tuples pro_partial_tuples
\(P_{yv}^\text{partial}\) is formed in order to identify processes that
have partial operation properties and cannot be turned off. Programmatically,
they are identified by those processes, which have the parameter ratio-min
set for one of their input and/or outputcommodities in table Process-Commodity
and the parameter on-off in the table Process set to 0. The tuple set is
defined in AdvancedProcesses.py as:

m.pro_partial_tuples = pyomo.Set(
 within=m.stf * m.sit * m.pro,
 initialize=[(stf, site, process)
 for (stf, site, process) in m.pro_tuples
 for (s, pro, _) in tuple(m.r_in_min_fraction_dict.keys() or
 m.r_out_min_fraction_dict.keys())
 if process == pro and s == stf and
 m.process_dict['on-off'][stf, site, process] != 1],
 doc='Processes with partial input/output which cannot be turned off')

The fifth subset of the process tuples pro_on_off_tuples
\(P_{yv}^\text{on/off}\) is formed in order to identify processes that
have a minimum fraction defined without having partial operation
properties and can be turned off. Programatically, they are identified by
those processes which have the parameter min-fraction set and the parameter
on-off set to 1 in the table Process. The tuple set is defined in
AdvancedProcesses.py as:

m.pro_on_off_tuples = pyomo.Set(
 within=m.stf * m.sit * m.pro,
 initialize=[(stf, site, process)
 for (stf, site, process) in
 tuple(m.min_fraction_dict.keys())
 for (st, sit, pro) in tuple(m.onoff_dict.keys())
 if stf == st and site == sit and process == pro],
 doc='Processes with minimal fraction which can be turned off')

The sixth subset of the process tuples pro_on_off_partial_tuples
\(P_{yv}^\text{partial on/off}\) is formed in order to identify processes
that have a minimum fraction defined, partial operation
properties and can be turned off. Programmatically,
they are identified by those processes, which have the parameter ratio-min
set for one of their input and/or outputcommodities in table Process-Commodity
and the parameter on-off in the table Process set to 1. The tuple set is
defined in AdvancedProcesses.py as:

m.pro_partial_on_off_tuples = pyomo.Set(
 within=m.stf * m.sit * m.pro,
 initialize=[(stf, site, process)
 for (stf, site, process) in m.pro_tuples
 for (st, pro, _) in tuple(m.r_in_min_fraction_dict.keys()
 or m.r_out_min_fraction_dict)
 if process == pro and stf == st and
 m.process_dict['on-off'][stf, site, process] == 1],
 doc='Processes with partial input/output which can be turned off')

Finally, processes that are subject to restrictions in the change of
operational state are captured with the pro_rampupgrad_tuples and
pro_rampdowngrad_tuples. This subsets are defined in AdvancedProcesses as:

m.pro_rampupgrad_tuples = pyomo.Set(
 within=m.stf * m.sit * m.pro,
 initialize=[(stf, sit, pro)
 for (stf, sit, pro) in m.pro_tuples
 if m.process_dict['ramp-up-grad'][stf, sit, pro] < 1.0 / dt],
 doc='Processes with maximum ramp up gradient smaller than timestep length')

m.pro_rampdowngrad_tuples = pyomo.Set(
 within=m.stf * m.sit * m.pro,
 initialize=[(stf, sit, pro)
 for (stf, sit, pro) in m.pro_tuples
 if m.process_dict['ramp-down-grad'][stf, sit, pro] < 1.0 / dt],
 doc='Processes with maximum ramp down gradient smaller than timestep length')

In the case of a a process which can be turned on and off and are subject to
restrictions in the change of operational state while starting are captured
with the pro_rampup_start_tuples, subset which is defined in advancedProcesses.py
as:

m.pro_rampup_start_tuples = pyomo.Set(
 within=m.stf * m.sit *m.pro,
 initialize=[(stf, sit, pro)
 for (stf, sit, pro) in m.pro_on_off_tuples
 if m.process_dict['start-time'][stf, sit, pro]
 > 1.0 / m.dt],
 doc='Processes with different starting ramp up gradient')

Transmission Tuples

Transmission tuples represent possible transmissions. These are represented by
the set \(F_{yc{v_\text{out}}{v_\text{in}}}\). A member
\(f_{yc{v_\text{out}}{v_\text{in}}}\) in set
\(F_{yc{v_\text{out}}{v_\text{in}}}\) is a transmission \(f\),that is
directed from an origin site \(v_\text{out}\) to a destination site
\(v_{in}\) and carrying the commodity \(c\) in support timeframe
\(y\). The term “directed from an origin site \(v_\text{out}\)
to a destination site \(v_\text{in}\)” can also be defined as an arc
\(a\) . For example, (2020, South, Mid, hvac, Elec) is interpreted as
transmission hvac that is directed from origin site South to destination
site Mid carrying commodity Elec in year 2020. This set is defined as
tra_tuples and given by the code fragment:

m.tra_tuples = pyomo.Set(
 within=m.stf*m.sit*m.sit*m.tra*m.com,
 initialize=m.transmission.index,
 doc='Combinations of possible transmissions, e.g. '
 '(2020,South,Mid,hvac,Elec)')

The set \(F^{blocks}_{yc{v_\text{out}}{v_\text{in}}}\) includes all transmission lines
which have a defined capacity block for the building of new transmission capacities.

m.tra_block_tuples = pyomo.Set(
 within=m.stf * m.sit * m.sit * m.tra * m.com,
 initialize=[(stf, sit, sit_, tra, com)
 for (stf, sit, sit_, tra, com) in tuple(m.tra_block_dict.keys())],
 doc='Transmission with new block capacities')

DCPF Transmission Tuples

If the DC Power Flow Model feature is activated in the model, three different transmission tuple sets are defined in the
model.

The set \(F_{yc{v_\text{out}}{v_\text{in}}^{TP}}\) includes every transport model transmission lines and
is defined as tra_tuples_tp and given by the code fragment:

m.tra_tuples_tp = pyomo.Set(
 within=m.stf * m.sit * m.sit * m.tra * m.com,
 initialize=tuple(tra_tuples_tp),
 doc='Combinations of possible transport transmissions,'
 'e.g. (2020,South,Mid,hvac,Elec)')

The set \(F_{yc{v_\text{out}}{v_\text{in}}^{DCPF}}\) includes every transmission
line, which should be modelled with DCPF. If the complementary arcs are included in
the input for DCPF transmission lines, these will be excluded from this set with
remove_duplicate_transmission(). This set is defined as tra_tuples_dc and given by the code fragment:

m.tra_tuples_dc = pyomo.Set(
 within=m.stf * m.sit * m.sit * m.tra * m.com,
 initialize=tuple(tra_tuples_dc),
 doc='Combinations of possible bidirectional dc'
 'transmissions, e.g. (2020,South,Mid,hvac,Elec)')

If the DCPF is activated, the set \(F_{yc{v_\text{out}}{v_\text{in}}}\) is defined by the unification of the sets
\(F_{yc{v_\text{out}}{v_\text{in}}^{DCPF}}\) and \(F_{yc{v_\text{out}}{v_\text{in}}^{TP}}\). This set is defined
as tra_tuples in the same fashion as the default transmission model.

Storage Tuples

Storage tuples label storages. They are represented by the set \(S_{yvc}\).
A member \(s_{yvc}\) in set \(S_{yvc}\) is a storage \(s\) of
commodity \(c\) in site \(v\) and support timeframe \(y\) For
example, (2020, Mid, Bat, Elec) is interpreted as storage Bat for commodity
Elec in site Mid in the year 2020. This set is defined as sto_tuples
and given by the code fragment:

m.sto_tuples = pyomo.Set(
 within=m.stf*m.sit*m.sto*m.com,
 initialize=m.storage.index,
 doc='Combinations of possible storage by site,'
 'e.g. (2020,Mid,Bat,Elec)')

There are four subsets of storage tuples.

In a first subset of the storage tuples are all storages that have a user
defined fixed value for the initial state are collected.

m.sto_init_bound_tuples = pyomo.Set(
 within=m.stf*m.sit*m.sto*m.com,
 initialize=m.stor_init_bound.index,
 doc='storages with fixed initial state')

A second subset is defined for all storages that have a fixed ratio between
charging/discharging power and storage content.

m.sto_ep_ratio_tuples = pyomo.Set(
 within=m.stf*m.sit*m.sto*m.com,
 initialize=tuple(m.sto_ep_ratio_dict.keys()),
 doc='storages with given energy to power ratio')

The third and fourth subsets are defined for all the storages that have a
capacity or power expansion block defined in the input.

m.sto_block_c_tuples = pyomo.Set(
 within=m.stf * m.sit * m.sto * m.com,
 initialize=tuple(m.sto_block_c_dict.keys()),
 doc='storages with new energy block capacities')
m.sto_block_p_tuples = pyomo.Set(
 within=m.stf * m.sit * m.sto * m.com,
 initialize=tuple(m.sto_block_p_dict.keys()),
 doc='storages with new power block capacities')

Process Input Tuples

Process input tuples represent commodities consumed by processes. These are
represented by the set \(C_{yvp}^\text{in}\). A member
\(c_{yvp}^\text{in}\) in set \(C_{vp}^\text{in}\) is a commodity
\(c\) consumed by the process \(p\) in site \(v\) in support
timeframe \(y\). For example, (2020, Mid, PV, Solar) is interpreted as
commodity Solar consumed by the process PV in the site Mid in the year
2020. This set is defined as pro_input_tuples and given by the code
fragment:

m.pro_input_tuples = pyomo.Set(
 within=m.stf*m.sit*m.pro*m.com,
 initialize=[(stf, site, process, commodity)
 for (stf, site, process) in m.pro_tuples
 for (s, pro, commodity) in m.r_in.index
 if process == pro and s == stf],
 doc='Commodities consumed by process by site,'
 'e.g. (2020,Mid,PV,Solar)')

Where: r_in represents the process input ratio as set in the input.

For processes in the tuple set pro_partial_tuples, the following tuple set
pro_partial_input_tuples enumerates their input commodities. It is used to
index the constraints that modifies a process’ input commodity flow with
respect to the standard case without partial operation. It is defined by the
following code fragment:

m.pro_partial_input_tuples = pyomo.Set(
 within=m.stf*m.sit*m.pro*m.com,
 initialize=[(stf, site, process, commodity)
 for (stf, site, process) in m.pro_partial_tuples
 for (s, pro, commodity) in m.r_in_min_fraction.index
 if process == pro and s == stf],
 doc='Commodities with partial input ratio,'
 'e.g. (2020,Mid,Coal PP,Coal)')

Where: r_in_min_fraction represents the process input ratio as set in the input
for the minimum load of the process.

For processes in the tuple set pro_on_off_tuples, the following tuple set
pro_on_off_input_tuples enumerates their input commodities. It is used to
index the constraints that modifies a process’ input commodity flow with
respect to the standard case without the on/off feature. It is defined by the
following code fragment in AdvancedProcesses.py:

m.pro_on_off_input_tuples = pyomo.Set(
 within=m.stf * m.sit * m.pro * m.com,
 initialize=[(stf, site, process, commodity)
 for (stf, site, process) in m.pro_on_off_tuples
 for (s, pro, commodity) in tuple(m.r_in_dict.keys())
 if process == pro and stf == s],
 doc='Commodities for on/off input')

For processes in the tuple set pro_partial_on_off_tuples, the following tuple set
pro_partial_on_off_input_tuples enumerates their input commodities. It is used to
index the constraints that modifies a process’ input commodity flow with
respect to the standard case without the on/off feature and partial operation. It is
defined by the following code fragment in AdvancedProcesses.py:

m.pro_partial_on_off_input_tuples = pyomo.Set(
 within=m.stf * m.sit * m.pro * m.com,
 initialize=[(stf, site, process, commodity)
 for (stf, site, process) in m.pro_partial_on_off_tuples
 for (s, pro, commodity) in tuple(m.r_in_min_fraction_dict
 .keys())
 if process == pro and s == stf],
 doc='Commodities with partial input ratio which can be turned off,'
 'e.g. (2020,Mid,Coal PP,Coal)')

Process Output Tuples

Process output tuples represent commodities generated by processes. These are
represented by the set \(C_{yvp}^\text{out}\). A member
\(c_{yvp}^\text{out}\) in set \(C_{yvp}^\text{out}\) is a commodity
\(c\) generated by the process \(p\) in site \(v\) and support
timeframe \(y\). For example, (2020, Mid,PV,Elec) is interpreted as the
commodity Elec is generated by the process PV in the site Mid in the year
2020. This set is defined as pro_output_tuples and given by the code
fragment:

m.pro_output_tuples = pyomo.Set(
 within=m.stf*m.sit*m.pro*m.com,
 initialize=[(stf, site, process, commodity)
 for (stf, site, process) in m.pro_tuples
 for (s, pro, commodity) in m.r_out.index
 if process == pro and s == stf],
 doc='Commodities produced by process by site, e.g. (2020,Mid,PV,Elec)')

Where: r_out represents the process output ratio as set in the input.

There are several alternative tuple sets that are active whenever their respective
features are set in the input.

First, for processes in the tuple set pro_partial_tuples, the tuple set
pro_partial_output_tuples enumerates their output commodities. It is used
to index the constraints that modifies a process’ output commodity flow with
respect to the standard case without partial operation. It is defined by the
following code fragment:

m.pro_partial_output_tuples = pyomo.Set(
 within=m.stf*m.sit*m.pro*m.com,
 initialize=[(stf, site, process, commodity)
 for (stf, site, process) in m.pro_partial_tuples
 for (s, pro, commodity) in m.r_out_min_fraction.index
 if process == pro and s == stf],
 doc='Commodities with partial input ratio, e.g. (Mid,Coal PP,CO2)')

Second, for processes in the tuple set pro_on_off_tuples, the tuple set
pro_on_off_output_tuples enumerates their output commodities. It is used
to index the constraints that modifies a process’ output commodity flow with
respect to the standard case without the on/off feature. It is defined by the
following code fragment in AdvancedProcesses.py:

m.pro_on_off_output_tuples = pyomo.Set(
 within=m.stf * m.sit * m.pro * m.com,
 initialize=[(stf, site, process, commodity)
 for (stf, site, process) in m.pro_on_off_tuples
 for (s, pro, commodity) in tuple(m.r_out_dict.keys())
 if process == pro and stf == s],
 doc='Commodities for on/off output')

Third, for processes in the tuple set pro_partial_on_off_tuples, the
tuple set pro_partial_on_off_output_tuples enumerates their output
commodities. It is used to index the constraints that modifies a process’
output commodity flow with respect to the standard case without the on/off
feature and partial operation. It is defined by the following code fragment
in AdvancedProcesses.py:

m.pro_partial_on_off_output_tuples = pyomo.Set(
 within=m.stf * m.sit * m.pro * m.com,
 initialize=[(stf, site, process, commodity)
 for (stf, site, process) in m.pro_partial_on_off_tuples
 for (s, pro, commodity) in tuple(m.r_out_min_fraction_dict
 .keys())
 if process == pro and s == stf],
 doc='Commodities for on/off output with partial behaviour')

Fourth, the processes in the tuple sets pro_on_off_tuples and
pro_partial_on_off_tuples require another constraint to limit the
excessive growth of the output of a process. This is required due to the
fact that in the point of minimum load, without these limiting constraints,
the process on/off marker \(\omicron_{yvpt}\) can be both on and off.
There are three cases to be considered:

The first case is represented by the tuple set
pro_rampup_divides_minfraction_output_tuples, which covers the outputs of the
processes for which the defined ramp up gradient and is smaller than the minimum
load fraction and is a divisor of it. It is defined by the following code fragment
in AdvancedProcesses.py:

m.pro_rampup_divides_minfraction_output_tuples = pyomo.Set(
 within=m.stf * m.sit * m.pro * m.com,
 initialize=[(stf, sit, pro, com)
 for (stf, sit, pro, com) in m.pro_on_off_output_tuples
 if m.process_dict['ramp-up-grad'][stf, sit, pro] < 1.0 / m.dt and
 m.process_dict['ramp-up-grad'][stf, sit, pro] <=
 m.min_fraction_dict[stf, sit, pro] and
 m.min_fraction_dict[stf, sit, pro] %
 m.process_dict['ramp-up-grad'][stf, sit, pro] == 0 and
 com not in m.com_env],
 doc='Output commodities of processes with ramp-up-grad smaller than'
 'timestep length and smaller equal than min-fraction and is a '
 'divisor of min-fraction')

The second case is represented by the tuple set
pro_rampup_not_divides_minfraction_output_tuples, which covers the outputs of the
processes for which the defined ramp up gradient and is smaller than the minimum
load fraction and is not a divisor of it. It is defined by the following code fragment
in AdvancedProcesses.py:

m.pro_rampup_not_divides_minfraction_output_tuples = pyomo.Set(
 within=m.stf * m.sit * m.pro * m.com,
 initialize=[(stf, sit, pro, com)
 for (stf, sit, pro, com) in m.pro_on_off_output_tuples
 if m.process_dict['ramp-up-grad'][stf, sit, pro] < 1.0 / m.dt and
 m.process_dict['ramp-up-grad'][stf, sit, pro] <
 m.min_fraction_dict[stf, sit, pro] and
 m.min_fraction_dict[stf, sit, pro] %
 m.process_dict['ramp-up-grad'][stf, sit, pro] != 0 and
 com not in m.com_env],
 doc='Output commodities of processes with ramp-up-grad smaller than'
 'timestep length and smaller than min-fraction and is NOT a '
 'divisor of min-fraction')

The third and last case is represented by the tuple set
pro_rampup_bigger_minfraction_output_tuples, which covers the outputs of the
processes for which the defined ramp up gradient and is greater than the minimum
load fraction. It is defined by the following code fragment
in AdvancedProcesses.py:

m.pro_rampup_bigger_minfraction_output_tuples = pyomo.Set(
 within=m.stf * m.sit * m.pro * m.com,
 initialize=[(stf, sit, pro, com)
 for (stf, sit, pro, com) in m.pro_on_off_output_tuples
 if m.process_dict['ramp-up-grad'][stf, sit, pro] < 1.0 / m.dt and
 m.process_dict['ramp-up-grad'][stf, sit, pro] >
 m.min_fraction_dict[stf, sit, pro] and
 com not in m.com_env],
 doc='Output commodities of processes with ramp up gradient smaller'
 'than timestep length and greater than min-fraction')

Last, the output of all processes that have a time dependent efficiency are
collected in an additional tuple set. The set contains all outputs
corresponding to processes that are specified as column indices in the input
file worksheet TimeVarEff.

m.pro_timevar_output_tuples = pyomo.Set(
 within=m.sit*m.pro*m.com,
 initialize=[(site, process, commodity)
 for (site, process) in m.eff_factor.columns.values
 for (pro, commodity) in m.r_out.index
 if process == pro],
 doc='Outputs of processes with time dependent efficiency')

Demand Side Management Tuples

There are two kinds of demand side management (DSM) tuples in the model:
DSM site tuples \(D_{yvc}\) and DSM down tuples
\(D_{yvct,tt}^\text{down}\). The first kind \(D_{yvc}\) represents all
possible combinations of support timeframe \(y\), site \(v\) and
commodity \(c\) of the DSM sheet. It is given by the code fragment:

m.dsm_site_tuples = pyomo.Set(
 within=m.stf*m.sit*m.com,
 initialize=m.dsm.index,
 doc='Combinations of possible dsm by site, e.g. (2020, Mid, Elec)')

The second kind \(D_{t,tt,yvc}^\text{down}\) refers to all possible DSM
downshift possibilities. It is defined to overcome the difficulty caused by the
two time indices of the DSM downshift variable. Dependend on support timeframe
\(y\), site \(v\) and commodity \(c\) the tuples contain two time
indices. For example (5001, 5003, 2020, Mid, Elec) is intepreted as the
downshift in timestep 5003, which was caused by the upshift of timestep
5001 in year 2020 and `site `Mid for commodity Elec. The tuples are given
by the following code fragment:

m.dsm_down_tuples = pyomo.Set(
 within=m.tm*m.tm*m.stf*m.sit*m.com,
 initialize=[(t, tt, stf, site, commodity)
 for (t, tt, stf, site, commodity)
 in dsm_down_time_tuples(m.timesteps[1:],
 m.dsm_site_tuples,
 m)],
 doc='Combinations of possible dsm_down combinations, e.g. '
 '(5001,5003,2020,Mid,Elec)')

where the following function is utilized:

def dsm_down_time_tuples(time, sit_com_tuple, m):
 """ Dictionary for the two time instances of DSM_down
 Args:
 time: list with time indices
 sit_com_tuple: a list of (site, commodity) tuples
 m: model instance
 Returns:
 A list of possible time tuples depending on site and commodity
 """

 delay = m.dsm_dict['delay']
 ub = max(time)
 lb = min(time)
 time_list = []

 for (stf, site, commodity) in sit_com_tuple:
 for step1 in time:
 for step2 in range(step1 -
 max(int(delay[stf, site, commodity] /
 m.dt.value), 1),
 step1 +
 max(int(delay[stf, site, commodity] /
 m.dt.value), 1) + 1):
 if lb <= step2 <= ub:
 time_list.append((step1, step2, stf, site, commodity))

 return time_list

Commodity Type Subsets

Commodity Type Subsets represent the commodity tuples only from a given
commodity type. Commodity Type Subsets are subsets of the sets commodity tuples
These subsets can be obtained by fixing the commodity type \(q\) to a
desired commodity type (e.g SupIm, Stock) in the set commodity tuples
\(C_{vq}\). Since there are 6 types of commodity types, there are also 6
commodity type subsets. Commodity type subsets are;

Supply Intermittent Commodities (SupIm): The set \(C_\text{sup}\)
represents all commodities \(c\) of commodity type SupIm. Commodities
of this type have intermittent timeseries, in other words, availability of
these commodities are not constant. These commodities might have various energy
content for every timestep \(t\). For example solar radiation is contingent
on many factors such as sun position, weather and varies permanently.

Stock Commodities (Stock): The set \(C_\text{st}\) represents all
commodities \(c\) of commodity type Stock. Commodities of this type can
be purchased at any time for a given price(\(k_{vc}^\text{fuel}\)).

Sell Commodities (Sell): The set \(C_\text{sell}\) represents all
commodities \(c\) of commodity type Sell. Commodities that can be sold.
These Commodities have a sell price (\(k_{vct}^\text{bs}\)) that may vary
with the given timestep \(t\).

Buy Commodities (Buy): The set \(C_\text{buy}\) represents all
commodities \(c\) of commodity type Buy. Commodities that can be
purchased. These Commodities have a buy price (\(k_{vc}^\text{bs}\)) that
may vary with the given timestep \(t\).

Demand Commodities (Demand): The set \(C_\text{dem}\) represents
all commodities \(c\) of commodity type Demand. Commodities of this
type are the requested commodities of the energy system. They are usually the
end product of the model (e.g Electricity:Elec).

Environmental Commodities (Env): The set \(C_\text{env}\)
represents all commodities \(c\) of commodity type Env. Commodities of
this type are usually the undesired byproducts of processes that might be
harmful for environment, optional maximum creation limits can be set to control
the generation of these commodities
(e.g Greenhouse Gas Emissions: \(\text{CO}_2\)).

Commodity Type Subsets are given by the code fragment:

m.com_supim = pyomo.Set(
 within=m.com,
 initialize=commodity_subset(m.com_tuples, 'SupIm'),
 doc='Commodities that have intermittent (timeseries) input')
m.com_stock = pyomo.Set(
 within=m.com,
 initialize=commodity_subset(m.com_tuples, 'Stock'),
 doc='Commodities that can be purchased at some site(s)')
m.com_sell = pyomo.Set(
 within=m.com,
 initialize=commodity_subset(m.com_tuples, 'Sell'),
 doc='Commodities that can be sold')
m.com_buy = pyomo.Set(
 within=m.com,
 initialize=commodity_subset(m.com_tuples, 'Buy'),
 doc='Commodities that can be purchased')
m.com_demand = pyomo.Set(
 within=m.com,
 initialize=commodity_subset(m.com_tuples, 'Demand'),
 doc='Commodities that have a demand (implies timeseries)')
m.com_env = pyomo.Set(
 within=m.com,
 initialize=commodity_subset(m.com_tuples, 'Env'),
 doc='Commodities that (might) have a maximum creation limit')

Where:

	
urbs.commodity_subset(com_tuples, type_name)

	Returns the commodity names(\(c\)) of the given commodity
type(\(q\)).

	Parameters:

	
	com_tuples – A list of tuples (site, commodity, commodity type)

	type_name – A commodity type or a list of commodity types

	Returns:

	The set (unique elements/list) of commodity names of the desired
commodity type.

Operational state tuples

For intertemporal optimization the operational state of units in a support
timeframe y has to be calculated from both the initially installed units and
their remaining lifetime and the units installed in a previous support
timeframe which are still operational in y. This is achieved via 6 tuple sets
two each for processes, transmissions and storages.

Intially installed units

Processes which are already installed at the beginning of the modeled time
horizon and still operational in support timeframe stf are collected in the
following tuple set:

m.inst_pro_tuples = pyomo.Set(
 within=m.sit*m.pro*m.stf,
 initialize=[(sit, pro, stf)
 for (sit, pro, stf)
 in inst_pro_tuples(m)],
 doc=' Installed processes that are still operational through stf')

where the following function is utilized:

def inst_pro_tuples(m):
 """ Tuples for operational status of already installed units
 (processes, transmissions, storages) for intertemporal planning.
 Only such tuples where the unit is still operational until the next
 support time frame are valid.
 """
 inst_pro = []
 sorted_stf = sorted(list(m.stf))

 for (stf, sit, pro) in m.inst_pro.index:
 for stf_later in sorted_stf:
 index_helper = sorted_stf.index(stf_later)
 if stf_later == max(m.stf):
 if (stf_later +
 m.global_prop.loc[(max(sorted_stf), 'Weight'), 'value'] -
 1 < min(m.stf) + m.process_dict['lifetime'][
 (stf, sit, pro)]):
 inst_pro.append((sit, pro, stf_later))
 elif (stf_later + sorted_stf[index_helper + 1]) / 2 <= (min(m.stf)
 + m.process_dict['lifetime'][(stf, sit, pro)]):
 inst_pro.append((sit, pro, stf_later))

 return inst_pro

Transmissions which are already installed at the beginning of the modeled time
horizon and still operational in support timeframe stf are collected in the
following tuple set:

m.inst_tra_tuples = pyomo.Set(
 within=m.sit*m.sit*m.tra*m.com*m.stf,
 initialize=[(sit, sit_, tra, com, stf)
 for (sit, sit_, tra, com, stf)
 in inst_tra_tuples(m)],
 doc='Installed transmissions that are still operational through stf')

where the following function is utilized:

def inst_tra_tuples(m):
 """ s.a. inst_pro_tuples
 """
 inst_tra = []
 sorted_stf = sorted(list(m.stf))

 for (stf, sit1, sit2, tra, com) in m.inst_tra.index:
 for stf_later in sorted_stf:
 index_helper = sorted_stf.index(stf_later)
 if stf_later == max(m.stf):
 if (stf_later +
 m.global_prop_dict['value'][(max(sorted_stf), 'Weight')] -
 1 < min(m.stf) + m.transmission_dict['lifetime'][
 (stf, sit1, sit2, tra, com)]):
 inst_tra.append((sit1, sit2, tra, com, stf_later))
 elif (sorted_stf[index_helper + 1] <= min(m.stf) +
 m.transmission_dict['lifetime'][
 (stf, sit1, sit2, tra, com)]):
 inst_tra.append((sit1, sit2, tra, com, stf_later))

 return inst_tra

Storages which are already installed at the beginning of the modeled time
horizon and still operational in support timeframe stf are collected in the
following tuple set:

m.inst_sto_tuples = pyomo.Set(
 within=m.sit*m.sto*m.com*m.stf,
 initialize=[(sit, sto, com, stf)
 for (sit, sto, com, stf)
 in inst_sto_tuples(m)],
 doc='Installed storages that are still operational through stf')

where the following function is utilized:

def inst_sto_tuples(m):
 """ s.a. inst_pro_tuples
 """
 inst_sto = []
 sorted_stf = sorted(list(m.stf))

 for (stf, sit, sto, com) in m.inst_sto.index:
 for stf_later in sorted_stf:
 index_helper = sorted_stf.index(stf_later)
 if stf_later == max(m.stf):
 if (stf_later +
 m.global_prop_dict['value'][(max(sorted_stf), 'Weight')] -
 1 < min(m.stf) +
 m.storage_dict['lifetime'][(stf, sit, sto, com)]):
 inst_sto.append((sit, sto, com, stf_later))
 elif (sorted_stf[index_helper + 1] <=
 min(m.stf) + m.storage_dict['lifetime'][
 (stf, sit, sto, com)]):
 inst_sto.append((sit, sto, com, stf_later))

 return inst_sto

Installation in earlier support timeframe

Processes installed in an earlier support timeframe stf and still usable in
support timeframe stf_later are collected in the following tuple set:

m.operational_pro_tuples = pyomo.Set(
 within=m.sit*m.pro*m.stf*m.stf,
 initialize=[(sit, pro, stf, stf_later)
 for (sit, pro, stf, stf_later)
 in op_pro_tuples(m.pro_tuples, m)],
 doc='Processes that are still operational through stf_later'
 '(and the relevant years following), if built in stf'
 'in stf.')

where the following function is utilized:

def op_pro_tuples(pro_tuple, m):
 """ Tuples for operational status of units (processes, transmissions,
 storages) for intertemporal planning.
 Only such tuples where the unit is still operational until the next
 support time frame are valid.
 """
 op_pro = []
 sorted_stf = sorted(list(m.stf))

 for (stf, sit, pro) in pro_tuple:
 for stf_later in sorted_stf:
 index_helper = sorted_stf.index(stf_later)
 if stf_later == max(sorted_stf):
 if (stf_later +
 m.global_prop.loc[(max(sorted_stf), 'Weight'), 'value'] -
 1 <= stf + m.process_dict['depreciation'][
 (stf, sit, pro)]):
 op_pro.append((sit, pro, stf, stf_later))
 elif ((stf_later + sorted_stf[index_helper+1]) / 2 <= stf + m.process_dict['depreciation'][(stf, sit, pro)]
 and stf <= stf_later):
 op_pro.append((sit, pro, stf, stf_later))
 else:
 pass

 return op_pro

Transmissions installed in an earlier support timeframe stf and still usable
in support timeframe stf_later are collected in the following tuple set:

m.operational_tra_tuples = pyomo.Set(
 within=m.sit*m.sit*m.tra*m.com*m.stf*m.stf,
 initialize=[(sit, sit_, tra, com, stf, stf_later)
 for (sit, sit_, tra, com, stf, stf_later)
 in op_tra_tuples(m.tra_tuples, m)],
 doc='Transmissions that are still operational through stf_later'
 '(and the relevant years following), if built in stf'
 'in stf.')

where the following function is utilized:

def op_tra_tuples(tra_tuple, m):
 """ s.a. op_pro_tuples
 """
 op_tra = []
 sorted_stf = sorted(list(m.stf))

 for (stf, sit1, sit2, tra, com) in tra_tuple:
 for stf_later in sorted_stf:
 index_helper = sorted_stf.index(stf_later)
 if stf_later == max(sorted_stf):
 if (stf_later +
 m.global_prop_dict['value'][(max(sorted_stf), 'Weight')] -
 1 <= stf + m.transmission_dict['depreciation'][
 (stf, sit1, sit2, tra, com)]):
 op_tra.append((sit1, sit2, tra, com, stf, stf_later))
 elif (sorted_stf[index_helper + 1] <=
 stf + m.transmission_dict['depreciation'][
 (stf, sit1, sit2, tra, com)] and stf <= stf_later):
 op_tra.append((sit1, sit2, tra, com, stf, stf_later))
 else:
 pass

 return op_tra

Storages installed in an earlier support timeframe stf and still usable in
support timeframe stf_later are collected in the following tuple set:

m.operational_sto_tuples = pyomo.Set(
 within=m.sit*m.sto*m.com*m.stf*m.stf,
 initialize=[(sit, sto, com, stf, stf_later)
 for (sit, sto, com, stf, stf_later)
 in op_sto_tuples(m.sto_tuples, m)],
 doc='Processes that are still operational through stf_later'
 '(and the relevant years following), if built in stf'
 'in stf.')

where the following function is utilized:

def op_sto_tuples(sto_tuple, m):
 """ s.a. op_pro_tuples
 """
 op_sto = []
 sorted_stf = sorted(list(m.stf))

 for (stf, sit, sto, com) in sto_tuple:
 for stf_later in sorted_stf:
 index_helper = sorted_stf.index(stf_later)
 if stf_later == max(sorted_stf):
 if (stf_later +
 m.global_prop_dict['value'][(max(sorted_stf), 'Weight')] -
 1 <= stf +
 m.storage_dict['depreciation'][(stf, sit, sto, com)]):
 op_sto.append((sit, sto, com, stf, stf_later))
 elif (sorted_stf[index_helper + 1] <=
 stf +
 m.storage_dict['depreciation'][(stf, sit, sto, com)] and
 stf <= stf_later):
 op_sto.append((sit, sto, com, stf, stf_later))
 else:
 pass

 return op_sto

Variables

All the variables that the optimization model requires to calculate an optimal
solution will be listed and defined in this section. A variable is a numerical
value that is determined during optimization. Variables can denote a single,
independent value, or an array of values. Variables define the search space for
optimization. Variables of this optimization model can be separated into
sections by their area of use. These Sections are Cost, Commodity, Process,
Transmission, Storage and demand side management.

Table: Model Variables

	Variable

	Unit

	Description

	Cost Variables

	\(\zeta\)

	€

	Total System Cost

	\(\zeta_\text{inv}\)

	€

	Investment Costs

	\(\zeta_\text{fix}\)

	€

	Fix Costs

	\(\zeta_\text{var}\)

	€

	Variable Costs

	\(\zeta_\text{fuel}\)

	€

	Fuel Costs

	\(\zeta_\text{rev}\)

	€

	Revenue Costs

	\(\zeta_\text{pur}\)

	€

	Purchase Costs

	\(\zeta_\text{start}\)

	€

	Start Costs

	Commodity Variables

	\(\rho_{yvct}\)

	MWh

	Stock Commodity Source Term

	\(\varrho_{yvct}\)

	MWh

	Sell Commodity Source Term

	\(\psi_{yvct}\)

	MWh

	Buy Commodity Source Term

	Process Variables

	\(\kappa_{yvp}\)

	MW

	Total Process Capacity

	\(\hat{\kappa}_{yvp}\)

	MW

	New Process Capacity

	\(\beta_{yvp}\)

	
	

	New Process Capacity Units

	\(\tau_{yvpt}\)

	MWh

	Process Throughput

	\(\epsilon_{yvcpt}^\text{in}\)

	MWh

	Process Input Commodity Flow

	\(\epsilon_{yvcpt}^\text{out}\)

	MWh

	Process Output Commodity Flow

	\(\omicron_{yvpt}\)

	
	

	Process On/Off Marker

	\(\sigma_{yvpt}\)

	
	

	Process Start-up Marker

	Transmission Variables

	\(\kappa_{yaf}\)

	MW

	Total transmission Capacity

	\(\hat{\kappa}_{yaf}\)

	MW

	New Transmission Capacity

	\(\beta_{yaf}\)

	
	

	New Transmission Capacity Units

	\(\pi_{yaft}^\text{in}\)

	MWh

	Transmission Input Commodity Flow

	\(\pi_{yaft}^\text{out}\)

	MWh

	Transmission Output Commodity Flow

	DCPF Transmission Variables

	\(\theta_{yvt}\)

	deg.

	Voltage Angle

	\({\pi_{yaft}^{\text{in}}}^\prime\)

	MW

	Absolute Transmission Flow

	Storage Variables

	\(\kappa_{yvs}^\text{c}\)

	MWh

	Total Storage Size

	\(\hat{\kappa}_{yvs}^\text{c}\)

	MWh

	New Storage Size

	\(\beta_{yvs}^\text{c}\)

	
	

	New Storage Size Units

	\(\kappa_{yvs}^\text{p}\)

	MW

	Total Storage Power

	\(\hat{\kappa}_{yvs}^\text{p}\)

	MW

	New Storage Power

	\(\beta_{yvs}^\text{c}\)

	
	

	New Storage Power Units

	\(\epsilon_{yvst}^\text{in}\)

	MWh

	Storage Input Commodity Flow

	\(\epsilon_{yvst}^\text{out}\)

	MWh

	Storage Output Commodity Flow

	\(\epsilon_{yvst}^\text{con}\)

	MWh

	Storage Energy Content

	Demand Side Management Variables

	\(\delta_{yvct}^\text{up}\)

	MWh

	DSM Upshift

	\(\delta_{t,tt,yvc}^\text{down}\)

	MWh

	DSM Downshift

Cost Variables

Total System Cost, \(\zeta\) : the variable \(\zeta\) represents
the total expense incurred in reaching the satisfaction of the given energy
demand in the entire modeling horizon. If only a fraction of a year is modeled
in each support timeframe, the costs are scaled to the annual expenditures. The
total cost is calculated by the sum total of all costs by
type(\(\zeta_r\), \(\forall r \in R\)) and defined as costs by the
following code fragment:

m.costs = pyomo.Var(
 m.cost_type,
 within=pyomo.Reals,
 doc='Costs by type (EUR/a)')

System costs are divided into the 7 cost types invest, fix, variable, fuel,
purchase, sell and environmental. The separation of costs by type, facilitates
business planning and provides calculation accuracy. These cost types are
hardcoded, which means they are not considered to be fixed or changed by the
user.

For more information on the definition of these variables see section
Minimal optimization model and for their implementation see section Objective function.

Commodity Variables

Stock Commodity Source Term, \(\rho_{yvct}\), e_co_stock, MWh : The
variable \(\rho_{yvct}\) represents the energy amount in [MWh] that is
being used by the system of commodity \(c\) from type stock
(\(\forall c \in C_\text{stock}\)) in support timeframe \(y\)
(\(\forall y \in Y\)) in a site \(v\) (\(\forall v \in V\)) at
timestep \(t\) (\(\forall t \in T_\text{m}\)). In script model.py
this variable is defined by the variable e_co_stock and initialized by the
following code fragment:

m.e_co_stock = pyomo.Var(
 m.tm, m.com_tuples,
 within=pyomo.NonNegativeReals,
 doc='Use of stock commodity source (MWh) at a given timestep')

Sell Commodity Source Term, \(\varrho_{yvct}\), e_co_sell, MWh :
The variable \(\varrho_{yvct}\) represents the energy amount in [MWh] that
is being used by the system of commodity \(c\) from type sell
(\(\forall c \in C_\text{sell}\)) in support timeframe \(y\)
(\(\forall y \in Y\)) in a site \(v\) (\(\forall v \in V\)) at
timestep \(t\) (\(\forall t \in T_\text{m}\)). In script model.py
this variable is defined by the variable e_co_sell and initialized by the
following code fragment:

m.e_co_sell = pyomo.Var(
 m.tm, m.com_tuples,
 within=pyomo.NonNegativeReals,
 doc='Use of sell commodity source (MWh) at a given timestep')

Buy Commodity Source Term, \(\psi_{yvct}\), e_co_buy, MWh : The
variable \(\psi_{yvct}\) represents the energy amount in [MWh] that is
being used by the system of commodity \(c\) from type buy
(\(\forall c \in C_\text{buy}\)) in support timeframe \(y\)
(\(\forall y \in Y\)) in a site \(v\) (\(\forall v \in V\)) at
timestep \(t\) (\(\forall t \in T_\text{m}\)). In script model.py
this variable is defined by the variable e_co_buy and initialized by the
following code fragment:

m.e_co_buy = pyomo.Var(
 m.tm, m.com_tuples,
 within=pyomo.NonNegativeReals,
 doc='Use of buy commodity source (MWh) at a given timestep')

Process Variables

Total Process Capacity, \(\kappa_{yvp}\), cap_pro: The variable
\(\kappa_{yvp}\) represents the total potential throughput (capacity) of a
process tuple \(p_{yv}\)
(\(\forall p \in P, \forall v \in V\), forall y in Y`), that is required
in the energy system. The total process capacity includes both the already
installed process capacity and the additional new process capacity that needs
to be installed. Since the costs of the process technologies are mostly
directly proportional to the maximum possible output (and correspondingly to
the capacity) of processes, this variable acts as a scale factor of process
technologies. For further information see Process Capacity Rule. This variable
is expressed in the unit (MW).
In script model.py this variable is defined by the model variable
cap_pro and initialized by the following code fragment:

m.cap_pro = pyomo.Var(
 m.pro_tuples,
 within=pyomo.NonNegativeReals,
 doc='Total process capacity (MW)')

New Process Capacity, \(\hat{\kappa}_{yvp}\), cap_pro_new: The
variable \(\hat{\kappa}_{yvp}\) represents the capacity of a process tuple
\(p_{yv}\) (\(\forall p \in P, \forall v \in V\)) that needs to be
installed additionally to the energy system in support timeframe \(y\) in
site \(v\) in order to provide the optimal solution. This variable is
expressed in the unit MW. In script model.py this variable is defined by
the model variable cap_pro_new and initialized by the following code
fragment:

m.cap_pro_new = pyomo.Var(
 m.pro_tuples,
 within=pyomo.NonNegativeReals,
 doc='New process capacity (MW)')

New Process Capacity Units, \(\beta_{yvp}\), pro_cap_unit: The
variable \(\beta_{yvp}\) represents the number of capacity blocks of a
process tuple \(p_{yv}\) (\(\forall p \in P, \forall v \in V\)) that
needs to be installed additionally to the energy system in support timeframe
\(y\) in site \(v\) in order to provide the optimal solution. In
script model.py this variable is defined by the model variable
cap_pro_new and initialized by the following code fragment:

m.pro_cap_unit = pyomo.Var(
 m.pro_tuples,
 within=pyomo.NonNegativeIntegers,
 doc='Number of newly installed capacity units')

Process Throughput, \(\tau_{yvpt}\), tau_pro : The variable
\(\tau_{yvpt}\) represents the measure of (energetic) activity of a process
tuple \(p_{yv}\)
(\(\forall p \in P, \forall v \in V, \forall y \in Y\)) at a timestep
\(t\) (\(\forall t \in T_{m}\)). Based on the process throughput amount
in a given timestep of a process, flow amounts of the process’ input and output
commodities at that timestep can be calculated by scaling the process
throughput with corresponding process input and output ratios. For further
information see Process Input Ratio and Process Output Ratio. The
process throughput variable is expressed in the unit MWh. In script
model.py this variable is defined by the model variable tau_pro and
initialized by the following code fragment:

m.tau_pro = pyomo.Var(
 m.tm, m.pro_tuples,
 within=pyomo.NonNegativeReals,
 doc='Activity (MWh) through process')

Process Input Commodity Flow, \(\epsilon_{yvcpt}^\text{in}\),
e_pro_in: The variable \(\epsilon_{yvcpt}^\text{in}\) represents the
commodity input flow into a process tuple \(p_{yv}\)
(\(\forall p \in P, \forall v \in V, \forall y \in Y\)) caused by an input
commodity \(c\) (\(\forall c \in C\)) at a timestep \(t\)
(\(\forall t \in T_{m}\)). This variable is generally expressed in the unit
MWh. In script model.py this variable is defined by the model variable
e_pro_in and initialized by the following code fragment:

m.e_pro_in = pyomo.Var(
 m.tm, m.pro_tuples, m.com,
 within=pyomo.NonNegativeReals,
 doc='Flow of commodity into process at a given timestep')

Process Output Commodity Flow, \(\epsilon_{yvcpt}^\text{out}\),
e_pro_out: The variable \(\epsilon_{vcpt}^\text{out}\) represents the
commodity flow output out of a process tuple \(p_{yv}\)
(\(\forall p \in P, \forall v \in V, \forall y \in Y\)) caused by an output
commodity \(c\) (\(\forall c \in C\)) at a timestep \(t\)
(\(\forall t \in T_{m}\)). This variable is generally expressed in the unit
MWh (or tonnes e.g. for the environmental commodity ‘CO2’). In script
model.py this variable is defined by the model variable e_pro_out and
initialized by the following code fragment:

m.e_pro_out = pyomo.Var(
 m.tm, m.pro_tuples, m.com,
 within=pyomo.NonNegativeReals,
 doc='Flow of commodity out of process at a given timestep')

Process On/Off Marker, \(\omicron_{yvpt}\), on_off: The boolean
variable \(\omicron_{yvpt}\) marks whether process tuple \(p_{yv}\)
(\(\forall p \in P^\text{on/off}, \forall v \in V, \forall y \in Y\))
is on and producing (\(\omicron_{yvpt}\) is 1) or it is not
producing (\(\omicron_{yvpt}\) is 0) at a timestep \(t\). While not
producing, the process is either turned off or it started, without reaching the
minimum fraction \(\underline{P}_{yvp}\).
In the script AdvancedProcesses.py, this variable is defined by the model
variable on_off and initialized by the following code fragment:

m.on_off = pyomo.Var(
 m.t, m.pro_on_off_tuples,
 within=pyomo.Boolean,
 doc='Turn on/off a process with minimum working load')

Process Start-up Marker, \(\sigma_{yvpt}\), start_ups: The boolean
variable \(\sigma_{yvpt}\) marks whether process tuple \(p_{yv}\)
(\(\forall p \in P^\text{on/off}, \forall v \in V, \forall y \in Y\))
is starting (\(\sigma_{yvpt}\) becomes 1) or not (\(\sigma_{yvpt}\) is 0)
at a timestep \(t\). The process is considered to start when its output
e_pro_out becomes greater than 0.
In the script AdvancedProcesses.py, this variable is defined by the model
variable start_ups and initialized by the following code fragment:

m.start_up = pyomo.Var(
 m.tm, m.pro_start_up_tuples,
 within=pyomo.Boolean,
 doc='Start-up marker')

Transmission Variables

Total Transmission Capacity, \(\kappa_{yaf}\), cap_tra: The
variable \(\kappa_{yaf}\) represents the total potential transfer power of
a transmission tuple \(f_{yca}\), where \(a\) represents the arc from
an origin site \(v_\text{out}\) to a destination site
\({v_\text{in}}\). The total transmission capacity includes both the
already installed transmission capacity and the additional new transmission
capacity that needs to be installed. This variable is expressed in the unit MW.
In script transmission.py this variable is defined by the model variable
cap_tra and initialized by the following code fragment:

m.cap_tra = pyomo.Var(
 m.tra_tuples,
 within=pyomo.NonNegativeReals,
 doc='Total transmission capacity (MW)')

New Transmission Capacity, \(\hat{\kappa}_{yaf}\), cap_tra_new: The
variable \(\hat{\kappa}_{yaf}\) represents the additional capacity, that
needs to be installed, of a transmission tuple \(f_{yca}\), where \(a\)
represents the arc from an origin site \(v_\text{out}\) to a destination
site \(v_\text{in}\). This variable is expressed in the unit MW.
In script transmission.py this variable is defined by the model variable
cap_tra_new and initialized by the following code fragment:

m.cap_tra_new = pyomo.Var(
 m.tra_tuples,
 within=pyomo.NonNegativeReals,
 doc='New transmission capacity (MW)')

New Transmission Capacity Units, \(\beta_{yaf}\), tra_cap_unit: The
variable \(\beta_{yaf}\) represents the number of additional capacity blocks
of a transmission tuple \(f_{yca}\) that need to be installed , where
\(a\) represents the arc from an origin site \(v_\text{out}\) to a
destination site \(v_\text{in}\). In script transmission.py this variable
is defined by the model variable cap_tra_new and initialized by the following
code fragment:

m.tra_cap_unit =pyomo.Var(
 m.tra_block_tuples,
 within=pyomo.NonNegativeIntegers,
 doc='New transmission capacity blocks')

Transmission Input Commodity Flow, \(\pi_{yaft}^\text{in}\),
e_tra_in: The variable \(\pi_{yaft}^\text{in}\) represents the
commodity flow input into a transmission tuple \(f_{yca}\) at a timestep
\(t\), where \(a\) represents the arc from an origin site
\(v_\text{out}\) to a destination site \(v_\text{in}\). This variable
is expressed in the unit MWh. In script urbs.py this variable is defined by
the model variable e_tra_in and initialized by the following code fragment:

m.e_tra_in = pyomo.Var(
 m.tm, m.tra_tuples,
 within=pyomo.NonNegativeReals,
 doc='Commodity flow into transmission line (MWh) at a given timestep')

Transmission Output Commodity Flow, \(\pi_{yaft}^\text{out}\),
e_tra_out: The variable \(\pi_{yaft}^\text{out}\) represents the
commodity flow output out of a transmission tuple \(f_{ca}\) at a timestep
\(t\), where \(a\) represents the arc from an origin site
\(v_\text{out}\) to a destination site \(v_\text{in}\). This variable
is expressed in the unit MWh. In script urbs.py this variable is defined by
the model variable e_tra_out and initialized by the following code
fragment:

m.e_tra_out = pyomo.Var(
 m.tm, m.tra_tuples,
 within=pyomo.NonNegativeReals,
 doc='Power flow out of transmission line (MWh) at a given timestep')

DCPF Transmission Variables

If the DC Power Flow transmission modelling is activated, two new variables are introduced to the model.

Voltage Angle, \(\theta_{yvt}\), voltage_angle: The variable \(\theta_{yvt}\) represents the voltage
angle of a site \(v\), which has a DCPF transmission line connection, at a timestep \(t\). This variable is
expressed in the unit degrees. In script urbs.py this variable is defined by the model variable voltage_angle
and initialized by the following code
fragment:

m.voltage_angle = pyomo.Var(
 m.tm, m.stf, m.sit,
 within=pyomo.Reals,
 doc='Voltage angle of a site')

Absolute Value of Transmission Commodity Flow, \({\pi_{yaft}^{\text{in}}}^\prime\), e_tra_abs:
The variable \({\pi_{yaft}^{\text{in}}}^\prime\) represents the absolute value of the transmission commodity flow
on a DCPF transmission tuple \(f_{yca}\) at a timestep
\(t\), where \(a\) represents the arc from an origin site
\(v_\text{out}\) to a destination site \(v_\text{in}\). This variable
is expressed in the unit MWh. In script urbs.py this variable is defined by
the model variable e_tra_abs and initialized by the following code
fragment:

m.e_tra_abs = pyomo.Var(
 m.tm, m.tra_tuples_dc,
 within=pyomo.NonNegativeReals,
 doc='Absolute power flow on transmission line (MW) per timestep')

Transmission Commodity Flow Domain Changes
:DC Power Flow transmission lines are represented by bidirectional single arcs instead of unidirectional symmetrical
arcs as in the default transmission model. Consequently the power flow is allowed to be both positive or negative for
DCPF transmission lines contrary to the transport transmission lines. For this reason, the domains of the variables
transmission input commodity flow \(\pi_{yaft}^\text{in}\) and transmission output commodity flow
\(\pi_{yaft}^\text{out}\) are defined with the e_tra_domain_rule() function depending on the corresponding
transmission tuple set. These variables are defined by the model variables e_tra_in and e_tra_out and
intialized by the code
fragment:

m.e_tra_in = pyomo.Var(
 m.tm, m.tra_tuples,
 within=e_tra_domain_rule,
 doc='Power flow into transmission line (MW) per timestep')
m.e_tra_out = pyomo.Var(
 m.tm, m.tra_tuples,
 within=e_tra_domain_rule,
 doc='Power flow out of transmission line (MW) per timestep')

The function e_tra_domain_rule() is given by the code
fragment:

def e_tra_domain_rule(m, tm, stf, sin, sout, tra, com):
 # assigning e_tra_in and e_tra_out variable domains for transport and DCPF
 if (stf, sin, sout, tra, com) in m.tra_tuples_dc:
 return pyomo.Reals
 elif (stf, sin, sout, tra, com) in m.tra_tuples_tp:
 return pyomo.NonNegativeReals

Storage Variables

Total Storage Size, \(\kappa_{yvs}^\text{c}\), cap_sto_c: The
variable \(\kappa_{yvs}^\text{c}\) represents the total load capacity of a
storage tuple \(s_{yvc}\). The total storage load capacity includes both the
already installed storage load capacity and the additional new storage load
capacity that needs to be installed. This variable is expressed in unit MWh. In
script model.py this variable is defined by the model variable
cap_sto_c and initialized by the following code fragment:

m.cap_sto_c = pyomo.Var(
 m.sto_tuples,
 within=pyomo.NonNegativeReals,
 doc='Total storage size (MWh)')

New Storage Size, \(\hat{\kappa}_{yvs}^\text{c}\), cap_sto_c_new:
The variable \(\hat{\kappa}_{yvs}^\text{c}\) represents the additional
storage load capacity of a storage tuple \(s_{vc}\) that needs to be
installed to the energy system in order to provide the optimal solution. This
variable is expressed in the unit MWh. In script model.py this variable is
defined by the model variable cap_sto_c_new and initialized by the
following code fragment:

m.cap_sto_c_new = pyomo.Var(
 m.sto_tuples,
 within=pyomo.NonNegativeReals,
 doc='New storage size (MWh)')

New Storage Size Units, \(\beta_{yvs}^\text{c}\), sto_cap_c_unit:
The variable \(\hat{\kappa}_{yvs}^\text{c}\) represents the number of
additional storage load capacity blocks of a storage tuple \(s_{vc}\) that
needs to be installed to the energy system in order to provide the optimal solution.
In script storage.py this variable is defined by the model variable cap_sto_c_unit
and initialized by the following code fragment:

m.sto_cap_c_unit = pyomo.Var(
 m.sto_block_c_tuples,
 within=pyomo.NonNegativeIntegers,
 doc='New storage size units')

Total Storage Power, \(\kappa_{yvs}^\text{p}\), cap_sto_p: The
variable \(\kappa_{yvs}^\text{p}\) represents the total potential discharge
power of a storage tuple \(s_{vc}\). The total storage power includes both
the already installed storage power and the additional new storage power that
needs to be installed. This variable is expressed in the unit MW. In script
model.py this variable is defined by the model variable cap_sto_p and
initialized by the following code fragment:

m.cap_sto_p = pyomo.Var(
 m.sto_tuples,
 within=pyomo.NonNegativeReals,
 doc='Total storage power (MW)')

New Storage Power, \(\hat{\kappa}_{yvs}^\text{p}\), cap_sto_p_new:
The variable \(\hat{\kappa}_{yvs}^\text{p}\) represents the additional
potential discharge power of a storage tuple \(s_{vc}\) that needs to be
installed to the energy system in order to provide the optimal solution. This
variable is expressed in the unit MW. In script model.py this variable is
defined by the model variable cap_sto_p_new and initialized by the
following code fragment:

m.cap_sto_p_new = pyomo.Var(
 m.sto_tuples,
 within=pyomo.NonNegativeReals,
 doc='New storage power (MW)')

New Storage Power Units, \(\beta_{yvs}^\text{c}\), sto_cap_p_unit:
The variable \(\beta_{yvs}^\text{c}\) represents the number of additional
potential discharge power blocks of a storage tuple \(s_{vc}\) that needs
to be installed to the energy system in order to provide the optimal solution.
In the script storage.py this variable is defined by the model variable
sto_cap_p_unit and initialized by the following code fragment:

m.sto_cap_p_unit = pyomo.Var(
 m.sto_block_p_tuples,
 within=pyomo.NonNegativeIntegers,
 doc='New storage power units')

Storage Input Commodity Flow, \(\epsilon_{yvst}^\text{in}\),
e_sto_in: The variable \(\epsilon_{yvst}^\text{in}\) represents the
input commodity flow into a storage tuple \(s_{yvc}\) at a timestep
\(t\). Input commodity flow into a storage tuple can also be defined as the
charge of a storage tuple. This variable is expressed in the unit MWh. In
script model.py this variable is defined by the model variable e_sto_in
and initialized by the following code fragment:

m.e_sto_in = pyomo.Var(
 m.tm, m.sto_tuples,
 within=pyomo.NonNegativeReals,
 doc='Commodity flow into storage (MWh) at a given timestep')

Storage Output Commodity Flow, \(\epsilon_{yvst}^\text{out}\),
e_sto_out: The variable \(\epsilon_{vst}^\text{out}\) represents the
output commodity flow out of a storage tuple \(s_{yvc}\) at a timestep
\(t\). Output commodity flow out of a storage tuple can also be defined as
the discharge of a storage tuple. This variable is expressed in the unit MWh.
In script model.py this variable is defined by the model variable
e_sto_out and initialized by the following code fragment:

m.e_sto_out = pyomo.Var(
 m.tm, m.sto_tuples,
 within=pyomo.NonNegativeReals,
 doc='Commodity flow out of storage (MWh) at a given timestep')

Storage Energy Content, \(\epsilon_{yvst}^\text{con}\), e_sto_con:
The variable \(\epsilon_{yvst}^\text{con}\) represents the energy amount
that is loaded in a storage tuple \(s_{vc}\) at a timestep \(t\). This
variable is expressed in the unit MWh. In script urbs.py this variable is
defined by the model variable e_sto_out and initialized by the following
code fragment:

m.e_sto_con = pyomo.Var(
 m.t, m.sto_tuples,
 within=pyomo.NonNegativeReals,
 doc='Energy content of storage (MWh) at a given timestep')

Demand Side Management Variables

DSM Upshift, \(\delta_{yvct}^\text{up}\), dsm_up, MWh: The variable
\(\delta_{yvct}^\text{up}\) represents the DSM upshift in time step
\(t\) in support timeframe \(y\) in site \(v\) for commodity
\(c\). It is only defined for all dsm_site_tuples. The following code
fragment shows the definition of the variable:

m.dsm_up = pyomo.Var(
 m.tm, m.dsm_site_tuples,
 within=pyomo.NonNegativeReals,
 doc='DSM upshift (MWh) of a demand commodity at a given timestap')

DSM Downshift, \(\delta_{t,tt,yvc}^\text{down}\), dsm_down, MWh:
The variable \(\delta_{t,tt,yvc}^\text{down}\) represents the DSM downshift
in timestep \(tt\) caused by the upshift in time \(t\) in support
timeframe \(y\) in site \(v\) for commodity \(c\). The special
combinations of timesteps \(t\) and \(tt\) for each (support timeframe,
site, commodity) combination is created by the dsm_down_tuples. The
definition of the variable is shown in the code fragment:

m.dsm_down = pyomo.Var(
m.dsm_down_tuples,
within=pyomo.NonNegativeReals,
doc='DSM downshift (MWh) of a demand commodity at a given timestep')

Parameters

All the parameters that the optimization model requires to calculate an optimal
solution will be listed and defined in this section. A parameter is a
datapoint, that is provided by the user before the optimization simulation
starts. These parameters are the values that define the specifications of the
modelled energy system. Parameters of this optimization model can be separated
into two main parts, these are Technical and Economical Parameters.

	Technical Parameters
	General Technical Parameters

	Commodity Technical Parameters

	Process Technical Parameters

	Storage Technical Parameters

	Transmission Technical Parameters

	DCPF Transmission Technical Parameters

	Demand Side Management Technical Parameters

	Economic Parameters
	Commodity Economic Parameters

	Process Economic Parameters

	Storage Economic Parameters

	Transmission Economic Parameters

Technical Parameters

Table: Technical Model Parameters

	Parameter

	Unit

	Description

	General Technical Parameters

	\(w\)

	_

	Fraction of 1 year of modeled timesteps

	\(\Delta t\)

	h

	Timestep Size

	\(W\)

	a

	Weight of last support timeframe

	Commodity Technical Parameters

	\(d_{yvct}\)

	MWh

	Demand for Commodity

	\(s_{yvct}\)

	_

	Intermittent Supply Capacity Factor

	\(\overline{l}_{yvc}\)

	MW

	Maximum Stock Supply Limit Per Hour

	\(\overline{L}_{yvc}\)

	MWh

	Maximum Annual Stock Supply Limit Per Vertex

	\(\overline{m}_{yvc}\)

	t/h

	Maximum Environmental Output Per Hour

	\(\overline{M}_{yvc}\)

	t

	Maximum Annual Environmental Output

	\(\overline{g}_{yvc}\)

	MW

	Maximum Sell Limit Per Hour

	\(\overline{G}_{yvc}\)

	MWh

	Maximum Annual Sell Limit

	\(\overline{b}_{yvc}\)

	MW

	Maximum Buy Limit Per Hour

	\(\overline{B}_{yvc}\)

	MWh

	Maximum Annual Buy Limit

	\(\overline{L}_{\text{CO}_2,y}\)

	t

	Maximum Global Annual CO2 Emission Limit

	\(\overline{\overline{L}}_{\text{CO}_2}\)

	t

	CO2 Emission Budget for modeling horizon

	Process Technical Parameters

	\(\underline{K}_{yvp}\)

	MW

	Process Capacity Lower Bound

	\(K_{vp}\)

	MW

	Process Capacity Installed

	\(\overline{K}_{yvp}\)

	MW

	Process Capacity Upper Bound

	\(T_{vp}\)

	MW

	Remaining lifetime of installed processes

	\(\overline{PG}_{yvp}^\text{up}\)

	1/h

	Process Maximal Power Ramp Up Gradient (relative)

	\(\overline{PG}_{yvp}^\text{down}\)

	1/h

	Process Maximal Power Ramp Down Gradient (relative)

	\(\overline{ST}_{yvp}\)

	h

	Process Starting Time

	\(\overline{SR}_{yvp}\)

	1/h

	Process Starting Ramp

	\(\underline{P}_{yvp}\)

	_

	Process Minimum Part Load Fraction

	\(f_{yvpt}^\text{out}\)

	_

	Process Output Ratio multiplyer

	\(r_{ypc}^\text{in}\)

	_

	Process Input Ratio

	\(\underline{r}_{ypc}^\text{in}\)

	_

	Process Partial Input Ratio

	\(\underline{r}_{ypc}^\text{out}\)

	_

	Process Partial Output Ratio

	\(r_{ypc}^\text{out}\)

	_

	Process Output Ratio

	\({K}_{yvp}^\text{block}\)

	MW

	Process New Capacity Block

	Storage Technical Parameters

	\(I_{yvs}\)

	_

	Initial and Final State of Charge

	\(e_{yvs}^\text{in}\)

	_

	Storage Efficiency During Charge

	\(e_{yvs}^\text{out}\)

	_

	Storage Efficiency During Discharge

	\(d_{yvs}\)

	1/h

	Storage Self-discharge Per Hour

	\(\underline{K}_{yvs}^\text{c}\)

	MWh

	Storage Capacity Lower Bound

	\(K_{yvs}^\text{c}\)

	MWh

	Storage Capacity Installed

	\(\overline{K}_{yvs}^\text{c}\)

	MWh

	Storage Capacity Upper Bound

	\(\underline{K}_{yvs}^\text{p}\)

	MW

	Storage Power Lower Bound

	\(K_{yvs}^\text{p}\)

	MW

	Storage Power Installed

	\(\overline{K}_{yvs}^\text{p}\)

	MW

	Storage Power Upper Bound

	\(T_{vs}\)

	MW

	Remaining lifetime of installed storages

	\(k_{yvs}^\text{E/P}\)

	h

	Storage Energy to Power Ratio

	\({K}_{yvs}^\text{c,block}\)

	MWh

	Storage New Capacity Block

	\({K}_{yvs}^\text{p,block}\)

	MW

	Storage New Power Block

	Transmission Technical Parameters

	\(e_{yaf}\)

	_

	Transmission Efficiency

	\(\underline{K}_{yaf}\)

	MW

	Transmission Capacity Lower Bound

	\(K_{yaf}\)

	MW

	Transmission Capacity Installed

	\(\overline{K}_{yaf}\)

	MW

	Transmission Capacity Upper Bound

	\(T_{af}\)

	year

	Remaining lifetime of installed transmission

	\({K}_{yaf}^\text{block}\)

	MW

	Transmission New Capacity Block

	DCPF Transmission Technical Parameters

	\(X_{yaf}\)

	p.u

	Transmission Reactance

	\(\overline{dl}_{yaf}\)

	deg.

	Voltage Angle Difference Limit

	\(V_{yaf\text{base}}\)

	kV

	Transmission Base Voltage

	\({K}_{yaf}^\text{block}\)

	_

	Transmission New Capacity Block

	Demand Side Management Parameters

	\(e_{yvc}\)

	_

	DSM Efficiency

	\(y_{yvc}\)

	_

	DSM Delay Time

	\(o_{yvc}\)

	_

	DSM Recovery Time

	\(\overline{K}_{yvc}^\text{up}\)

	MW

	DSM Maximal Upshift Per Hour

	\(\overline{K}_{yvc}^\text{down}\)

	MW

	DSM Maximal Downshift Per Hour

General Technical Parameters

Weight, \(w\), weight: The parameter \(w\) helps to scale
variable costs and emissions from the length of simulation, that the energy
system model is being observed, to an annual result. This parameter represents
the fraction of a year (8760 hours) of the observed time span. The observed
time span is calculated by the product of number of time steps of the set
\(T\) and the time step duration. In script model.py this parameter is
defined by the model parameter weight and initialized by the following code
fragment:

m.weight = pyomo.Param(
 initialize=float(8760) / (len(m.tm) * dt),
 doc='Pre-factor for variable costs and emissions for an annual result')

Timestep Duration, \(\Delta t\), dt: The parameter \(\Delta t\)
represents the duration between two sequential timesteps \(t_x\) and
\(t_{x+1}\). This is calculated by the subtraction of smaller one from the
bigger of the two sequential timesteps \(\Delta t = t_{x+1} - t_x\). This
parameter is the unit of time for the optimization model, is expressed in the
unit h and by default the value is set to 1. In script model.py this
parameter is defined by the model parameter dt and initialized by the
following code fragment:

m.dt = pyomo.Param(
 initialize=dt,
 doc='Time step duration (in hours), default: 1')

The user can set the paramteter in script runme.py in the line:

dt = 1 # length of each time step (unit: hours)

Weight of last modeled support timeframe, \(W\),
m.global_prop.loc[(min(m.stf), 'Cost budget'), 'value']: This parameter
specifies how long the time interval represented by the last support timeframe
is. The unit of this parameter is years. By extension it also specifies the end
of the modeling horizon. The parameter is set in the spreadsheet corresponding
to the last support timeframe in worksheet “Global” in the line denoted
“Weight” in the column titled “value”.

Commodity Technical Parameters

Demand for Commodity, \(d_{yvct}\),
m.demand_dict[(stf, sit, com)][tm]: The parameter represents the energy
amount of a demand commodity tuple \(c_{yvq}\) required at a timestep
\(t\)
(\(\forall y \in Y, \forall v \in V, q = "Demand", \forall t \in T_m\)).
The unit of this parameter is MWh. This data is to be provided by the user and
to be entered in the spreadsheet corresponding to the specified support
timeframe. The related section for this parameter in the spreadsheet can be
found in the “Demand” sheet. Here each row represents another timestep
\(t\) and each column represent a commodity tuple \(c_{yvq}\). Rows are
named after the timestep number \(n\) of timesteps \(t_n\). Columns are
named after the combination of site name \(v\) and commodity name \(c\)
respecting the order and seperated by a period(.). For example (Mid, Elec)
represents the commodity Elec in site Mid. Commodity Type \(q\) is omitted
in column declarations, because every commodity of this parameter has to be
from commodity type Demand in any case.

Intermittent Supply Capacity Factor, \(s_{yvct}\),
m.supim_dict[(stf, sit, coin)][tm]: The parameter \(s_{yvct}\)
represents the normalized availability of a supply intermittent commodity
\(c\) \((\forall c \in C_\text{sup})\) in a support timeframe \(y\)
and site \(v\) at a timestep \(t\). In other words this parameter gives
the ratio of current available energy amount to maximum potential energy amount
of a supply intermittent commodity. This data is to be provided by the user and
to be entered in the spreadsheet corresponding to the support timeframe. The
related section for this parameter in the spreadsheet can be found under the
“SupIm” sheet. Here each row represents another timestep \(t\) and each
column represent a commodity tuple \(c_{vq}\). Rows are named after the
timestep number \(n\) of timesteps \(t_n\). Columns are named after the
combination of site name \(v\) and commodity name \(c\), in this
respective order and separated by a period(.). For example (Mid.Elec)
represents the commodity Elec in site Mid. Commodity Type \(q\) is omitted
in column declarations, because every commodity of this parameter has to be
from commodity type SupIm in any case.

Maximum Stock Supply Limit Per Hour, \(\overline{l}_{yvc}\),
m.commodity_dict['maxperhour'][(stf, sit, com, com_type)]: The parameter
\(\overline{l}_{yvc}\) represents the maximum energy amount of a stock
commodity tuple \(c_{yvq}\)
(\(\forall y\in Y, \forall v \in V , q = "Stock"\)) that energy model is
allowed to use per hour. The unit of this parameter is MW. This parameter
applies to every timestep and does not vary for each timestep \(t\). This
parameter is to be provided by the user and to be entered in spreadsheet
corresponding to the support timeframe. The related section for this parameter
in the spreadsheet can be found under the Commodity sheet. Here each row
represents another commodity tuple \(c_{yvq}\) and the column with the
header label “maxperhour” represents the parameter \(\overline{l}_{yvc}\).
If there is no desired restriction of a stock commodity tuple usage per
timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Annual Stock Supply Limit Per Vertex, \(\overline{L}_{yvc}\),
m.commodity_dict['max'][(stf, sit, com, com_type)]: The parameter
\(\overline{L}_{yvc}\) represents the maximum energy amount of a stock
commodity tuple \(c_{yvq}\)
(\(\forall y\in Y, \forall v \in V , q = "Stock"\)) that energy model is
allowed to use annually. The unit of this parameter is MWh. This parameter is
to be provided by the user and to be entered in spreadsheet corresponding to
the support timeframe. The related section for this parameter in the
spreadsheet can be found under the Commodity sheet. Here each row
represents another commodity tuple \(c_{yvq}\) and the column with the
header label “max” represents the parameter \(\overline{L}_{yvc}\). If
there is no desired restriction of a stock commodity tuple usage per timestep,
the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Environmental Output Per Hour, \(\overline{m}_{yvc}\),
m.commodity_dict['maxperhour'][(stf, sit, com, com_type)]: The parameter
\(\overline{m}_{yvc}\) represents the maximum energy amount of an
environmental commodity tuple \(c_{yvq}\)
(\(\forall y\in Y, \forall v \in V , q = "Env"\)) that energy model is
allowed to produce and release to environment per time step. This parameter
applies to every timestep and does not vary for each timestep \(t/h\). This
parameter is to be provided by the user and to be entered in spreadsheet
corresponding to the support timeframe. The related section for this parameter
in the spreadsheet can be found under the Commodity sheet. Here each row
represents another commodity tuple \(c_{yvq}\) and the column with the
header label “maxperhour” represents the parameter \(\overline{m}_{yvc}\).
If there is no desired restriction of an environmental commodity tuple usage per
timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Annual Environmental Output, \(\overline{M}_{yvc}\),
m.commodity_dict['max'][(stf, sit, com, com_type)]: The parameter
\(\overline{M}_{vc}\) represents the maximum energy amount of an
environmental commodity tuple \(c_{yvq}\)
(\(\forall y\in Y, \forall v \in V , q = "Env"\)) that energy model is
allowed to produce and release to environment annually. This parameter is to be
provided by the user and to be entered in spreadsheet corresponding to the
support timeframe. The related section for this parameter in the spreadsheet
can be found under the Commodity sheet. Here each row represents another
commodity tuple \(c_{yvq}\) and the column with the header label “max”
represents the parameter \(\overline{M}_{yvc}\). If there is no desired
restriction of a stock commodity tuple usage per timestep, the corresponding
cell can be set to “inf” to ignore this parameter.

Maximum Sell Limit Per Hour, \(\overline{g}_{yvc}\),
m.commodity_dict['maxperhour'][(stf, sit, com, com_type)]: The parameter
\(\overline{g}_{yvc}\) represents the maximum energy amount of a sell
commodity tuple \(c_{yvq}\)
(\(\forall y\in Y, \forall v \in V , q = "Sell"\)) that energy model is
allowed to sell per hour. The unit of this parameter is MW. This parameter
applies to every timestep and does not vary for each timestep \(t\). This
parameter is to be provided by the user and to be entered in spreadsheet. The
related section for this parameter in the spreadsheet corresponding to the
support timeframe can be found under the Commodity sheet. Here each row
represents another commodity tuple \(c_{yvq}\) and the column with the
header label “maxperhour” represents the parameter \(\overline{g}_{yvc}\).
If there is no desired restriction of a sell commodity tuple usage per
timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Annual Sell Limit, \(\overline{G}_{yvc}\),
m.commodity_dict['max'][(stf, sit, com, com_type)]: The parameter
\(\overline{G}_{yvc}\) represents the maximum energy amount of a sell
commodity tuple \(c_{yvq}\)
(\(\forall y\in Y, \forall v \in V , q = "Sell"\)) that energy model is
allowed to sell annually. The unit of this parameter is MWh. This parameter is
to be provided by the user and to be entered in spreadsheet corresponding to
the support timeframe. The related section for this parameter in the
spreadsheet can be found under the Commodity sheet. Here each row
represents another commodity tuple \(c_{yvq}\) and the column of sell with
the header label “max” represents the parameter \(\overline{G}_{yvc}\). If
there is no desired restriction of a sell commodity tuple usage per timestep,
the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Buy Limit Per Hour, \(\overline{b}_{yvc}\),
m.commodity_dict['maxperhour'][(stf, sit, com, com_type)]: The parameter
\(\overline{b}_{yvc}\) represents the maximum energy amount of a buy
commodity tuple \(c_{yvq}\)
(\(\forall y\in Y, \forall v \in V , q = "Buy"\)) that energy model is
allowed to buy per hour. The unit of this parameter is MW. This parameter
applies to every timestep and does not vary for each timestep \(t\). This
parameter is to be provided by the user and to be entered in spreadsheet
corresponding to the support timeframe. The related section for this parameter
in the spreadsheet can be found under the Commodity sheet. Here each row
represents another commodity tuple \(c_{yvq}\) and the column with the
header label “maxperhour” represents the parameter \(\overline{b}_{yvc}\).
If there is no desired restriction of a sell commodity tuple usage per
timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Annual Buy Limit, \(\overline{B}_{yvc}\),
m.commodity_dict['max'][(stf, sit, com, com_type)]: The parameter
\(\overline{B}_{yvc}\) represents the maximum energy amount of a buy
commodity tuple \(c_{yvq}\)
(\(\forall y\in Y, \forall v \in V , q = "Buy"\)) that energy model is
allowed to buy annually. The unit of this parameter is MWh. This parameter is
to be provided by the user and to be entered in spreadsheet corresponding to
the support timeframe. The related section for this parameter in the
spreadsheet can be found under the Commodity sheet. Here each row
represents another commodity tuple \(c_{yvq}\) and the column with the
header label “max” represents the parameter \(\overline{B}_{yvc}\). If
there is no desired restriction of a buy commodity tuple usage per timestep,
the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Global Annual CO\(_\textbf{2}\) Annual Emission Limit,
\(\overline{L}_{CO_2,y}\),
m.global_prop.loc[stf, 'CO2 limit']['value']: The parameter
\(\overline{L}_{CO_2,y}\) represents the maximum total amount of CO2 the
energy model is allowed to produce and release to the environment annually. If
the user desires to set a maximum annual limit to total \(CO_2\) emission
across all sites of the energy model in a given support timeframe \(y\),
this can be done by entering the desired value to the spreadsheet corresponding
to the support timeframe. The related section for this parameter can be found
under the sheet “Global”. Here the the cell where the “CO2 limit” row and
“value” column intersects stands for the parameter
\(\overline{L}_{CO_2,y}\). If the user wants to disable this parameter and
restriction it provides, this cell can be set to “inf” or simply be deleted.

CO\(_\textbf{2}`** emission budget **Total Emission budget**,
:math:\)overline{overline{L}}_{CO_2}`,
m.global_prop.loc[min(m.stf), 'CO2 budget']['value']: The parameter
\(\overline{\overline{L}}_{CO_2}\) represents the maximum total amount of
CO2 the energy model is allowed to produce and release to the environment
over the entire modeling horizon. If the user desires to set a limit to total
\(CO_2\) emission across all sites and the entire modeling horizon of the
energy model, this can be done by entering the desired value to the spreadsheet
of the first support timeframe. The related section for this parameter can be
found under the sheet “Global”. Here the the cell where the “CO2 budget” row
and “value” column intersects stands for the parameter
\(\overline{\overline{L}}_{CO_2}\). If the user wants to disable this
parameter and restriction it provides, this cell can be set to “inf” or simply
be deleted.

Process Technical Parameters

Process Capacity Lower Bound, \(\underline{K}_{yvp}\),
m.process_dict['cap-lo'][stf, sit, pro]: The parameter
\(\underline{K}_{yvp}\) represents the minimum amount of power output
capacity of a process \(p\) at a site \(v\) in support timeframe
\(y\), that energy model is required to have. The unit of this parameter is
MW. The related section for this parameter in the spreadsheet corresponding to
the support timeframe can be found under the “Process” sheet. Here each row
represents another process \(p\) in a site \(v\) and the column with
the header label “cap-lo” represents the parameters \(\underline{K}_{yvp}\)
belonging to the corresponding process \(p\) and site \(v\)
combinations. If there is no desired minimum limit for the process capacities,
this parameter can be simply set to “0”.

Process Capacity Installed, \(K_{vp}\),
m.process_dict['inst-cap'][min(m.stf), sit, pro]: The parameter
\(K_{vp}\) represents the amount of power output capacity of a process
\(p\) in a site \(v\), that is already installed to the energy system
at the beginning of the modeling period. The unit of this parameter is MW. The
related section for this parameter can be found in the spreadsheet
corresponding to the first support timeframe under the “Process” sheet. Here
each row represents another process \(p\) in a site \(v\) and the
column with the header label “inst-cap” represents the parameters
\(K_{vp}\) belonging to the corresponding process \(p\) and site
\(v\) combinations.

Process Capacity Upper Bound, \(\overline{K}_{yvp}\),
m.process_dict['cap-up'][stf, sit, pro]: The parameter
\(\overline{K}_{yvp}\) represents the maximum amount of power output
capacity of a process \(p\) at a site \(v\) in support timeframe
\(y\), that energy model is allowed to have. The unit of this parameter is
MW. The related section for this parameter in the spreadsheet corresponding to
the support timeframe can be found under the “Process” sheet. Here each row
represents another process \(p\) in a site \(v\) and the column with
the header label “cap-up” represents the parameters \(\overline{K}_{yvp}\)
of the corresponding process \(p\) and site \(v\) combinations.
Alternatively, \(\overline{K}_{yvp}\) is determined by the column with the
label “area-per-cap”, whenever the value in “cap-up” times the value
“area-per-cap” is larger than the value in column “area” in sheet “Site” for
site \(v\) in support timeframe \(y\). If there is no desired maximum
limit for the process capacities, both input parameters can be simply set to
“inf”.

Remaining lifetime of installed processes, \(T_{vp}\),
m.process.loc[(min(m.stf), sit, pro), 'lifetime']: The parameter
\(T_{vp}\) represents the remaining lifetime of already installed units. It
is used to determine the set m.inst_pro_tuples, i.e. to identify for which
support timeframes the installed unit can still be used.

Process Maximal Power Ramp Up Gradient, \(\overline{PG}_{yvp}^\text{up}\),
m.process_dict['ramp-up-grad'][(stf, sit, pro)]: The parameter
\(\overline{PG}_{yvp}^\text{up}\) represents the maximal power ramp up gradient of a process
\(p\) at a site \(v\) in support timeframe \(y\), that energy model
is allowed to have. The unit of this parameter is 1/h. The related section for
this parameter in the spreadsheet can be found under the “Process” sheet. Here
each row represents another process \(p\) in a site \(v\) and the
column with the header label “ramp-up-grad” represents the parameters
\(\overline{PG}_{yvp}^\text{up}\) of the corresponding process \(p\) and site
\(v\) combinations. If there is no desired maximum limit for the process
power ramp up gradient, this parameter can be simply set to a value larger or equal to
1.

Process Maximal Power Ramp Down Gradient, \(\overline{PG}_{yvp}^\text{down}\),
m.process_dict['ramp-down-grad'][(stf, sit, pro)]: The parameter
\(\overline{PG}_{yvp}^\text{down}\) represents the maximal power ramp down gradient of a process
\(p\) at a site \(v\) in support timeframe \(y\), that energy model
is allowed to have. The unit of this parameter is 1/h. The related section for
this parameter in the spreadsheet can be found under the “Process” sheet. Here
each row represents another process \(p\) in a site \(v\) and the
column with the header label “ramp-down-grad” represents the parameters
\(\overline{PG}_{yvp}^\text{up}\) of the corresponding process \(p\) and site
\(v\) combinations. If there is no desired maximum limit for the process
power ramp down gradient, this parameter can be simply set to a value larger or equal to
1.

Process Starting Time, \(\overline{ST}_{yvp}\),
m.process_dict['start-time'][(stf, sit, pro)]: The parameter
\(\overline{ST}_{yvp}\) represents the time required by a process
\(p\) at a site \(v\) in support timeframe \(y\) to start.
The unit of this parameter is h. The related section for
this parameter in the spreadsheet can be found under the “Process” sheet. Here
each row represents another process \(p\) in a site \(v\) and the
column with the header label “start-time” represents the parameters
\(\overline{ST}_{yvp}\) of the corresponding process \(p\) and site
\(v\) combinations.

Process Starting Ramp, \(\overline{SR}_{yvp}\):
The parameter \(\overline{SR}_{yvp}\) represents the ramp of a process
\(p\) at a site \(v\) in support timeframe \(y\) while starting.
The unit of this parameter is 1/h. This parameter is not declared directly in the input,
being only a derived parameter, calculated as the ratio between the process minimum part
load fraction \(\underline{P}_{yvp}\) and the process starting time
\(\overline{ST}_{yvp}\).

Process Minimum Part Load Fraction, \(\underline{P}_{yvp}\),
m.process_dict['min-fraction'][(stf, sit, pro)]: The parameter
\(\underline{P}_{yvp}\) represents the minimum allowable part load of a
process \(p\) at a site \(v\) in support timeframe \(y\) as a
fraction of the total process capacity. The related section for this parameter
in the spreadsheet can be found under the “Process” sheet. Here each row
represents another process \(p\) in a site \(v\) and the column with
the header label “min-fraction” represents the parameters
\(\underline{P}_{yvp}\) of the corresponding process \(p\) and site
\(v\) combinations. The minimum part load fraction parameter constraints is
only relevant when the part load behavior for the process is active, i.e., when
in the process commodity sheet a value for “ratio-min” is set for at least one
input commodity.

Process Output Ratio multiplyer, \(f_{yvpt}^\text{out}\),
m.eff_factor_dict[(stf, sit, pro)]: The parameter time series
\(f_{yvpt}^\text{out}\) allows for a time dependent modification of process
outputs and by extension of the efficiency of a process \(p\) in site
\(v\) and support timeframe \(y\). It can be used, e.g., to
model temperature dependent efficiencies of processes or to include scheduled
maintenance intervals. In the spreadsheet corresponding to the support
timeframe this timeseries is set in worksheet “TimeVarEff”. Here each row
represents another timestep \(t\) and each column represent a process tuple
\(p_{yv}\). Rows are named after the timestep number \(n\) of timesteps
\(t_n\). Columns are named after the combination of site name \(v\) and
commodity name and process name \(p\) respecting the order and seperated by
a period(.). For example (Mid, Lignite plant) represents the process Lignite
plant in site Mid. Note that the output of environmental commodity outputs are
not manipulated by this factor as it is typically linked to an input commodity
as , e.g., CO2 output is linked to a fossil input.

Process Input Ratio, \(r_{ypc}^\text{in}\),
m.r_in_dict[(stf, pro, co)]: The parameter \(r_{ypc}^\text{in}\)
represents the ratio of the input amount of a commodity \(c\) in a process
\(p\) and support timeframe \(y\), relative to the process throughput
at a given timestep. The related section for this parameter in the spreadsheet
corresponding to the support timeframe can be found under the
“Process-Commodity” sheet. Here each row represents another commodity \(c\)
that either goes in to or comes out of a process \(p\). The column with the
header label “ratio” represents the parameters \(r_{ypc}^\text{in}\) of
the corresponding process \(p\) and commodity \(c\) if the latter is an
input commodity.

Process Partial Input Ratio, \(\underline{r}_{ypc}^\text{in}\),
m.r_in_min_fraction[stf, pro, coin]: The parameter
\(\underline{r}_{ypc}^\text{in}\) represents the ratio of the amount of
input commodity \(c\) a process \(p\) and support timeframe \(y\)
consumes if it is at its minimum allowable partial operation. More precisely,
when its throughput \(\tau_{yvpt}\) has the minimum value
\(\kappa_{yvp} \underline{P}_{yvp}\). The related section for this
parameter in the spreadsheet corresponding to the support timeframe can be
found under the “Process-Commodity” sheet. Here each row represents another
commodity \(c\) that either goes in to or comes out of a process \(p\).
The column with the header label “ratio-min” represents the parameters
\(\underline{r}_{ypc}^\text{in,out}\) of the corresponding process
\(p\) and commodity \(c\) if the latter is an input commodity.

Process Output Ratio, \(r_{ypc}^\text{out}\),
m.r_out_dict[(stf, pro, co)]: The parameter \(r_{ypc}^\text{out}\)
represents the ratio of the output amount of a commodity \(c\) in a process
\(p\) in support timeframe \(y\), relative to the process throughput at
a given timestep. The related section for this parameter in the spreadsheet
corresponding to the support timeframe can be found under the
“Process-Commodity” sheet. Here each row represents another commodity \(c\)
that either goes in to or comes out of a process \(p\). The column with the
header label “ratio” represents the parameters of the corresponding process
\(p\) and commodity \(c\) if the latter is an output commodity.

Process Partial Output Ratio, \(\underline{r}_{ypc}^\text{out}\),
m.r_out_min_fraction[stf, pro, coo]: The parameter
\(\underline{r}_{ypc}^\text{out}\) represents the ratio of the amount of
output commodity \(c\) a process \(p\) and support timeframe \(y\)
emits if it is at its minimum allowable partial operation. More precisely, when
its throughput \(\tau_{yvpt}\) has the minimum value
\(\kappa_{yvp} \underline{P}_{yvp}\). The related section for this
parameter in the spreadsheet corresponding to the support timeframe can be
found under the “Process-Commodity” sheet. Here each row represents another
commodity \(c\) that either goes in to or comes out of a process \(p\).
The column with the header label “ratio-min” represents the parameters
\(\underline{r}_{ypc}^\text{in,out}\) of the corresponding process
\(p\) and commodity \(c\) if the latter is an output commodity.

Process input and output ratios are, in general, used for unit conversion
between the different commodities.

Since all costs and capacity constraints take the process throughput
\(\tau_{yvpt}\) as the reference, it is reasonable to assign an in- or
output ratio of “1” to at least one commodity. The flow of this commodity then
tracks the throughput and can be used as a reference. All other values of in-
and output ratios can then be adjusted by scaling them by an appropriate factor
to the reference commodity flow.

Process New Capacity Block, \({K}_{yvp}^\text{block}\),
m.process_dict['cap-block'][(stf, sit, pro)]: The parameter
\({K}_{yvp}^\text{block}\) represents the capacity of all newly installed
units of a process \(p\) at a site \(v\) in the support timeframe
\(y\). The unit of this parameter is MW. The related section for
this parameter in the spreadsheet can be found under the “Process” sheet. Here
each row represents another process \(p\) in a site \(v\) and the
column with the header label “cap-block” represents the parameters
\({K}_{yvp}^\text{block}\) of the corresponding process \(p\) and site
\(v\) combinations.

Storage Technical Parameters

Initial and Final State of Charge (relative), \(I_{yvs}\),
m.storage_dict['init'][(stf, sit, sto, com)]: The parameter \(I_{yvs}\)
represents the initial state of charge of a storage \(s\) in a site
\(v\) and support timeframe \(y\). If this value is left unspecified,
the initial state of charge is variable. The initial and final value are set as
identical in each modeled support timeframe to avoid windfall profits through
emptying of a storage. The value of this parameter is expressed as a normalized
percentage, where “1” represents a fully loaded storage and “0” represents an
empty storage. The related section for this parameter in the spreadsheet
corresponding to the support timeframe can be found under the “Storage” sheet.
Here each row represents a storage technology \(s\) in a site \(v\)
that stores a commodity \(c\). The column with the header label “init”
represents the parameters for corresponding storage \(s\), site \(v\),
commodity \(c\) combinations. When no initial value is to be set this cell
can be left empty.

Storage Efficiency During Charge, \(e_{yvs}^\text{in}\),
m.storage_dict['eff-in'][(stf, sit, sto, com)]: The parameter
\(e_{yvs}^\text{in}\) represents the charging efficiency of a storage
\(s\) in a site \(v\) and support timeframe \(y\) that stores a
commodity \(c\). The charging efficiency shows, how much of a desired
energy and accordingly power can be successfully stored into a storage. The
value of this parameter is expressed as a normalized percentage, where “1”
represents a charging without energy losses. The related section for this
parameter in the spreadsheet corresponding to the support timeframe can be
found under the “Storage” sheet. Here each row represents a storage technology
\(s\) in a site \(v\) that stores a commodity \(c\). The column
with the header label “eff-in” represents the parameters
\(e_{yvs}^\text{in}\) for corresponding storage tuples.

Storage Efficiency During discharge, \(e_{yvs}^\text{out}\),
m.storage_dict['eff-out'][(stf, sit, sto, com)]: The parameter
\(e_{yvs}^\text{out}\) represents the discharging efficiency of a storage
\(s\) in a site \(v\) and support timeframe \(y\) that stores a
commodity \(c\). The discharging efficiency shows, how much of a desired
energy and accordingly power can be successfully released from a storage. The
value of this parameter is expressed as a normalized percentage, where “1”
represents a discharging without energy losses. The related section for this
parameter in the spreadsheet corresponding to the support timeframe can be
found under the “Storage” sheet. Here each row represents a storage technology
\(s\) in a site \(v\) that stores a commodity \(c\). The column
with the header label “eff-out” represents the parameters
\(e_{yvs}^\text{out}\) for corresponding storage tuples.

Storage Self-discharge Per Hour, \(d_{yvs}\),
m.storage_dict['discharge'][(stf, sit, sto, com)]: The parameter
\(d_{vs}\) represents the fraction of the energy content within a storage
which is lost due to self-discharge per hour. It introduces an exponential
decay of a given storage state if no charging/discharging takes place. The unit
of this parameter is 1/h. The related section for this parameter in the
spreadsheet corresponding to the support timeframe can be found under the
“Storage” sheet. Here each row represents a storage technology \(s\) in a
site \(v\) that stores a commodity \(c\). The column with the header
label “discharge” represents the parameters \(d_{yvs}\) for corresponding
storage tuples.

Storage Capacity Lower Bound, \(\underline{K}_{yvs}^\text{c}\),
m.storage_dict['cap-lo-c'][(stf, sit, sto, com)]: The parameter
\(\underline{K}_{yvs}^\text{c}\) represents the minimum amount of energy
content capacity required for a storage \(s\) storing a commodity \(c\)
in a site \(v\) in support timeframe \(y\). The unit of this parameter
is MWh. The related section for this parameter in the spreadsheet can be found
under the “Storage” sheet. Here each row represents a storage technology
\(s\) in a site \(v\) that stores a commodity \(c\). The column
with the header label “cap-lo-c” represents the parameters
\(\underline{K}_{yvs}^\text{c}\) for corresponding storage tuples. If there
is no desired minimum limit for the storage energy content capacities, this
parameter can be simply set to “0”.

Storage Capacity Installed, \(K_{vs}^\text{c}\),
m.storage_dict['inst-cap-c'][(min(m.stf), sit, sto, com)]]: The parameter
\(K_{vs}^\text{c}\) represents the amount of energy content capacity of a
storage \(s\) storing commodity \(c\) in a site \(v\) and support
timeframe \(y\), that is already installed to the energy system at the
beginning of the model horizon. The unit of this parameter is MWh. The related
section for this parameter in the spreadsheet corresponding to the first
support timeframe can be found under the “Storage” sheet. Here each row
represents a storage technology \(s\) in a site \(v\) that stores a
commodity \(c\). The column with the header label “inst-cap-c” represents
the parameters \(K_{vs}^\text{c}\) for corresponding storage tuples.

Storage Capacity Upper Bound, \(\overline{K}_{yvs}^\text{c}\),
m.storage_dict['cap-up-c'][(stf, sit, sto, com)]: The parameter
\(\overline{K}_{yvs}^\text{c}\) represents the maximum amount of energy
content capacity allowed of a storage \(s\) storing a commodity \(c\)
in a site \(v\) in support timeframe \(y\). The unit of this parameter
is MWh. The related section for this parameter in the spreadsheet corresponding
to the support timeframe can be found under the “Storage” sheet. Here each row
represents a storage technology \(s\) in a site \(v\) that stores a
commodity \(c\). The column with the header label “cap-up-c” represents the
parameters \(\overline{K}_{yvs}^\text{c}\) for corresponding storage
tuples. If there is no desired maximum limit for the storage energy content
capacities, this parameter can be simply set to “”inf””.

Storage Power Lower Bound, \(\underline{K}_{yvs}^\text{p}\),
m.storage_dict['cap-lo-p'][(stf, sit, sto, com)]: The parameter
\(\underline{K}_{yvs}^\text{p}\) represents the minimum amount of
charging/discharging power required for a storage \(s\) storing a commodity
\(c\) in a site \(v\) in support timeframe \(y\). The unit of this
parameter is MW. The related section for this parameter in the spreadsheet can
be found under the “Storage” sheet. Here each row represents a storage
technology \(s\) in a site \(v\) that stores a commodity \(c\). The
column with the header label “cap-lo-p” represents the parameters
\(\underline{K}_{yvs}^\text{p}\) for corresponding storage tuples. If there
is no desired minimum limit for the storage charging/discharging powers, this
parameter can be simply set to “0”.

Storage Power Installed, \(K_{vs}^\text{p}\),
m.storage_dict['inst-cap-p'][(min(m.stf), sit, sto, com)]]: The parameter
\(K_{vs}^\text{p}\) represents the amount of charging/discharging power of
a storage \(s\) storing commodity \(c\) in a site \(v\) and support
timeframe \(y\), that is already installed to the energy system at the
beginning of the model horizon. The unit of this parameter is MW. The related
section for this parameter in the spreadsheet corresponding to the first
support timeframe can be found under the “Storage” sheet. Here each row
represents a storage technology \(s\) in a site \(v\) that stores a
commodity \(c\). The column with the header label “inst-cap-p” represents
the parameters \(K_{vs}^\text{p}\) for corresponding storage tuples.

Storage Power Upper Bound, \(\overline{K}_{yvs}^\text{p}\),
m.storage_dict['cap-up-p'][(stf, sit, sto, com)]: The parameter
\(\overline{K}_{yvs}^\text{c}\) represents the maximum amount of
charging/discharging power allowed of a storage \(s\) storing a commodity
\(c\) in a site \(v\) in support timeframe \(y\). The unit of this
parameter is MW. The related section for this parameter in the spreadsheet
corresponding to the support timeframe can be found under the “Storage” sheet.
Here each row represents a storage technology \(s\) in a site \(v\)
that stores a commodity \(c\). The column with the header label “cap-up-p”
represents the parameters \(\overline{K}_{yvs}^\text{p}\) for corresponding
storage tuples. If there is no desired maximum limit for the storage energy
content capacities, this parameter can be simply set to “”inf””.

Remaining lifetime of installed storages, \(T_{vs}\),
m.storage.loc[(min(m.stf), sit, pro), 'lifetime']: The parameter
\(T_{vs}\) represents the remaining lifetime of already installed units. It
is used to determine the set m.inst_sto_tuples, i.e. to identify for which
support timeframes the installed units can still be used.

Storage Energy to Power Ratio, \(k_{yvs}^\text{E/P}\),
m.storage_dict['ep-ratio'][(stf, sit, sto, com)]: The parameter
\(k_{yvs}^\text{E/P}\) represents the linear ratio between the energy and
power capacities of a storage \(s\) storing a commodity \(c\) in a site
\(v\) in support timeframe \(y\). The unit of this parameter is hours.
The related section for this parameter in the spreadsheet corresponding to the
support timeframe can be found under the “Storage” sheet. Here each row
represents a storage technology \(s\) in a site \(v\) that stores a
commodity \(c\). The column with the header label “ep-ratio” represents the
parameters \(k_{yvs}^\text{E/P}\) for corresponding storage tuples. If
there is no desired set ratio for the storage energy and power capacities
(which means the storage energy and power capacities can be sized independently
from each other), this cell can be left empty.

Storage New Capacity Block, \({K}_{yvs}^\text{c,block}\),
m.storage_dict['c-block'][(stf, sit, sto, com)]: The parameter
\({K}_{yvs}^\text{c,block}\) represents the capacity of all newly installed
units of a storage \(s\) at a site \(v\) in the support timeframe
\(y\). The unit of this parameter is MWh. The related section for
this parameter in the spreadsheet can be found under the “Storage” sheet. Here
each row represents another storage \(s\) in a site \(v\) and the
column with the header label “c-block” represents the parameters
\({K}_{yvs}^\text{c,block}\) of the corresponding storage \(s\) and site
\(v\) combinations.

Storage New Power Block, \({K}_{yvs}^\text{p,block}\),
m.storage_dict['p-block'][(stf, sit, sto, com)]: The parameter
\({K}_{yvs}^\text{p,block}\) represents the power of all newly installed
units of a storage \(s\) at a site \(v\) in the support timeframe
\(y\). The unit of this parameter is MW. The related section for
this parameter in the spreadsheet can be found under the “Storage” sheet. Here
each row represents another storage \(s\) in a site \(v\) and the
column with the header label “c-block” represents the parameters
\({K}_{yvs}^\text{p,block}\) of the corresponding storage \(s\) and site
\(v\) combinations.

Transmission Technical Parameters

Transmission Efficiency, \(e_{yaf}\),
m.transmission_dict['eff'][(stf, sin, sout, tra, com)]: The parameter
\(e_{yaf}\) represents the energy efficiency of a transmission \(f\)
that transfers a commodity \(c\) through an arc \(a\) in support
timeframe \(y\). Here an arc \(a\) defines the connection line from an
origin site \(v_\text{out}\) to a destination site \({v_\text{in}}\).
The ratio of the output energy amount to input energy amount, gives the energy
efficiency of a transmission process. The related section for this parameter in
the spreadsheet corresponding to the support timeframe can be found under the
“Transmission” sheet. Here each row represents another combination of
transmission \(f\) and arc \(a\). The column with the header label
“eff” represents the parameters \(e_{yaf}\) of the corresponding
transmission tuples.

Transmission Capacity Lower Bound, \(\underline{K}_{yaf}\),
m.transmission_dict['cap-lo'][(stf, sin, sout, tra, com)]: The parameter
\(\underline{K}_{<af}\) represents the minimum power output capacity of a
transmission \(f\) transferring a commodity \(c\) through an arc
\(a\), that the energy system model is required to have. Here an arc
\(a\) defines the connection line from an origin site \(v_\text{out}\)
to a destination site \({v_\text{in}}\). The unit of this parameter is MW.
The related section for this parameter in the spreadsheet corresponding to the
support timeframe can be found under the “Transmission” sheet. Here each row
represents another transmission \(f\), arc \(a\) combination. The
column with the header label “cap-lo” represents the parameters
\(\underline{K}_{yaf}\) of the corresponding transmission tuples.

Transmission Capacity Installed, \(K_{af}\),
m.transmission_dict['inst-cap'][(min(m.stf), sin, sout, tra, com)]: The
parameter \(K_{af}\) represents the amount of power output capacity of a
transmission \(f\) transferring a commodity \(c\) through an arc
\(a\), that is already installed to the energy system at the beginning of
the modeling horizon. The unit of this parameter is MW. The related section for
this parameter in the spreadsheet corresponding to the first support timeframe
can be found under the “Transmission” sheet. Here each row represents another
transmission \(f\), arc \(a\) combination. The column with the header
label “inst-cap” represents the parameters \(K_{af}\) of the transmission
tuples.

Transmission Capacity Upper Bound, \(\overline{K}_{yaf}\),
m.transmission_dict['cap-up'][(stf, sin, sout, tra, com)]: The parameter
\(\overline{K}_{yaf}\) represents the maximum power output capacity of a
transmission \(f\) transferring a commodity \(c\) through an arc
\(a\) in support timeframe \(y\), that the energy system model is
allowed to have. Here an arc \(a\) defines the connection line from an
origin site \(v_\text{out}\) to a destination site \({v_\text{in}}\).
The unit of this parameter is MW. The related section for this parameter in the
spreadsheet corresponding to the support timeframe can be found under the
“Transmission” sheet. Here each row represents another transmission \(f\),
arc \(a\) combination. The column with the header label “cap-up” represents
the parameters \(\overline{K}_{yaf}\) of the corresponding transmission
tuples.

Remaining lifetime of installed transmission, \(T_{af}\),
m.transmission.loc[(min(m.stf), sitin, sitout, tra, com), 'lifetime']: The
parameter \(T_{af}\) represents the remaining lifetime of already installed
units. It is used to determine the set m.inst_tra_tuples, i.e. to identify
for which support timeframes the installed units can still be used.

Transmission New Capacity Block, \({K}_{yaf}^\text{block}\),
m.transmission_dict['tra-block'][(stf, sin, sout,tra, com)]: The parameter
\({K}_{yaf}^\text{block}\) represents the capacity of all newly installed
units of a transmission \(f\) transferring a commodity \(c\) through an arc
\(a\) in support timeframe \(y\).The unit of this parameter is MW.
The related section for this parameter in the spreadsheet can be found under the
“Transmission” sheet. Here each row represents another transmission \(f\),
arc \(a\) combination. The column with the header label “tra-block” represents
the parameters \({K}_{yaf}^\text{block}\) of the corresponding transmission
tuples.

DCPF Transmission Technical Parameters

Selected transmission lines can be modelled with DC Power Flow and combined with
the transport model in an energy system model. The following parameters are only
required and included in the model when a transmission line should be modelled
with DCPF.

Transmission Reactance, \(X_{yaf}\),
m.transmission_dict['reactance'][(stf, sin, sout, tra, com)]: The parameter
\(X_{yaf}\) represents the reactance of a transmission \(f\)
that transfers a commodity \(c\) through an arc \(a\) in support
timeframe \(y\). Here an arc \(a\) defines the connection line from an
origin site \(v_\text{out}\) to a destination site \({v_\text{in}}\).
Transmission reactance is used to calculate the power flow of DCPF transmission lines.
This parameter is required to define a transmission line with the DCPF model and should
be given in per unit system.
The related section for this parameter in the spreadsheet corresponding
to the support timeframe can be found under the “Transmission” sheet.
Here each row represents another combination of transmission \(f\) and arc
\(a\). The column with the header label “reactance” represents the parameters
\(X_{yaf}\) of the corresponding transmission tuples. If the parameter is left
empty in the spreadsheet, the transmission line will be modelled with transport
model as default.

Voltage Angle Difference Limit, \(\overline{dl}_{yaf}\),
m.transmission_dict['difflimit'][(stf, sin, sout, tra, com)]: The parameter
\(\overline{dl}_{yaf}\) represents the voltage angle difference limit of a transmission \(f\)
that transfers a commodity \(c\) through an arc \(a\) in support
timeframe \(y\). Here an arc \(a\) defines the connection line from an
origin site \(v_\text{out}\) to a destination site \({v_\text{in}}\).
The allowed maximum difference of voltage angles of sites \(v_\text{out}\)
and \({v_\text{in}}\) is limited with this parameter.
This parameter is expected in degrees and a value between 0 and 91 is allowed.
This parameter is required to define a transmission line with the DCPF model.
The related section for this parameter in
the spreadsheet corresponding to the support timeframe can be found under the
“Transmission” sheet. Here each row represents another combination of
transmission \(f\) and arc \(a\). The column with the header label
“difflimit” represents the parameters \(\overline{dl}_{yaf}\) of the corresponding
transmission tuples.

Transmission Base Voltage, \(V_{yaf\text{base}}\),
m.transmission_dict['base_voltage'][(stf, sin, sout, tra, com)]: The parameter
\(V_{yaf\text{base}}\) represents the base voltage of a transmission \(f\)
that transfers a commodity \(c\) through an arc \(a\) in support
timeframe \(y\). Here an arc \(a\) defines the connection line from an
origin site \(v_\text{out}\) to a destination site \({v_\text{in}}\).
This parameter is used to calculate the power flow of DCPF transmission lines.
This parameter is expected in kV and a value greater than 0 is allowed.
This parameter is required to define a transmission line with the DCPF model.
The related section for this parameter in
the spreadsheet corresponding to the support timeframe can be found under the
“Transmission” sheet. Here each row represents another combination of
transmission \(f\) and arc \(a\). The column with the header label
“base_voltage” represents the parameters \(V_{yaf\text{base}}\) of the corresponding
transmission tuples.

Demand Side Management Technical Parameters

DSM Efficiency, \(e_{yvc}\), m.dsm_dict['eff'][(stf, sit, com)]:
The parameter \(e_{yvc}\) represents the efficiency of the DSM process,
i.e., the fraction of DSM upshift that is benefiting the system via the
corresponding DSM downshifts of demand commodity \(c\) in site \(v\)
and support timeframe \(y\). The parameter is given as a fraction with “1”
meaning a perfect recovery of the DSM upshift. The related section for this
parameter in the spreadsheet corresponding to the support timeframe can be
found under the “DSM” sheet. Here each row represents another DSM potential for
demand commodity \(c\) in site \(v\). The column with the header label
“eff” represents the parameters \(e_{yvc}\) of the corresponding DSM
tuples.

DSM Delay Time, \(y_{yvc}\), m.dsm_dict['delay'][(stf, sit, com)]:
The delay time \(y_{yvc}\) restricts how long the time difference between
an upshift and its corresponding downshifts may be for demand commodity
\(c\) in site \(v\) and support timeframe \(y\). The parameter is
given in h. The related section for this parameter in the spreadsheet
corresponding to the support timeframe can be found under the “DSM” sheet. Here
each row represents another DSM potential for demand commodity \(c\) in
site \(v\). The column with the header label “delay” represents the
parameters \(y_{yvc}\) of the corresponding DSM tuples.

DSM Recovery Time, \(o_{yvc}\),
m.dsm_dict['recov'][(stf, sit, com)]: The recovery time \(o_{yvc}\)
prevents the DSM system to continuously shift demand. During the recovery time,
all upshifts of demand commodity \(c\) in site \(v\) and support
timeframe \(y\) may not exceed the product of the delay time and the
maximal upshift capacity. The parameter is given in h. The related section for
this parameter in the spreadsheet corresponding to the support timeframe can be
found under the “DSM” sheet. Here each row represents another DSM potential for
demand commodity \(c\) in site \(v\). The column with the header label
“recov” represents the parameters \(o_{yvc}\) of the corresponding DSM
tuples. If no limitation via this parameter is desired it has to be set to
values lower than the delay time \(y_{yvc}\).

DSM Maximal Upshift Per Hour, \(\overline{K}_{yvc}^\text{up}\), MW,
m.dsm_dict['cap-max-up'][(stf, sit, com)]: The DSM upshift capacity
\(\overline{K}_{yvc}^\text{up}\) limits the total upshift per hour for a
DSM potential of demand commodity \(c\) in site \(v\) and support
timeframe \(y\). The parameter is given in MW. The related section for
this parameter in the spreadsheet corresponding to the support timeframe can be
found under the “DSM” sheet. Here each row represents another DSM potential for
demand commodity \(c\) in site \(v\). The column with the header label
“cap-max-up” represents the parameters \(\overline{K}_{yvc}^\text{up}\) of
the corresponding DSM tuples.

DSM Maximal Downshift Per Hour, \(\overline{K}_{yvc}^\text{down}\), MW,
m.dsm_dict['cap-max-do'][(stf, sit, com)]: The DSM downshift capacity
\(\overline{K}_{yvc}^\text{up}\) limits the total downshift per hour for a
DSM potential of demand commodity \(c\) in site \(v\) and support
timeframe \(y\). The parameter is given in MW. The related section for
this parameter in the spreadsheet corresponding to the support timeframe can be
found under the “DSM” sheet. Here each row represents another DSM potential for
demand commodity \(c\) in site \(v\). The column with the header label
“cap-max-do” represents the parameters \(\overline{K}_{yvc}^\text{down}\) of
the corresponding DSM tuples.

Economic Parameters

Table: Economic Model Parameters

	Parameter

	Unit

	Description

	\(j\)

	_

	Global Discount rate

	\(D_y\)

	_

	Factor for any payment made in modeled year y

	\(I_y\)

	_

	Factor for any investment made in modeled year y

	\(\overline{L}_{\text{cost}}\)

	€

	Maximum total system costs (if CO2 is minimized)

	Commodity Economic Parameters

	\(k_{yvc}^\text{fuel}\)

	€/MWh

	Stock Commodity Fuel Costs

	\(k_{yvc}^\text{env}\)

	€/MWh

	Environmental Commodity Costs

	\(k_{yvct}^\text{bs}\)

	€/MWh

	Buy/Sell Commodity Buy/Sell Costs

	\(k_{yvc}^\text{bs}\)

	_

	Multiplier for Buy/Sell Commodity Buy/Sell Costs

	Process Economic Parameters

	\(i_{yvp}\)

	_

	Weighted Average Cost of Capital for Process

	\(z_{yvp}\)

	_

	Process Depreciation Period

	\(k_{yvp}^\text{inv}\)

	€/MW

	Process Capacity Investment Costs

	\(k_{yvp}^\text{fix}\)

	€/(MW a)

	Annual Process Capacity Fixed Costs

	\(k_{yvp}^\text{var}\)

	€/MWh

	Process Throughput Variable Costs

	\({P}_{yvp}^\text{start}\)

	€/MW

	Process Start-up Cost

	Storage Economic Parameters

	\(i_{yvs}\)

	_

	Weighted Average Cost of Capital for Storage

	\(z_{yvs}\)

	_

	Storage Depreciation Period

	\(k_{yvs}^\text{p,inv}\)

	€/MW

	Storage Power Investment Costs

	\(k_{yvs}^\text{p,fix}\)

	€/(MW a)

	Annual Storage Power Fixed Costs

	\(k_{yvs}^\text{p,var}\)

	€/MWh

	Storage Power Variable Costs

	\(k_{yvs}^\text{c,inv}\)

	€/MWh

	Storage Size Investment Costs

	\(k_{yvs}^\text{c,fix}\)

	€/(MWh a)

	Annual Storage Size Fixed Costs

	\(k_{yvs}^\text{c,var}\)

	€/MWh

	Storage Usage Variable Costs

	Transmission Economic Parameters

	\(i_{yvf}\)

	_

	Weighted Average Cost of Capital for Transmission

	\(z_{yaf}\)

	_

	Tranmission Depreciation Period

	\(k_{yaf}^\text{inv}\)

	€/MW

	Transmission Capacity Investment Costs

	\(k_{yaf}^\text{fix}\)

	€/(MW a)

	Annual Transmission Capacity Fixed Costs

	\(k_{yaf}^\text{var}\)

	€/MWh

	Tranmission Usage Variable Costs

Discount rate, \(j\),
m.global_prop.xs('Discount rate', level=1).loc[m.global_prop.index.min()[0]]['value']:
The discount rate \(j\) is used to calculate the present value of future
costs. It is set in the worksheet “Global” in the input file of the first
support timeframe.

Factor for future payments, \(D_y\): The parameter \(D_y\)
is a multiplier that has to be factored into all cost terms apart from the
invest costs in intertemporal planning based on support timeframes. All other
cost terms for the support timeframe \(y\) are muliplied directly with this
factor to find the present value of the sum of costs in support timeframe
\(y\) and all non-modeled time frames until the next modeled time frame
\(y_{+1}\), which are identical to the support timeframe with the modeling
approach taken:

\[D_y=(1+j)^{1-(y-y_{\text{min}})}\cdot \frac{1-(1+j)^{-(y_{+1}-y+1)}}{j}\]

In script modelhelper.py the factor \(D_y\) is implemented as the
product of the functions:

def discount_factor(stf, m):
 """Discount for any payment made in the year stf
 """
 discount = (m.global_prop.xs('Discount rate', level=1)
 .loc[m.global_prop.index.min()[0]]['value'])

 return (1 + discount) ** (1 - (stf - m.global_prop.index.min()[0]))

and

def effective_distance(dist, m):
 """Factor for variable, fuel, purchase, sell, and fix costs.
 Calculated by repetition of modeled stfs and discount utility.
 """
 discount = (m.global_prop.xs('Discount rate', level=1)
 .loc[m.global_prop.index.min()[0]]['value'])

 if discount == 0:
 return dist
 else:
 return (1 - (1 + discount) ** (-dist)) / discount

Factor for investment made in support timeframe y, \(I_y\): The
parameter \(I_y\) is a multiplier that has to be factored into the invest
costs in intertemporal planning based on support timeframes. The book value of
the total invest costs per capacity in support timeframe \(y\) is muliplied
with this factor to find the present value of the sum of costs of all annual
payments made for this investment within the modeling horizon. The calculation
of this parameter requires several case distinctions and is given by:

	\(i\neq0,~j\neq0\):

\[I_{y}=(1+j)^{1-(y-y_{\text{min}})}\cdot \frac{i}{j}\cdot
\left(\frac{1+i}{1+j}\right)^n\cdot
\frac{(1+j)^n-(1+j)^{n-k}}{(1+i)^n-1}\]

	\(i=0,~j=0\):

\[I_{y}=\frac{k}{n}\]

	\(i\neq0,~j=0\):

\[I_{y}=k\cdot\frac{(1+i)^n\cdot i}{(1+i)^n-1}\]

	\(i=0,~j\neq0\):

\[I_{y}=\frac 1n \cdot (1+j)^{-m}\cdot \frac{(1+j)^k-1}{(1+j)^k\cdot j}\]

where \(k\) is the number of annualized payments that have to be made
within the modeling horizon, \(n\) the depreciation period and \(i\)
the weighted average cost of capital. Note that the parameters \(i\) and
\(n\) take different values for different unit tuples.

In script modelhelper.py the factor \(I_y\) is implemented with the
function:

def invcost_factor(dep_prd, interest, discount=None, year_built=None,
 stf_min=None):
 """Investment cost factor formula.
 Evaluates the factor multiplied to the invest costs
 for depreciation duration and interest rate.
 Args:
 dep_prd: depreciation period (years)
 interest: interest rate (e.g. 0.06 means 6 %)
 year_built: year utility is built
 discount: discount rate for intertmeporal planning
 """
 # invcost factor for non intertemporal planning
 if discount is None:
 if interest == 0:
 return 1 / dep_prd
 else:
 return ((1 + interest) ** dep_prd * interest /
 ((1 + interest) ** dep_prd - 1))
 # invcost factor for intertemporal planning
 elif discount == 0:
 if interest == 0:
 return 1
 else:
 return (dep_prd * ((1 + interest) ** dep_prd * interest) /
 ((1 + interest) ** dep_prd - 1))
 else:
 if interest == 0:
 return ((1 + discount) ** (1 - (year_built-stf_min)) *
 ((1 + discount) ** dep_prd - 1) /
 (dep_prd * discount * (1 + discount) ** dep_prd))
 else:
 return ((1 + discount) ** (1 - (year_built-stf_min)) *
 (interest * (1 + interest) ** dep_prd *
 ((1 + discount) ** dep_prd - 1)) /
 (discount * (1 + discount) ** dep_prd *
 ((1+interest) ** dep_prd - 1)))

In this formulation also payments after the modeled time horizon are being
made. To fix this the overpay is subtracted via:

def overpay_factor(dep_prd, interest, discount, year_built, stf_min, stf_end):
 """Overpay value factor formula.
 Evaluates the factor multiplied to the invest costs
 for all annuity payments of a unit after the end of the
 optimization period.
 Args:
 dep_prd: depreciation period (years)
 interest: interest rate (e.g. 0.06 means 6 %)
 year_built: year utility is built
 discount: discount rate for intertemporal planning
 k: operational time after simulation horizon
 """

 op_time = (year_built + dep_prd) - stf_end - 1

 if discount == 0:
 if interest == 0:
 return op_time / dep_prd
 else:
 return (op_time * ((1 + interest) ** dep_prd * interest) /
 ((1 + interest) ** dep_prd - 1))
 else:
 if interest == 0:
 return ((1 + discount) ** (1 - (year_built - stf_min)) *
 ((1 + discount) ** op_time - 1) /
 (dep_prd * discount * (1 + discount) ** dep_prd))
 else:
 return ((1 + discount) ** (1 - (year_built - stf_min)) *
 (interest * (1 + interest) ** dep_prd *
 ((1 + discount) ** op_time - 1)) /
 (discount * (1 + discount) ** dep_prd *
 ((1 + interest) ** dep_prd - 1)))

In case of negative values this overpay factor is set to zero afterwards.

Maximum total system cost, \(\overline{L}_{\text{cost}}\),
m.global_prop.loc[(min(m.stf), 'Cost budget'), 'value']: This parameter
restricts the total present costs over the entire modeling horizon. It is only
sensible and active when the objective is a minimization of CO2 emissions.

Commodity Economic Parameters

Stock Commodity Fuel Costs, \(k_{vc}^\text{fuel}\),
m.commodity_dict['price'][c]: The parameter \(k_{yvc}^\text{fuel}\)
represents the book cost for purchasing one unit (1 MWh) of a stock commodity
\(c\) (\(\forall c \in C_\text{stock}\)) in modeled timeframe \(y\)
in a site \(v\) (\(\forall v \in V\)). The unit of this parameter is
€/MWh. The related section for this parameter in the spreadsheet belonging the
support timeframe \(y\) can be found in the “Commodity” sheet. Here each
row represents another commodity tuple \(c_{yvq}\) and the column of stock
commodity tuples (\(\forall q = "Stock"\)) in this sheet with the header
label “price” represents the corresponding parameter
\(k_{yvc}^\text{fuel}\).

Environmental Commodity Costs, \(k_{yvc}^\text{env}\),
m.commodity_dict['price'][c]: The parameter \(k_{yvc}^\text{env}\)
represents the book cost for producing/emitting one unit (1 t, 1 kg, …) of an
environmental commodity \(c\) (\(\forall c \in C_\text{env}\)) in
support timeframe \(y\) in a site \(v\) (\(\forall v \in V\)). The
unit of this parameter is €/t (i.e. per unit of output). The related section
for this parameter in the spreadsheet corresponding to support timeframe
\(y\) is the “Commodity” sheet. Here, each row represents a commodity tuple
\(c_{yvq}\) and the fourth column of environmental commodity tuples
(\(\forall q = "Env"\)) in this sheet with the header label “price”
represents the corresponding parameter \(k_{yvc}^\text{env}\).

Buy/Sell Commodity Buy/Sell Costs, \(k_{yvct}^\text{bs}\),
m.buy_sell_price_dict[c[2],][(c[0], tm)]: The parameter
\(k_{yvct}^\text{bs}\) represents the purchase/buy cost for
purchasing/selling one unit (1 MWh) of a buy/sell commodity \(c\)
(\(\forall c \in C_\text{buy}\))/(\(\forall c \in C_\text{sell}\)) in
support timeframe \(y\) in a site \(v\) (\(\forall v \in V\)) at
timestep \(t\) (\(\forall t \in T_m\)). The unit of this parameter is
€/MWh. The related section for this parameter in the spreadsheet can be found
in the “Buy-Sell-Price” sheet. Here each column represents a commodity tuple
and the row values provide the timestep information.

Multiplyer for Buy/Sell Commodity Buy/Sell Costs,
\(k_{yvc}^\text{bs}\), m.commodity_dict['price'][c]: The parameter
\(k_{yvc}^\text{bs}\) is a multiplier for the buy/sell time series. It
represents the factor on the purchase/buy cost for purchasing/selling one unit
(1 MWh) of a buy/sell commodity \(c\)
(\(\forall c \in C_\text{buy}\))/(\(\forall c \in C_\text{sell}\)) in
support timeframe \(y\) in a site \(v\) (\(\forall v \in V\)). This
parameter is unitless. The related section for this parameter in the
spreadsheet belonging to support timeframe \(y\) can be found in the
“Commodity” sheet. Here each row represents another commodity tuple
\(c_{yvq}\) and the column of Buy/Sell commodity tuples
(\(\forall q = "Buy/Sell"\)) in this sheet with the header label “price”
represents the corresponding parameter \(k_{yvc}^\text{bs}\).

Process Economic Parameters

Weighted Average Cost of Capital for Process, \(i_{yvp}\), : The
parameter \(i_{yvp}\) represents the weighted average cost of capital for a
process technology \(p\) in support timeframe ;math:y in a site
\(v\). The weighted average cost of capital gives the interest rate (%) of
costs for capital after taxes. The related section for this parameter in the
spreadsheet corresponding to support timeframe \(y\) can be found under the
“Process” sheet. Here each row represents another process tuple and the column
with the header label “wacc” represents the parameters \(i_{yvp}\). The
parameter is given as a percentage, where “0.07” means 7%

Process Depreciation Period, \(z_{yvp}\): The parameter \(z_{yvp}\)
represents the depreciation period of a process \(p\) built in support
timeframe \(y\) in a site \(v\). The depreciation period gives the
economic and technical lifetime of a process investment. It thus features in
the calculation of the invest cost factor and determines the end of operation
of the process. The unit of this parameter is “a”, where “a” represents a year
of 8760 hours. The related section for this parameter in the spreadsheet can be
found under the “Process” sheet. Here each row represents another process tuple
and the column with the header label “depreciation” represents the parameters
\(z_{yvp}\).

Process Capacity Investment Costs, \(k_{yvp}^\text{inv}\),
m.process_dict['inv-cost'][p]: The parameter \(k_{yvp}^\text{inv}\)
represents the book value of the investment cost for adding one unit new
capacity of a process technology \(p\) in support timeframe \(y\) in a
site \(v\). The unit of this parameter is €/MW. To get the full impact of
the investment within the modeling horizon this parameter is multiplied with
the factor for the investment made in modeled year y \(I_y\). The process
capacity investment cost is to be given as an input by the user. The related
section for the process capacity investment cost in the spreadsheet
representing the support timeframe \(y\) can be found under the “Process”
sheet. Here each row represents another process \(p\) in a site \(v\)
and the column with the header label “inv-cost” represents the process capacity
investment costs of the corresponding process \(p\) and site \(v\)
combinations.

Process Capacity Fixed Costs, \(k_{yvp}^\text{fix}\),
m.process_dict['fix-cost'][p]: The parameter \(k_{yvp}^\text{fix}\)
represents the fix cost per one unit capacity \(\kappa_{yvp}\) of a process
technology \(p\) in support timeframe \(y\) in a site \(v\), that
is charged annually. The unit of this parameter is €/(MW a). The related
section for this parameter in the spreadsheet correesponding to the support
timeframe \(y\) can be found under the “Process” sheet. Here each row
represents another process \(p\) in a site \(v\) and the column with
the header label “fix-cost” represents the parameters
\(k_{yvp}^\text{fix}\) of the corresponding process \(p\) and site
\(v\) combinations.

Process Variable Costs, \(k_{yvp}^\text{var}\),
m.process_dict['var-cost'][p]: The parameter \(k_{yvp}^\text{var}\)
represents the book value of the variable cost per one unit energy throughput
\(\tau_{yvpt}\) through a process technology \(p\) in a site \(v\)
in support timeframe \(y\). The unit of this parameter is €/MWh. The
related section for this parameter in the spreadsheet corresponding to the
support timeframe \(y\) can be found under the “Process” sheet. Here each
row represents another process \(p\) in a site \(v\) and the column
with the header label “var-cost” represents the parameters
\(k_{yvp}^\text{var}\) of the corresponding process \(p\) and site
\(v\) combinations.

Process Start-up Cost, \({P}_{yvp}^\text{start}\),
m.process_dict['start-cost'][(stf, sit, pro)]: The parameter
\({P}_{yvp}^\text{start}\) represents the cost inquired by the starting
of a process \(p\) at a site \(v\) in the support timeframe \(y\).
The unit of this parameter is the currency used in the support timeframe \(y\).
The related section for this parameter in the spreadsheet can be found under the
“Process” sheet. Here each row represents another process \(p\) in a site \(v\)
and the column with the header label “start-cost” represents the parameters
\({P}_{yvp}^\text{start}\) of the corresponding process \(p\) and site
\(v\) combinations.

Storage Economic Parameters

Weighted Average Cost of Capital for Storage, \(i_{yvs}\), : The
parameter \(i_{yvs}\) represents the weighted average cost of capital for a
storage technology \(s\) in a site \(v\) and support timeframe
\(y\). The weighted average cost of capital gives the interest rate(%) of
costs for capital after taxes. The related section for this parameter in the
spreadsheet corresponding to the support timeframe \(y\) can be found under
the “Storage” sheet. Here each row represents another storage \(s\) in a
site \(v\) and the column with the header label “wacc” represents the
parameters \(i_{yvs}\) of the corresponding storage \(s\) and site
\(v\) combinations. The parameter is given as a percentage, where “0.07”
means 7%.

Storage Depreciation Period, \(z_{yvs}\), (a): The parameter
\(z_{yvs}\) represents the depreciation period of a storage \(s\) in a
site \(v\) built in support timeframe \(y\). The depreciation period
gives the economic and technical lifetime of a storage investment. It thus
features in the calculation of the invest cost factor and determines the end of
operation of the storage. The unit of this parameter is “a”, where “a”
represents a year of 8760 hours. The related section for this parameter in the
spreadsheet corresponding to the support timeframe \(y\) can be found under
the “Storage” sheet. Here each row represents another storage \(s\) in a
site \(v\) and the column with the header label “depreciation” represents
the parameters \(z_{yvs}\) of the corresponding storage \(s\) and site
\(v\) combinations.

Storage Power Investment Costs, \(k_{yvs}^\text{p,inv}\),
m.storage_dict['inv-cost-p'][s]: The parameter \(k_{yvs}^\text{p,inv}\)
represents the book value of the total investment cost for adding one unit new
power output capacity of a storage technology \(s\) in a site \(v\) in
support timeframe \(y\). The unit of this parameter is €/MW. To get the
full impact of the investment within the modeling horizon this parameter is
multiplied with the factor for the investment made in modeled year y
\(I_y\). The related section for the storage power output capacity
investment cost in the spreadsheet corresponding to the support timeframe
\(y\) can be found under the “Storage” sheet. Here each row represents
another storage \(s\) in a site \(v\) and the column with the header
label “inv-cost-p” represents the storage power output capacity investment cost
of the corresponding storage \(s\) and site \(v\) combinations.

Annual Storage Power Fixed Costs, \(k_{yvs}^\text{p,fix}\),
m.storage_dict['fix-cost-p'][s]: The parameter \(k_{yvs}^\text{p,fix}\)
represents the fix cost per one unit power output capacity of a storage
technology \(s\) in a site \(v\) and support timeframe \(y\), that
is charged annually. The unit of this parameter is €/(MW a). The related
section for this parameter in the spreadsheet corresponding to support
timeframe \(y\) can be found under the “Storage” sheet. Here each row
represents another storage \(s\) in a site \(v\) and the column with
the header label “fix-cost-p” represents the parameters
\(k_{yvs}^\text{p,fix}\) of the corresponding storage \(s\) and site
\(v\) combinations.

Storage Power Variable Costs, \(k_{yvs}^\text{p,var}\),
m.storage_dict['var-cost-p'][s]: The parameter \(k_{yvs}^\text{p,var}\)
represents the variable cost per unit energy, that is stored in or retrieved
from a storage technology \(s\) in a site \(v\) in support timeframe
\(y\). The unit of this parameter is €/MWh. The related section for this
parameter in the spreadsheet corresponding to support timeframe \(y\) can
be found under the “Storage” sheet. Here each row represents another storage
\(s\) in a site \(v\) and the column with the header label “var-cost-p”
represents the parameters \(k_{yvs}^\text{p,var}\) of the corresponding
storage \(s\) and site \(v\) combinations.

Storage Size Investment Costs, \(k_{yvs}^\text{c,inv}\),
m.storage_dict['inv-cost-c'][s]: The parameter \(k_{yvs}^\text{c,inv}\)
represents the book value of the total investment cost for adding one unit new
storage capacity to a storage technology \(s\) in a site \(v\) in
support timeframe \(y\). The unit of this parameter is €/MWh. To get the
full impact of the investment within the modeling horizon this parameter is
multiplied with the factor for the investment made in modeled year y
\(I_y\). The related section for the storage content capacity investment
cost in the spreadsheet corresponding to support timeframe \(y\) can be
found under the “Storage” sheet. Here each row represents another storage
\(s\) in a site \(v\) and the column with the header label “inv-cost-c”
represents the storage content capacity investment cost of the corresponding
storage \(s\) and site \(v\) combinations.

Annual Storage Size Fixed Costs, \(k_{yvs}^\text{c,fix}\),
m.storage_dict['fix-cost-c'][s]: The parameter \(k_{yvs}^\text{c,fix}\)
represents the fix cost per year per one unit storage content capacity of a
storage technology \(s\) in a site \(v\) in support timeframe
\(y\). The unit of this parameter is €/(MWh a). The related section for
this parameter in the spreadsheet corresponding to support timeframe \(y\)
can be found under the “Storage” sheet. Here each row represents another
storage \(s\) in a site \(v\) and the column with the header label
“fix-cost-c” represents the parameters \(k_{vs}^\text{c,fix}\) of the
corresponding storage \(s\) and site \(v\) combinations.

Storage Usage Variable Costs, \(k_{yvs}^\text{c,var}\),
m.storage_dict['var-cost-c'][s]: The parameter \(k_{yvs}^\text{p,var}\)
represents the variable cost per unit energy, that is conserved in a storage
technology \(s\) in a site \(v\) in support timeframe \(y\). The
unit of this parameter is €/MWh. The related section for this parameter in the
spreadsheet corresponding to support timeframe \(y\) can be found under the
“Storage” sheet. Here each row represents another storage \(s\) in a site
\(v\) and the column with the header label “var-cost-c” represents the
parameters \(k_{yvs}^\text{c,var}\) of the corresponding storage \(s\)
and site \(v\) combinations. The value of this parameter is usually set to
zero, but the parameter can be taken advantage of if the storage has a short
term usage or has an increased devaluation due to usage, compared to amount of
energy stored.

Transmission Economic Parameters

Weighted Average Cost of Capital for Transmission, \(i_{yvf}\), : The
parameter \(i_{yvf}\) represents the weighted average cost of capital for a
transmission \(f\) transferring commodities through an arc \(a\) built
in support timeframe \(y\). The weighted average cost of capital gives the
interest rate(%) of costs for capital after taxes. The related section for this
parameter in the spreadsheet corresponding to support timeframe \(y\) can be
found under the “Transmission” sheet. Here each row represents another
transmission \(f\) transferring commodities through an arc \(a\) and
the column with the header label “wacc” represents the parameters
\(i_{yvf}\) of the corresponding transmission \(f\) and arc \(a\)
combinations. The parameter is given as a percentage, where “0.07” means 7%.

Transmission Depreciation Period, \(z_{yaf}\), (a): The parameter
\(z_{yaf}\) represents the depreciation period of a transmission \(f\)
transferring commodities through an arc \(a\) built in support timeframe
\(y\). The depreciation period of gives the economic and technical lifetime
of a transmission investment. It thus features in the calculation of the invest
cost factor and determines the end of operation of the transmission. The unit
of this parameter is “a”, where “a” represents a year of 8760 hours. The
related section for this parameter in the spreadsheet corresponding to support
timeframe \(y\) can be found under the “Transmission” sheet. Here each row
represents another transmission \(f\) transferring commodities through an
arc \(a\) and the column with the header label “depreciation” represents
the parameters \(z_{yaf}\) of the corresponding transmission \(f\) and
arc \(a\) combinations.

Transmission Capacity Investment Costs, \(k_{yaf}^\text{inv}\),
m.transmission_dict['inv-cost'][t]: The parameter
\(k_{yaf}^\text{inv}\) represents the book value of the investment cost for
adding one unit new transmission capacity to a transmission \(f\)
transferring commodities through an arc \(a\) in support timeframe
\(y\). To get the full impact of the investment within the modeling horizon
this parameter is multiplied with the factor for the investment made in modeled
year y \(I_y\). The unit of this parameter is €/MW. The related section for
the transmission capacity investment cost in the spreadsheet corresponding to
support timeframe \(y\) can be found under the “Transmission” sheet. Here
each row represents another transmission \(f\) transferring commodities
through an arc \(a\) and the column with the header label “inv-cost”
represents the transmission capacity investment cost of the corresponding
transmission \(f\) and arc \(a\) combinations.

Annual Transmission Capacity Fixed Costs, \(k_{yaf}^\text{fix}\),
m.transmission_dict['fix-cost'][t]: The parameter
\(k_{yaf}^\text{fix}\) represents the annual fix cost per one unit capacity
of a transmission \(f\) transferring commodities through an arc \(a\).
The unit of this parameter is €/(MW a). The related section for this parameter
in the spreadsheet corresponding to support timeframe \(y\) can be found
under the “Transmission” sheet. Here each row represents another transmission
\(f\) transferring commodities through an arc \(a\) and the column with
the header label “fix-cost” represents the parameters
\(k_{yaf}^\text{fix}\) of the corresponding transmission \(f\) and arc
\(a\) combinations.

Transmission Usage Variable Costs, \(k_{yaf}^\text{var}\),
m.transmission_dict['var-cost'][t]: The parameter
\(k_{yaf}^\text{var}\) represents the variable cost per unit energy, that
is transferred with a transmission \(f\) through an arc \(a\). The unit
of this parameter is €/ MWh. The related section for this parameter in the
spreadsheet corresponding to support timeframe \(y\) can be found under the
“Transmission” sheet. Here each row represents another transmission \(f\)
transferring commodities through an arc \(a\) and the column with the
header label “var-cost” represents the parameters \(k_{af}^\text{var}\) of
the corresponding transmission \(f\) and arc \(a\) combinations.

Equations

	Objective function

Constraints

	Commodity Constraints
	Demand Side Management Constraints

	Global Environmental Constraint

	Process Constraints
	Process Constraints for partial operation

	Process Constraints for the on/off feature

	Transmission Constraints
	DCPF Transmission Constraints

	Storage Constraints

	Cost Constraints

Objective function

There are two possible choices of objective function for urbs problems, either
the costs (default option) or the total CO2-emissions can be minimized.

If the total CO2-emissions are minimized the objective function takes the form:

\[w \sum_{t\in T_\text{m}} \sum_{v \in V} \mathrm{-CB}(v,CO_{2},t)\]

In script model.py the global CO2 emissions are defined and calculated by
the following code fragment:

def co2_rule(m):
 co2_output_sum = 0
 for stf in m.stf:
 for tm in m.tm:
 for sit in m.sit:
 # minus because negative commodity_balance represents
 # creation of that commodity.
 if m.mode['int']:
 co2_output_sum += (- commodity_balance(m, tm, stf, sit, 'CO2') *
 m.typeperiod['weight_typeperiod'][(stf, tm)] *
 m.weight * stf_dist(stf, m))
 else:
 co2_output_sum += (- commodity_balance(m, tm, stf, sit, 'CO2') *
 m.weight)

 return (co2_output_sum)

In the default case the total system costs are minimized. These variable total
system costs \(\zeta\) are calculated by the cost function. The cost
function is the objective function of the optimization model. Minimizing the
value of the variable total system cost would give the most reasonable solution
for the modelled energy system. The formula of the cost function expressed in
mathematical notation is as following:

\[\zeta = (\zeta_\text{inv} + \zeta_\text{fix} + \zeta_\text{var} +
\zeta_\text{fuel} + \zeta_\text{rev} + \zeta_\text{pur} +
\zeta_\text{startup} + \zeta_\{env})\]

The calculation of the variable total system cost is given in model.py by
the following code fragment.

def cost_rule(m):
 return pyomo.summation(m.costs)

The variable total system cost \(\zeta\) is basically calculated by the
summation of every type of total costs. As previously mentioned in section
Cost Types, these cost types are : Investment, Fix,
Variable, Fuel, Revenue, Purchase, Start-up and Environmental.

In script model.py the individual cost functions are calculated by
the following code fragment:

def def_costs_rule(m, cost_type):
 #Calculate total costs by cost type.
 #Sums up process activity and capacity expansions
 #and sums them in the cost types that are specified in the set
 #m.cost_type. To change or add cost types, add/change entries
 #there and modify the if/elif cases in this function accordingly.
 #Cost types are
 # - Investment costs for process power, storage power and
 # storage capacity. They are multiplied by the investment
 # factors. Rest values of units are subtracted.
 # - Fixed costs for process power, storage power and storage
 # capacity.
 # - Variables costs for usage of processes, storage and transmission.
 # - Fuel costs for stock commodity purchase.

 if cost_type == 'Invest':
 cost = \
 sum(m.cap_pro_new[p] *
 m.process_dict['inv-cost'][p] *
 m.process_dict['invcost-factor'][p]
 for p in m.pro_tuples)
 if m.mode['int']:
 cost -= \
 sum(m.cap_pro_new[p] *
 m.process_dict['inv-cost'][p] *
 m.process_dict['overpay-factor'][p]
 for p in m.pro_tuples)
 if m.mode['tra']:
 # transmission_cost is defined in transmission.py
 cost += transmission_cost(m, cost_type)
 if m.mode['sto']:
 # storage_cost is defined in storage.py
 cost += storage_cost(m, cost_type)
 return m.costs[cost_type] == cost

 elif cost_type == 'Fixed':
 cost = \
 sum(m.cap_pro[p] * m.process_dict['fix-cost'][p] *
 m.process_dict['cost_factor'][p]
 for p in m.pro_tuples)
 if m.mode['tra']:
 cost += transmission_cost(m, cost_type)
 if m.mode['sto']:
 cost += storage_cost(m, cost_type)
 return m.costs[cost_type] == cost

 elif cost_type == 'Variable':
 cost = \
 sum(m.tau_pro[(tm,) + p] * m.weight * m.typeperiod['weight_typeperiod'][(m.stf_list[0],tm)] *
 m.process_dict['var-cost'][p] *
 m.process_dict['cost_factor'][p]
 for tm in m.tm
 for p in m.pro_tuples)
 if m.mode['tra']:
 cost += transmission_cost(m, cost_type)
 if m.mode['sto']:
 cost += storage_cost(m, cost_type)
 return m.costs[cost_type] == cost

 elif cost_type == 'Fuel':
 return m.costs[cost_type] == sum(
 m.e_co_stock[(tm,) + c] * m.weight * m.typeperiod['weight_typeperiod'][(m.stf_list[0],tm)] *
 m.commodity_dict['price'][c] *
 m.commodity_dict['cost_factor'][c]
 for tm in m.tm for c in m.com_tuples
 if c[2] in m.com_stock)

 elif cost_type == 'Start-up':
 if m.mode['onoff']:
 cost = sum(m.start_up[(tm,) + p] * m.weight *
 m.start_price_dict[p] * m.cap_pro[p] *
 m.process_dict['cost_factor'][p]
 for tm in m.tm
 for p in m.pro_start_up_tuples)
 return m.costs[cost_type] == cost
 else:
 return m.costs[cost_type] == 0

 elif cost_type == 'Environmental':
 return m.costs[cost_type] == sum(
 - commodity_balance(m, tm, stf, sit, com) * m.weight * m.typeperiod['weight_typeperiod'][(m.stf_list[0],tm)] *
 m.commodity_dict['price'][(stf, sit, com, com_type)] *
 m.commodity_dict['cost_factor'][(stf, sit, com, com_type)]
 for tm in m.tm
 for stf, sit, com, com_type in m.com_tuples
 if com in m.com_env)

 # Revenue and Purchase costs defined in BuySellPrice.py
 elif cost_type == 'Revenue':
 return m.costs[cost_type] == revenue_costs(m)

 elif cost_type == 'Purchase':
 return m.costs[cost_type] == purchase_costs(m)

 else:
 raise NotImplementedError("Unknown cost type.")

Commodity Constraints

Commodity Balance The function commodity balance calculates the in- and
outflows into all processes, storages and transmission of a commodity \(c\)
in a site \(v\) in support timeframe \(y\) at a timestep \(t\). The
value of the function \(\mathrm{CB}\) being greater than zero
\(\mathrm{CB} > 0\) means that the presence of the commodity \(c\) in
the site \(v\) in support timeframe \(y\) at the timestep \(t\) is
getting by the interaction with the technologies given above. Correspondingly,
the value of the function being less than zero means that the presence of the
commodity in the site at the timestep is getting more than before by the
technologies given above. The mathematical explanation of this rule for general
problems is explained in Energy Storage.

In script modelhelper.py the value of the commodity balance function
\(\mathrm{CB}(y,v,c,t)\) is calculated by the following code fragment:

def commodity_balance(m, tm, stf, sit, com):
 """Calculate commodity balance at given timestep.
 For a given commodity co and timestep tm, calculate the balance of
 consumed (to process/storage/transmission, counts positive) and provided
 (from process/storage/transmission, counts negative) commodity flow. Used
 as helper function in create_model for constraints on demand and stock
 commodities.
 Args:
 m: the model object
 tm: the timestep
 site: the site
 com: the commodity
 Returns
 balance: net value of consumed (positive) or provided (negative) power
 """
 balance = (sum(m.e_pro_in[(tm, stframe, site, process, com)]
 # usage as input for process increases balance
 for stframe, site, process in m.pro_tuples
 if site == sit and stframe == stf and
 (stframe, process, com) in m.r_in_dict) -
 sum(m.e_pro_out[(tm, stframe, site, process, com)]
 # output from processes decreases balance
 for stframe, site, process in m.pro_tuples
 if site == sit and stframe == stf and
 (stframe, process, com) in m.r_out_dict))
 if m.mode['tra']:
 balance += transmission_balance(m, tm, stf, sit, com)
 if m.mode['sto']:
 balance += storage_balance(m, tm, stf, sit, com)

 return balance

where the two functions introducing the partly balances for transmissions and
storages, respectively, are given by:

def transmission_balance(m, tm, stf, sit, com):
 """called in commodity balance
 For a given commodity co and timestep tm, calculate the balance of
 import and export """

 return (sum(m.e_tra_in[(tm, stframe, site_in, site_out,
 transmission, com)]
 # exports increase balance
 for stframe, site_in, site_out, transmission, commodity
 in m.tra_tuples
 if (site_in == sit and stframe == stf and
 commodity == com)) -
 sum(m.e_tra_out[(tm, stframe, site_in, site_out,
 transmission, com)]
 # imports decrease balance
 for stframe, site_in, site_out, transmission, commodity
 in m.tra_tuples
 if (site_out == sit and stframe == stf and
 commodity == com)))

def storage_balance(m, tm, stf, sit, com):
 """callesd in commodity balance
 For a given commodity co and timestep tm, calculate the balance of
 storage input and output """

 return sum(m.e_sto_in[(tm, stframe, site, storage, com)] -
 m.e_sto_out[(tm, stframe, site, storage, com)]
 # usage as input for storage increases consumption
 # output from storage decreases consumption
 for stframe, site, storage, commodity in m.sto_tuples
 if site == sit and stframe == stf and commodity == com)

Vertex Rule: The vertex rule is the main constraint that has to be
satisfied for every commodity. It represents a version of
“Kirchhoff’s current law” or local energy conservation. This constraint is
defined differently for each commodity type. The inequality requires, that any
imbalance (CB>0, CB<0) of a commodity \(c\) in a site \(v\) and support
timeframe \(y\) at a timestep \(t\) to be balanced by a corresponding
source term or demand. The rule is not defined for environmental or SupIm
commodities. The mathematical explanation of this rule is given in
Minimal optimization model.

In script model.py the constraint vertex rule is defined and calculated by
the following code fragments:

m.res_vertex = pyomo.Constraint(
 m.tm, m.com_tuples,
 rule=res_vertex_rule,
 doc='storage + transmission + process + source + buy - sell == demand')

def res_vertex_rule(m, tm, stf, sit, com, com_type):
 # environmental or supim commodities don't have this constraint (yet)
 if com in m.com_env:
 return pyomo.Constraint.Skip
 if com in m.com_supim:
 return pyomo.Constraint.Skip

 # helper function commodity_balance calculates balance from input to
 # and output from processes, storage and transmission.
 # if power_surplus > 0: production/storage/imports create net positive
 # amount of commodity com
 # if power_surplus < 0: production/storage/exports consume a net
 # amount of the commodity com
 power_surplus = - commodity_balance(m, tm, stf, sit, com)

 # if com is a stock commodity, the commodity source term e_co_stock
 # can supply a possibly negative power_surplus
 if com in m.com_stock:
 power_surplus += m.e_co_stock[tm, stf, sit, com, com_type]

 # if Buy and sell prices are enabled
 if m.mode['bsp']:
 power_surplus += bsp_surplus(m, tm, stf, sit, com, com_type)

 # if com is a demand commodity, the power_surplus is reduced by the
 # demand value; no scaling by m.dt or m.weight is needed here, as this
 # constraint is about power (MW), not energy (MWh)
 if com in m.com_demand:
 try:
 power_surplus -= m.demand_dict[(sit, com)][(stf, tm)]
 except KeyError:
 pass

 if m.mode['dsm']:
 power_surplus += dsm_surplus(m, tm, stf, sit, com)

 return power_surplus == 0

where the two functions introducing the effects of Buy/Sell or DSM events,
respectively, are given by:

def bsp_surplus(m, tm, stf, sit, com, com_type):

 power_surplus = 0

 # if com is a sell commodity, the commodity source term e_co_sell
 # can supply a possibly positive power_surplus
 if com in m.com_sell:
 power_surplus -= m.e_co_sell[tm, stf, sit, com, com_type]

 # if com is a buy commodity, the commodity source term e_co_buy
 # can supply a possibly negative power_surplus
 if com in m.com_buy:
 power_surplus += m.e_co_buy[tm, stf, sit, com, com_type]

 return power_surplus

def dsm_surplus(m, tm, stf, sit, com):
 """ called in vertex rule
 calculate dsm surplus"""
 if (stf, sit, com) in m.dsm_site_tuples:
 return (- m.dsm_up[tm, stf, sit, com] +
 sum(m.dsm_down[t, tm, stf, sit, com]
 for t in dsm_time_tuples(
 tm, m.timesteps[1:],
 max(int(1 / m.dt *
 m.dsm_dict['delay'][(stf, sit, com)]), 1))))
 else:
 return 0

Stock Per Step Rule: The constraint stock per step rule applies only for
commodities of type “Stock” (\(c \in C_\text{st}\)). This constraint limits
the amount of stock commodity \(c \in C_\text{st}\), that can be used by
the energy system in the site \(v\) in support timeframe \(y\) at the
timestep \(t\). This amount is limited by the product of the parameter
maximum stock supply limit per hour \(\overline{l}_{yvc}\) and the timestep
length \(\Delta t\). The mathematical explanation of this rule is given in
Minimal optimization model.

In script model.py the constraint stock per step rule is defined and
calculated by the following code fragment:

m.res_stock_step = pyomo.Constraint(
 m.tm, m.com_tuples,
 rule=res_stock_step_rule,
 doc='stock commodity input per step <= commodity.maxperstep')

def res_stock_step_rule(m, tm, stf, sit, com, com_type):
 if com not in m.com_stock:
 return pyomo.Constraint.Skip
 else:
 return (m.e_co_stock[tm, stf, sit, com, com_type] <=
 m.dt * m.commodity_dict['maxperhour']
 [(stf, sit, com, com_type)])

Total Stock Rule: The constraint total stock rule applies only for
commodities of type “Stock” (\(c \in C_\text{st}\)). This constraint limits
the amount of stock commodity \(c \in C_\text{st}\), that can be used
annually by the energy system in the site \(v\) and support timeframe
\(y\). This amount is limited by the parameter maximum annual stock supply
limit per vertex \(\overline{L}_{yvc}\). The annual usage of stock
commodity is calculated by the sum of the products of the parameter weight
\(w\) and the parameter stock commodity source term \(\rho_{yvct}\),
summed over all timesteps \(t \in T_m\). The mathematical explanation of
this rule is given in Minimal optimization model.

In script model.py the constraint total stock rule is defined and
calculated by the following code fragment:

m.res_stock_total = pyomo.Constraint(
 m.com_tuples,
 rule=res_stock_total_rule,
 doc='total stock commodity input <= commodity.max')

def res_stock_total_rule(m, stf, sit, com, com_type):
 if com not in m.com_stock:
 return pyomo.Constraint.Skip
 else:
 # calculate total consumption of commodity com
 total_consumption = 0
 for tm in m.tm:
 total_consumption += (
 m.e_co_stock[tm, stf, sit, com, com_type] * m.typeperiod['weight_typeperiod'][(stf,tm)])
 total_consumption *= m.weight
 return (total_consumption <=
 m.commodity_dict['max'][(stf, sit, com, com_type)])

Sell Per Step Rule: The constraint sell per step rule applies only for
commodities of type “Sell” (\(c \in C_\text{sell}\)). This constraint
limits the amount of sell commodity \(c \in C_\text{sell}\), that can be
sold by the energy system in the site \(v\) in support timeframe \(y\)
at the timestep \(t\). The limit is defined by the parameter maximum sell
supply limit per hour \(\overline{g}_{yvc}\). To satisfy this constraint,
the value of the variable sell commodity source term \(\varrho_{yvct}\)
must be less than or equal to the value of the parameter maximum sell supply
limit per hour \(\overline{g}_{vc}\) multiplied with the length of the
time steps \(\Delta t\). The mathematical explanation of this rule is given
in Trading with an external market.

In script BuySellPrice.py the constraint sell per step rule is defined and
calculated by the following code fragment:

m.res_sell_step = pyomo.Constraint(
 m.tm, m.com_tuples,
 rule=res_sell_step_rule,
 doc='sell commodity output per step <= commodity.maxperstep')

def res_sell_step_rule(m, tm, stf, sit, com, com_type):
 if com not in m.com_sell:
 return pyomo.Constraint.Skip
 else:
 return (m.e_co_sell[tm, stf, sit, com, com_type] <=
 m.dt * m.commodity_dict['maxperhour']
 [(stf, sit, com, com_type)])

Total Sell Rule: The constraint total sell rule applies only for
commodities of type “Sell” (\(c \in C_\text{sell}\)). This constraint
limits the amount of sell commodity \(c \in C_\text{sell}\), that can be
sold annually by the energy system in the site \(v\) and support timeframe
\(y\). The limit is defined by the parameter maximum annual sell supply
limit per vertex \(\overline{G}_{yvc}\). The annual usage of sell commodity
is calculated by the sum of the products of the parameter weight \(w\) and
the parameter sell commodity source term \(\varrho_{yvct}\), summed over
all timesteps \(t \in T_m\). The mathematical explanation of this rule is
given in Trading with an external market.

In script BuySellPrice.py the constraint total sell rule is defined and
calculated by the following code fragment:

m.res_sell_total = pyomo.Constraint(
 m.com_tuples,
 rule=res_sell_total_rule,
 doc='total sell commodity output <= commodity.max')

def res_sell_total_rule(m, stf, sit, com, com_type):
 if com not in m.com_sell:
 return pyomo.Constraint.Skip
 else:
 # calculate total sale of commodity com
 total_consumption = 0
 for tm in m.tm:
 total_consumption += (
 m.e_co_sell[tm, stf, sit, com, com_type] * m.typeperiod['weight_typeperiod'][(stf,tm)])
 total_consumption *= m.weight
 return (total_consumption <=
 m.commodity_dict['max'][(stf, sit, com, com_type)])

Buy Per Step Rule: The constraint buy per step rule applies only for
commodities of type “Buy” (\(c \in C_\text{buy}\)). This constraint limits
the amount of buy commodity \(c \in C_\text{buy}\), that can be bought by
the energy system in the site \(v\) in support timeframe \(y\) at the
timestep \(t\). The limit is defined by the parameter maximum buy
supply limit per time step \(\overline{b}_{yvc}\). To satisfy this
constraint, the value of the variable buy commodity source term
\(\psi_{yvct}\) must be less than or equal to the value of the parameter
maximum buy supply limit per time step \(\overline{b}_{vc}\), multiplied by
the length of the time steps \(\Delta t\). The mathematical explanation of
this rule is given in Trading with an external market.

In script BuySellPrice.py the constraint buy per step rule is defined and
calculated by the following code fragment:

m.res_buy_step = pyomo.Constraint(
 m.tm, m.com_tuples,
 rule=res_buy_step_rule,
 doc='buy commodity output per step <= commodity.maxperstep')

def res_buy_step_rule(m, tm, stf, sit, com, com_type):
 if com not in m.com_buy:
 return pyomo.Constraint.Skip
 else:
 return (m.e_co_buy[tm, stf, sit, com, com_type] <=
 m.dt * m.commodity_dict['maxperhour']
 [(stf, sit, com, com_type)])

Total Buy Rule: The constraint total buy rule applies only for commodities
of type “Buy” (\(c \in C_\text{buy}\)). This constraint limits the amount
of buy commodity \(c \in C_\text{buy}\), that can be bought annually by the
energy system in the site \(v\) in support timeframe \(y\). The limit
is defined by the parameter maximum annual buy supply limit per vertex
\(\overline{B}_{yvc}\). To satisfy this constraint, the annual usage of buy
commodity must be less than or equal to the value of the parameter buy supply
limit per vertex \(\overline{B}_{vc}\). The annual usage of buy commodity
is calculated by the sum of the products of the parameter weight \(w\) and
the parameter buy commodity source term \(\psi_{yvct}\), summed over all
modeled timesteps \(t \in T_m\). The mathematical explanation of this rule
is given in Trading with an external market.

In script BuySellPrice.py the constraint total buy rule is defined and
calculated by the following code fragment:

m.res_buy_total = pyomo.Constraint(
 m.com_tuples,
 rule=res_buy_total_rule,
 doc='total buy commodity output <= commodity.max')

def res_buy_total_rule(m, stf, sit, com, com_type):
 if com not in m.com_buy:
 return pyomo.Constraint.Skip
 else:
 # calculate total sale of commodity com
 total_consumption = 0
 for tm in m.tm:
 total_consumption += (
 m.e_co_buy[tm, stf, sit, com, com_type] * m.typeperiod['weight_typeperiod'][(stf,tm)])
 total_consumption *= m.weight
 return (total_consumption <=
 m.commodity_dict['max'][(stf, sit, com, com_type)])

Environmental Output Per Step Rule: The constraint environmental output per
step rule applies only for commodities of type “Env”
(\(c \in C_\text{env}\)). This constraint limits the amount of
environmental commodity \(c \in C_\text{env}\), that can be released to
environment by the energy system in the site \(v\) in support timeframe
\(y\) at the timestep \(t\). The limit is defined by the parameter
maximum environmental output per time step \(\overline{m}_{yvc}\). To
satisfy this constraint, the negative value of the commodity balance for the
given environmental commodity \(c \in C_\text{env}\) must be less than or
equal to the value of the parameter maximum environmental output per time step
\(\overline{m}_{vc}\), multiplied by the length of the time steps
\(\Delta t\). The mathematical explanation of this rule is given
in Minimal optimization model.

In script model.py the constraint environmental output per step rule is
defined and calculated by the following code fragment:

m.res_env_step = pyomo.Constraint(
 m.tm, m.com_tuples,
 rule=res_env_step_rule,
 doc='environmental output per step <= commodity.maxperstep')

def res_env_step_rule(m, tm, stf, sit, com, com_type):
 if com not in m.com_env:
 return pyomo.Constraint.Skip
 else:
 environmental_output = - commodity_balance(m, tm, stf, sit, com)
 return (environmental_output <=
 m.dt * m.commodity_dict['maxperhour']
 [(stf, sit, com, com_type)])

Total Environmental Output Rule: The constraint total environmental output
rule applies only for commodities of type “Env” (\(c \in C_\text{env}\)).
This constraint limits the amount of environmental commodity
\(c \in C_\text{env}\), that can be released to environment annually by the
energy system in the site \(v\) in support timeframe \(y\). The limit
is defined by the parameter maximum annual environmental output limit per
vertex \(\overline{M}_{yvc}\). To satisfy this constraint, the annual
release of environmental commodity must be less than or equal to the value of
the parameter maximum annual environmental output \(\overline{M}_{vc}\).
The annual release of environmental commodity is calculated by the sum of the
products of the parameter weight \(w\) and the negative value of commodity
balance function, summed over all modeled time steps \(t \in T_m\). The
mathematical explanation of this rule is given in Minimal optimization model.

In script model.py the constraint total environmental output rule is
defined and calculated by the following code fragment:

m.res_env_total = pyomo.Constraint(
 m.com_tuples,
 rule=res_env_total_rule,
 doc='total environmental commodity output <= commodity.max')

def res_env_total_rule(m, stf, sit, com, com_type):
 if com not in m.com_env:
 return pyomo.Constraint.Skip
 else:
 # calculate total creation of environmental commodity com
 env_output_sum = 0
 for tm in m.tm:
 env_output_sum += (- commodity_balance(m, tm, stf, sit, com)* m.typeperiod['weight_typeperiod'][(stf,tm)])
 env_output_sum *= m.weight
 return (env_output_sum <=
 m.commodity_dict['max'][(stf, sit, com, com_type)])

Demand Side Management Constraints

The DSM equations are taken from the Paper of Zerrahn and Schill “On the
representation of demand-side management in power system models”,
DOI: 10.1016/j.energy.2015.03.037 [http://dx.doi.org/10.1016/j.energy.2015.03.037].

DSM Variables Rule: The DSM variables rule defines the relation between the
up- and downshifted DSM commodities. An upshift \(\delta_{yvct}^\text{up}\)
in site \(v\) and support timeframe \(y\) of demand commodity \(c\)
in time step \(t\) can be compensated during a certain time step interval
\([t-y_{yvc}/{\Delta t}, t+y_{yvc}/{\Delta t}]\) by multiple downshifts
\(\delta_{t,tt,yvc}^\text{down}\). Here, \(y_{yvc}\) represents the
allowable delay time of downshifts in hours, which is scaled into time steps by
dividing by the timestep length \({\Delta t}\). Depending on the DSM
efficiency \(e_{yvc}\), an upshift in a DSM commodity may correspond to
multiple downshifts which sum to less than the original upshift. The
mathematical explanation of this rule is given in Demand side management.

In script dsm.py the constraint DSM variables rule is defined by the
following code fragment:

m.def_dsm_variables = pyomo.Constraint(
 m.tm, m.dsm_site_tuples,
 rule=def_dsm_variables_rule,
 doc='DSMup * efficiency factor n == DSMdo (summed)')

def def_dsm_variables_rule(m, tm, stf, sit, com):
 dsm_down_sum = 0
 for tt in dsm_time_tuples(tm,
 m.timesteps[1:],
 max(int(1 / m.dt *
 m.dsm_dict['delay'][(stf, sit, com)]), 1)):
 dsm_down_sum += m.dsm_down[tm, tt, stf, sit, com]
 return dsm_down_sum == (m.dsm_up[tm, stf, sit, com] *
 m.dsm_dict['eff'][(stf, sit, com)])

DSM Upward Rule: The DSM upshift \(\delta_{yvct}^\text{up}\) in site
\(v\) and support timeframe \(y\) of demand commodity \(c\) in time
step \(t\) is limited by the DSM maximal upshift per hour
\(\overline{K}_{yvc}^\text{up}\), multiplied by the length of the time
steps \(\Delta t\). The mathematical explanation of this rule is given in
Demand side management.

In script dsm.py the constraint DSM upward rule is defined by the
following code fragment:

m.res_dsm_upward = pyomo.Constraint(
 m.tm, m.dsm_site_tuples,
 rule=res_dsm_upward_rule,
 doc='DSMup <= Cup (threshold capacity of DSMup)')

def res_dsm_upward_rule(m, tm, stf, sit, com):
 return m.dsm_up[tm, stf, sit, com] <= (m.dt *
 m.dsm_dict['cap-max-up']
 [(stf, sit, com)])

DSM Downward Rule: The total DSM downshift
\(\delta_{t,tt,yvc}^\text{down}\) in site \(v\) and support timeframe
\(y\) of demand commodity \(c\) in time step \(t\) is limited by
the DSM maximal downshift per hour \(\overline{K}_{yvc}^\text{down}\),
multiplied by the length of the time steps \(\Delta t\). The mathematical
explanation of this rule is given in Demand side management.

In script dsm.py the constraint DSM downward rule is defined by the
following code fragment:

m.res_dsm_downward = pyomo.Constraint(
 m.tm, m.dsm_site_tuples,
 rule=res_dsm_downward_rule,
 doc='DSMdo (summed) <= Cdo (threshold capacity of DSMdo)')

def res_dsm_downward_rule(m, tm, stf, sit, com):
 dsm_down_sum = 0
 for t in dsm_time_tuples(tm,
 m.timesteps[1:],
 max(int(1 / m.dt *
 m.dsm_dict['delay'][(stf, sit, com)]), 1)):
 dsm_down_sum += m.dsm_down[t, tm, stf, sit, com]
 return dsm_down_sum <= (m.dt * m.dsm_dict['cap-max-do'][(stf, sit, com)])

DSM Maximum Rule: The DSM maximum rule limits the shift of one DSM unit in
site \(v\) in support timeframe \(y\) of demand commodity \(c\) in
time step \(t\). The mathematical explanation of this rule is given in
Demand side management.

In script dsm.py the constraint DSM maximum rule is defined by the
following code fragment:

m.res_dsm_maximum = pyomo.Constraint(
 m.tm, m.dsm_site_tuples,
 rule=res_dsm_maximum_rule,
 doc='DSMup + DSMdo (summed) <= max(Cup,Cdo)')

def res_dsm_maximum_rule(m, tm, stf, sit, com):
 dsm_down_sum = 0
 for t in dsm_time_tuples(tm,
 m.timesteps[1:],
 max(int(1 / m.dt *
 m.dsm_dict['delay'][(stf, sit, com)]), 1)):
 dsm_down_sum += m.dsm_down[t, tm, stf, sit, com]

 max_dsm_limit = m.dt * max(m.dsm_dict['cap-max-up'][(stf, sit, com)],
 m.dsm_dict['cap-max-do'][(stf, sit, com)])
 return m.dsm_up[tm, stf, sit, com] + dsm_down_sum <= max_dsm_limit

DSM Recovery Rule: The DSM recovery rule limits the upshift in site
\(v\) and support timeframe \(y\) of demand commodity \(c\) during
a set recovery period \(o_{yvc}\). Since the recovery period
\(o_{yvc}\) is input as hours, it is scaled into time steps by dividing it
by the length of the time steps \(\Delta t\). The mathematical explanation
of this rule is given in Demand side management.

In script dsm.py the constraint DSM Recovery rule is defined by the
following code fragment:

m.res_dsm_recovery = pyomo.Constraint(
 m.tm, m.dsm_site_tuples,
 rule=res_dsm_recovery_rule,
 doc='DSMup(t, t + recovery time R) <= Cup * delay time L')

def res_dsm_recovery_rule(m, tm, stf, sit, com):
 dsm_up_sum = 0
 for t in dsm_recovery(tm,
 m.timesteps[1:],
 max(int(1 / m.dt *
 m.dsm_dict['recov'][(stf, sit, com)]), 1)):
 dsm_up_sum += m.dsm_up[t, stf, sit, com]
 return dsm_up_sum <= (m.dsm_dict['cap-max-up'][(stf, sit, com)] *
 m.dsm_dict['delay'][(stf, sit, com)])

Global Environmental Constraint

Global CO2 Limit Rule: The constraint global CO2 limit rule applies to the
whole energy system in one support timeframe \(y\), that is to say it
applies to every site and timestep. This constraints restricts the total amount
of CO2 to environment. The constraint states that the sum of released CO2
across all sites \(v\in V\) and timesteps \(t \in t_m\) must be less
than or equal to the parameter maximum global annual CO2 emission limit
\(\overline{L}_{CO_{2},y}\), where the amount of released CO2 in a single
site \(v\) at a single timestep \(t\) is calculated by the product of
commodity balance of environmental commodities \(\mathrm{CB}(y,v,CO_{2},t)\)
and the parameter weight \(w\). This constraint is skipped if the value of
the parameter \(\overline{L}_{CO_{2}}\) is set to inf. The mathematical
explanation of this rule is given in Minimal optimization model.

In script model.py the constraint annual global CO2 limit rule is defined
and calculated by the following code fragment:

def res_global_co2_limit_rule(m, stf):
 if math.isinf(m.global_prop_dict['value'][stf, 'CO2 limit']):
 return pyomo.Constraint.Skip
 elif m.global_prop_dict['value'][stf, 'CO2 limit'] >= 0:
 co2_output_sum = 0
 for tm in m.tm:
 for sit in m.sit:
 # minus because negative commodity_balance represents creation
 # of that commodity.
 co2_output_sum += (- commodity_balance(m, tm, stf, sit, 'CO2')* m.typeperiod['weight_typeperiod'][(stf,tm)])

 # scaling to annual output (cf. definition of m.weight)
 co2_output_sum *= m.weight
 return (co2_output_sum <= m.global_prop_dict['value']
 [stf, 'CO2 limit'])
 else:
 return pyomo.Constraint.Skip

Global CO2 Budget Rule: The constraint global CO2 budget rule applies to
the whole energy system over the entire modeling horizon, that is to say it
applies to every support timeframe, site and timestep. This constraints
restricts the total amount of CO2 to environment. The constraint states that
the sum of released CO2 across all support timeframe \(y\in Y\), sites
\(v\in V\) and timesteps \(t \in t_m\) must be less than or equal to
the parameter maximum global CO2 emission budget
\(\overline{\overline{L}}_{CO_{2},y}\), where the amount of released CO2 in
a single support timeframe \(y\) in a single site \(v\) and at a single
timestep \(t\) is calculated by the product of the commodity balance of
environmental commodities \(\mathrm{CB}(y,v,CO_{2},t)\) and the parameter
weight \(w\). This constraint is skipped if the value of the parameter
\(\overline{\overline{L}}_{CO_{2}}\) is set to inf. The mathematical
explanation of this rule is given in Intertemporal optimization model.

In script model.py the constraint global CO2 budget is defined and
calculated by the following code fragment:

def res_global_co2_budget_rule(m):
 if math.isinf(m.global_prop_dict['value'][min(m.stf_list), 'CO2 budget']):
 return pyomo.Constraint.Skip
 elif (m.global_prop_dict['value'][min(m.stf_list), 'CO2 budget']) >= 0:
 co2_output_sum = 0
 for stf in m.stf:
 for tm in m.tm:
 for sit in m.sit:
 # minus because negative commodity_balance represents
 # creation of that commodity.
 co2_output_sum += (- commodity_balance
 (m, tm, stf, sit, 'CO2') *
 m.typeperiod['weight_typeperiod'][(stf,tm)] *
 m.weight *
 stf_dist(stf, m))

 return (co2_output_sum <=
 m.global_prop_dict['value'][min(m.stf), 'CO2 budget'])
 else:
 return pyomo.Constraint.Skip

Process Constraints

Process Capacity Rule: The constraint process capacity rule defines the
variable total process capacity \(\kappa_{yvp}\). The variable total
process capacity is defined by the constraint as the sum of the parameter
process capacity installed \(K_{vp}\) and the variable new process
capacity \(\hat{\kappa}_{yvp}\). The mathematical explanation of this rule
is given in Minimal optimization model.

In script model.py the constraint process capacity rule is defined and
calculated by the following code fragment:

m.def_process_capacity = pyomo.Constraint(
 m.pro_tuples,
 rule=def_process_capacity_rule,
 doc='total process capacity = inst-cap + new capacity')

def def_process_capacity_rule(m, stf, sit, pro):
 if m.mode['int']:
 if (sit, pro, stf) in m.inst_pro_tuples:
 if (sit, pro, min(m.stf)) in m.pro_const_cap_dict:
 cap_pro = m.process_dict['inst-cap'][(stf, sit, pro)]
 else:
 cap_pro = \
 (sum(m.cap_pro_new[stf_built, sit, pro]
 for stf_built in m.stf
 if (sit, pro, stf_built, stf)
 in m.operational_pro_tuples) +
 m.process_dict['inst-cap'][(min(m.stf), sit, pro)])
 else:
 cap_pro = sum(
 m.cap_pro_new[stf_built, sit, pro]
 for stf_built in m.stf
 if (sit, pro, stf_built, stf) in m.operational_pro_tuples)
 else:
 if (sit, pro, stf) in m.pro_const_cap_dict:
 cap_pro = m.process_dict['inst-cap'][(stf, sit, pro)]
 else:
 cap_pro = (m.cap_pro_new[stf, sit, pro] +
 m.process_dict['inst-cap'][(stf, sit, pro)])
 return cap_pro

Process Input Rule: The constraint process input rule defines the variable
process input commodity flow \(\epsilon_{yvcpt}^\text{in}\). The variable
process input commodity flow is defined by the constraint as the product of the
variable process throughput \(\tau_{yvpt}\) and the parameter process input
ratio \(r_{ypc}^\text{in}\).The mathematical explanation of this rule is
given in Minimal optimization model.

In script model.py the constraint process input rule is defined and
calculated by the following code fragment:

m.def_process_input = pyomo.Constraint(
 m.tm, m.pro_input_tuples - m.pro_partial_input_tuples,
 rule=def_process_input_rule,
 doc='process input = process throughput * input ratio')

def def_process_input_rule(m, tm, stf, sit, pro, com):
 return (m.e_pro_in[tm, stf, sit, pro, com] ==
 m.tau_pro[tm, stf, sit, pro] * m.r_in_dict[(stf, pro, com)])

Process Output Rule: The constraint process output rule defines the variable
process output commodity flow \(\epsilon_{yvcpt}^\text{out}\). The variable
process output commodity flow is defined by the constraint as the product of
the variable process throughput \(\tau_{yvpt}\) and the parameter process
output ratio \(r_{ypc}^\text{out}\). The mathematical explanation of this
rule is given in Minimal optimization model.

In script model.py the constraint process output rule is defined and
calculated by the following code fragment:

m.def_process_output = pyomo.Constraint(
 m.tm, (m.pro_output_tuples - m.pro_partial_output_tuples -
 m.pro_timevar_output_tuples),
 rule=def_process_output_rule,
 doc='process output = process throughput * output ratio')

def def_process_output_rule(m, tm, stf, sit, pro, com):
 if com == 'electricity-reactive':
 return pyomo.Constraint.Skip
 else:
 return (m.e_pro_out[tm, stf, sit, pro, com] ==
 m.tau_pro[tm, stf, sit, pro] * m.r_out_dict[(stf, pro, com)])

Intermittent Supply Rule: The constraint intermittent supply rule defines
the variable process input commodity flow \(\epsilon_{yvcpt}^\text{in}\)
for processes \(p\) that use a supply intermittent commodity
\(c \in C_\text{sup}\) as input. Therefore this constraint only applies if
a commodity is an intermittent supply commodity \(c \in C_\text{sup}\). The
variable process input commodity flow is defined by the constraint as the
product of the variable total process capacity \(\kappa_{yvp}\) and the
parameter intermittent supply capacity factor \(s_{yvct}\), scaled by the
size of the time steps :math: Delta t. The mathematical explanation of this
rule is given in Minimal optimization model.

In script model.py the constraint intermittent supply rule is defined and
calculated by the following code fragment:

m.def_intermittent_supply = pyomo.Constraint(
 m.tm, m.pro_input_tuples,
 rule=def_intermittent_supply_rule,
 doc='process output = process capacity * supim timeseries')

def def_intermittent_supply_rule(m, tm, stf, sit, pro, coin):
 if coin in m.com_supim:
 return (m.e_pro_in[tm, stf, sit, pro, coin] ==
 m.cap_pro[stf, sit, pro] * m.supim_dict[(sit, coin)]
 [(stf, tm)] * m.dt)
 else:
 return pyomo.Constraint.Skip

Process Throughput By Capacity Rule: The constraint process throughput by
capacity rule limits the variable process throughput \(\tau_{yvpt}\). This
constraint prevents processes from exceeding their capacity. The constraint
states that the variable process throughput must be less than or equal to the
variable total process capacity \(\kappa_{yvp}\), scaled by the size
of the time steps :math: Delta t. The mathematical explanation of this rule
is given in Minimal optimization model.

In script model.py the constraint process throughput by capacity rule is
defined and calculated by the following code fragment:

m.res_process_throughput_by_capacity = pyomo.Constraint(
 m.tm, m.pro_tuples,
 rule=res_process_throughput_by_capacity_rule,
 doc='process throughput <= total process capacity')

def res_process_throughput_by_capacity_rule(m, tm, stf, sit, pro):
 return (m.tau_pro[tm, stf, sit, pro] <= m.dt * m.cap_pro[stf, sit, pro])

Process Throughput Gradient Rule: The constraint process throughput
gradient rule limits the process power gradient
\(\left| \tau_{yvpt} - \tau_{yvp(t-1)} \right|\). This constraint prevents
processes from exceeding their maximal possible change in activity from one
time step to the next. The constraint states that the absolute power gradient must
be less than or equal to the maximal power ramp up gradient
\(overline{PG}_{yvp}^\text{up}\) parameter when increasing power or to the
maximal power ramp down gradient \(\overline{PG}_{yvp}^\text{up}\) parameter
(both scaled to capacity and by time step duration). The mathematical
explanation of this rule is given in Minimal optimization model.

In script model.py the constraint process throughput gradient rule is split
into 2 parts and defined and calculated by the following code fragments:

m.res_process_rampdown = pyomo.Constraint(
 m.tm, m.pro_rampdowngrad_tuples,
 rule=res_process_rampdown_rule,
 doc='throughput may not decrease faster than maximal ramp down gradient')
m.res_process_rampup = pyomo.Constraint(
 m.tm, m.pro_rampupgrad_tuples,
 rule=res_process_rampup_rule,
 doc='throughput may not increase faster than maximal ramp up gradient')

def res_process_rampdown_rule(m, t, stf, sit, pro):
 return (m.tau_pro[t - 1, stf, sit, pro] -
 m.cap_pro[stf, sit, pro] *
 m.process_dict['ramp-down-grad'][(stf, sit, pro)] * m.dt <=
 m.tau_pro[t, stf, sit, pro])

def res_process_rampup_rule(m, t, stf, sit, pro):
 return (m.tau_pro[t - 1, stf, sit, pro] +
 m.cap_pro[stf, sit, pro] *
 m.process_dict['ramp-up-grad'][(stf, sit, pro)] * m.dt >=
 m.tau_pro[t, stf, sit, pro])

Process Capacity Limit Rule: The constraint process capacity limit rule
limits the variable total process capacity \(\kappa_{yvp}\). This
constraint restricts a process \(p\) in a site \(v\) and support
timeframe \(y\) from having more total capacity than an upper bound and
having less than a lower bound. The constraint states that the variable total
process capacity \(\kappa_{yvp}\) must be greater than or equal to the
parameter process capacity lower bound \(\underline{K}_{yvp}\) and less
than or equal to the parameter process capacity upper bound
\(\overline{K}_{yvp}\). The mathematical explanation of this rule is given
in Minimal optimization model.

In script model.py the constraint process capacity limit rule is defined
and calculated by the following code fragment:

m.res_process_capacity = pyomo.Constraint(
 m.pro_tuples,
 rule=res_process_capacity_rule,
 doc='process.cap-lo <= total process capacity <= process.cap-up')

def res_process_capacity_rule(m, stf, sit, pro):
 return (m.process_dict['cap-lo'][stf, sit, pro],
 m.cap_pro[stf, sit, pro],
 m.process_dict['cap-up'][stf, sit, pro])

Sell Buy Symmetry Rule: The constraint sell buy symmetry rule defines the
total process capacity \(\kappa_{yvp}\) of a process \(p\) in a site
\(v\) and support timeframe \(y\) that uses either sell or buy
commodities (\(c \in C_\text{sell} \vee C_\text{buy}\)), therefore this
constraint only applies to processes that use sell or buy commodities. The
constraint states that the total process capacities \(\kappa_{yvp}\) of
processes that use complementary buy and sell commodities must be equal. Buy
and sell commodities are complementary, when a commodity \(c\) is an output
of a process where the buy commodity is an input, and at the same time the
commodity \(c\) is an input commodity of a process where the sell commodity
is an output. The mathematical explanation of this rule is given in
Trading with an external market.

In script BuySellPrice.py the constraint sell buy symmetry rule is defined
and calculated by the following code fragment:

m.res_sell_buy_symmetry = pyomo.Constraint(
 m.pro_input_tuples,
 rule=res_sell_buy_symmetry_rule,
 doc='total power connection capacity must be symmetric in both '
 'directions')

def res_sell_buy_symmetry_rule(m, stf, sit_in, pro_in, coin):
 # constraint only for sell and buy processes
 # and the processes must be in the same site
 if coin in m.com_buy:
 sell_pro = search_sell_buy_tuple(m, stf, sit_in, pro_in, coin)
 if sell_pro is None:
 return pyomo.Constraint.Skip
 else:
 return (m.cap_pro[stf, sit_in, pro_in] ==
 m.cap_pro[stf, sit_in, sell_pro])
 else:
 return pyomo.Constraint.Skip

Process time variable output rule: This constraint multiplies the process
efficiency with the parameter time series \(f_{yvpt}^\text{out}\). The
process output for all commodities is thus manipulated depending on time. This
constraint is not valid for environmental commodities since these are typically
linked to an input commodity flow rather than an output commodity flow. The
mathematical explanation of this rule is given in Advanced Processes.

In script AdvancedProcesses.py the constraint process time variable output rule is
defined and calculated by the following code fragment:

m.def_process_timevar_output = pyomo.Constraint(
 m.tm, m.pro_timevar_output_tuples,
 rule=def_pro_timevar_output_rule,
 doc='e_pro_out = tau_pro * r_out * eff_factor')

def def_pro_timevar_output_rule(m, tm, stf, sit, pro, com):
 return (m.e_pro_out[tm, stf, sit, pro, com] ==
 m.tau_pro[tm, stf, sit, pro] * m.r_out_dict[(stf, pro, com)] *
 m.eff_factor_dict[(sit, pro)][stf, tm])

Process Constraints for partial operation

The process constraints for partial operation described in the following are
only activated if in the input file there is a value set in the column
ratio-min for an input commodity or for an output commodity in the
process-commodity sheet for the process in question.

It is important to understand that this partial load formulation
can only work if its accompanied by a non-zero value for the minimum partial
load fraction \(\underline{P}_{yvp}\).

Without activating the on/off feature in the process sheet, the partial load
feature can only be used for processes that are never meant to be shut down and
are always operating only between a given part load state and full load. Please
see the next chapter for the combined on/off and partial operation features.

Throughput by Min fraction Rule: This constraint limits the minimal
operational state of a process downward, making sure that the minimal part load
fraction is honored. The mathematical explanation of this rule is given in
Advanced Processes.

In script AdvancedProcesses.py this constraint is defined and calculated by the
following code fragment:

m.res_throughput_by_capacity_min = pyomo.Constraint(
 m.tm, m.pro_partial_tuples,
 rule=res_throughput_by_capacity_min_rule,
 doc='cap_pro * min-fraction <= tau_pro')

def res_throughput_by_capacity_min_rule(m, tm, stf, sit, pro):
 return (m.tau_pro[tm, stf, sit, pro] >=
 m.cap_pro[stf, sit, pro] *
 m.process_dict['min-fraction'][(stf, sit, pro)] * m.dt)

Partial Process Input Rule: The link between operational state
\(tau_{yvpt}\) and commodity in/outputs is changed from a simple
linear behavior to a more complex one. Instead of constant in- and output
ratios these are now interpolated linearly between the value for full operation
\(r^{\text{in/out}}_{yvp}\) at full load and the minimum in/output ratios
\(\underline{r}^{\text{in/out}}_{yvp}\) at the minimum operation point. The
mathematical explanation of this rule is given in Advanced Processes.

In script model.py this expression is written in the following way for the
input ratio (and analogous for the output ratios):

m.def_partial_process_input = pyomo.Constraint(
 m.tm, m.pro_partial_input_tuples,
 rule=def_partial_process_input_rule,
 doc='e_pro_in = cap_pro * min_fraction * (r - R) / (1 - min_fraction)'
 '+ tau_pro * (R - min_fraction * r) / (1 - min_fraction)')

def def_partial_process_input_rule(m, tm, stf, sit, pro, com):
 # input ratio at maximum operation point
 R = m.r_in_dict[(stf, pro, com)]
 # input ratio at lowest operation point
 r = m.r_in_min_fraction_dict[stf, pro, com]
 min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]

 online_factor = min_fraction * (r - R) / (1 - min_fraction)
 throughput_factor = (R - min_fraction * r) / (1 - min_fraction)
 return (m.e_pro_in[tm, stf, sit, pro, com] ==
 m.dt * m.cap_pro[stf, sit, pro] * online_factor +
 m.tau_pro[tm, stf, sit, pro] * throughput_factor)

In case of a process where also a time variable output efficiency is given the
code for the output changes to.

m.def_process_partial_timevar_output = pyomo.Constraint(
 m.tm, m.pro_partial_output_tuples & m.pro_timevar_output_tuples,
 rule=def_pro_partial_timevar_output_rule,
 doc='e_pro_out = tau_pro * r_out * eff_factor')

def def_pro_partial_timevar_output_rule(m, tm, stf, sit, pro, com):
input ratio at maximum operation point
 R = m.r_out_dict[stf, pro, com]
 # input ratio at lowest operation point
 r = m.r_out_min_fraction_dict[stf, pro, com]
 min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]

 online_factor = min_fraction * (r - R) / (1 - min_fraction)
 throughput_factor = (R - min_fraction * r) / (1 - min_fraction)
 return (m.e_pro_out[tm, stf, sit, pro, com] ==
 (m.dt * m.cap_pro[stf, sit, pro] * online_factor +
 m.tau_pro[tm, stf, sit, pro] * throughput_factor) *
 m.eff_factor_dict[(sit, pro)][stf, tm])

Process Constraints for the on/off feature

The process constraints for the on/off feature described in this chapter are
only activated if, in the input file, the value „1” is set is set in the
column on-off for a process in the process sheet.

Process Throughput and On/Off Coupling Rule: These two constraints couple
the variables process throughput \(\tau_{yvpt}\) and process on/off marker
\(\omicron_{yvpt}\). This is done by turning the marker on (boolean value 1)
when the throughput is greater than the minimum load of the process.The
mathematical explanation of this rule is given in Advanced Processes.

In script AdvancedProcesses.py this constraint is defined and calculated by the
following code fragment:

m.res_throughput_by_on_off_lower = pyomo.Constraint(
 m.tm, m.pro_on_off_tuples | m.pro_partial_on_off_tuples,
 rule=res_throughput_by_on_off_lower_rule,
 doc='tau_pro >= min-fraction * cap_pro * on_off')
m.res_throughput_by_on_off_upper = pyomo.Constraint(
 m.tm, m.pro_on_off_tuples | m.pro_partial_on_off_tuples,
 rule=res_throughput_by_on_off_upper_rule,
 doc='tau_pro <='
 'cap_pro * on_off + min-fraction * cap_pro * (1 - on_off)')

def res_throughput_by_on_off_lower_rule(m, tm, stf, sit, pro):
 return (m.tau_pro[tm, stf, sit, pro] >=
 m.min_fraction_dict[stf, sit, pro] * m.cap_pro[stf, sit, pro] *
 m.dt * m.on_off[tm, stf, sit, pro])

def res_throughput_by_on_off_upper_rule(m, tm, stf, sit, pro):
 return (m.tau_pro[tm, stf, sit, pro] <=
 m.cap_pro[stf, sit, pro] * m.dt * m.on_off[tm, stf, sit, pro] +
 m.min_fraction_dict[stf, sit, pro] * m.cap_pro[stf, sit, pro] *
 m.dt * (1 - m.on_off[tm, stf, sit, pro]))

Process On/Off Output Rule: This constraint modifies the process output
commodity flow \(\epsilon_{yvcpt}^\text{out}\) when compared to the
original version without the on/off feature in two ways by differentiating
between the output commodity type \(q\). When the commodity type
is Env, the output remains the same as without the on/off feature. Otherwise,
the original output equation is multiplied with the variable process on/off
marker \(\omicron_{yvpt}\). The mathematical explanation of this rule
is given in Advanced Processes.

In script AdvancedProcesses.py the constraint process on/off output rule
is defined and calculated by the following code fragment:

m.def_process_on_off_output = pyomo.Constraint(
 m.tm, m.pro_on_off_output_tuples - m.pro_timevar_output_tuples -
 m.pro_partial_on_off_output_tuples,
 rule=def_process_on_off_output_rule,
 doc='e_pro_out = tau_pro * r_out * on_off')

def def_process_on_off_output_rule(m, tm, stf, sit, pro, com):
 r = m.r_out_dict[(stf, pro, com)]
 if com in m.com_env:
 return (m.e_pro_out[tm, stf, sit, pro, com] ==
 m.tau_pro[tm, stf, sit, pro] * r)
 else:
 return (m.e_pro_out[tm, stf, sit, pro, com] ==
 m.tau_pro[tm, stf, sit, pro] * r * m.on_off[tm, stf, sit, pro])

In the case of a process where also a time variable output efficiency is given the
code for the output changes to:

m.def_process_on_off_timevar_output = pyomo.Constraint(
 m.tm, m.pro_timevar_output_tuples & m.pro_on_off_output_tuples -
 m.pro_partial_on_off_output_tuples,
 rule=def_process_on_off_timevar_output_rule,
 doc='e_pro_out == tau_pro * r_out * on_off * eff_factor')

def def_process_on_off_timevar_output_rule(m, tm, stf, sit, pro, com):
 return (m.e_pro_out[tm, stf, sit, pro, com] ==
 m.tau_pro[tm, stf, sit, pro] * m.r_out_dict[(stf, pro, com)] *
 m.on_off[tm, stf, sit, pro] *
 m.eff_factor_dict[(sit, pro)][stf, tm])

Process On/Off Partial Input Rule: This constraint modifies the process input
commodity flow \(\epsilon_{yvcpt}^\text{in}\) when compared to the
original partial operation version without the on/off feature in by differentiating
between two possible input functions, depending on the process on/off marker
\(\omicron_{yvpt}\). When the marker is on, the input function is the same as
in the case of simple partial operation. When the marker is off, the input function
becomes the product of the variable process throughput \(\tau_{yvpt}\) and the
parameter process partial input ratio \(\underline{r}_{ypc}^\text{in}\).
the output commodity type \(q\). When the commodity type. The mathematical
explanation of this rule is given in Advanced Processes.

In script AdvancedProcesses.py the constraint process on/off output rule
is defined and calculated by the following code fragment:

m.def_partial_process_on_off_input = pyomo.Constraint(
 m.tm, m.pro_partial_on_off_input_tuples,
 rule=def_partial_process_on_off_input_rule,
 doc='e_pro_in = '
 ' (cap_pro * min_fraction * (r - R) / (1 - min_fraction)'
 ' + tau_pro * (R - min_fraction * r) / (1 - min_fraction))')

def def_partial_process_on_off_input_rule(m, tm, stf, sit, pro, com):
 # input ratio at maximum operation point
 R = m.r_in_dict[(stf, pro, com)]
 # input ratio at lowest operation point
 r = m.r_in_min_fraction_dict[stf, pro, com]
 min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]

 online_factor = min_fraction * (r - R) / (1 - min_fraction)
 throughput_factor = (R - min_fraction * r) / (1 - min_fraction)
 return (m.e_pro_in[tm, stf, sit, pro, com] ==
 (m.dt * m.cap_pro[stf, sit, pro] * online_factor +
 m.tau_pro[tm, stf, sit, pro] * throughput_factor) *
 m.on_off[tm, stf, sit, pro] +
 m.tau_pro[tm, stf, sit, pro] * r *
 (1 - m.on_off[tm, stf, sit, pro]))

Process On/Off Partial Output Rule: This constraint modifies the process output
commodity flow \(\epsilon_{yvcpt}^\text{out}\) when compared to the
original partial operation version without the on/off feature in two ways by differentiating
between the output commodity type \(q\). When the commodity type
is not Env, the output remains the same as for the partial operation without the on/off
feature. Otherwise, the original output equation is changes depending on the variable process on/off
marker \(\omicron_{yvpt}\). When the marker is off, the output function
becomes the product of the variable process throughput \(\tau_{yvpt}\) and the
parameter process partial output ratio \(\underline{r}_{ypc}^\text{out}\). When the marker is on,
the output function for Env type commodities remains the same as for the partial operation
without the on/off feature. The mathematical explanation of this rule is given in Advanced Processes.

m.def_partial_process_on_off_output = pyomo.Constraint(
 m.tm, m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
 rule=def_partial_process_on_off_output_rule,
 doc='e_pro_out = on_off *'
 ' (cap_pro * min_fraction * (r - R) / (1 - min_fraction) '
 '+ tau_pro * (R - min_fraction * r) / (1 - min_fraction)) ')

def def_partial_process_on_off_output_rule(m, tm, stf, sit, pro, com):
 # input ratio at maximum operation point
 R = m.r_out_dict[stf, pro, com]
 # input ratio at lowest operation point
 r = m.r_out_min_fraction_dict[stf, pro, com]
 min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]
 on_off = m.on_off[tm, stf, sit, pro]

 online_factor = min_fraction * (r - R) / (1 - min_fraction)
 throughput_factor = (R - min_fraction * r) / (1 - min_fraction)
 if com in m.com_env:
 return(m.e_pro_out[tm, stf, sit, pro, com] ==
 (m.dt * m.cap_pro[stf, sit, pro] * online_factor +
 m.tau_pro[tm, stf, sit, pro] * throughput_factor) * on_off +
 m.tau_pro[tm, stf, sit, pro] * r *
 (1 - on_off))
 else:
 return (m.e_pro_out[tm, stf, sit, pro, com] ==
 (m.dt * m.cap_pro[stf, sit, pro] * online_factor +
 m.tau_pro[tm, stf, sit, pro] * throughput_factor) * on_off)

In the case of a process where also a time variable output efficiency is given the
code for the output changes to:

m.def_process_partial_on_off_timevar_output = pyomo.Constraint(
 m.tm, m.pro_partial_on_off_output_tuples & m.pro_timevar_output_tuples,
 rule=def_pro_partial_on_off_timevar_output_rule,
 doc='e_pro_out == tau_pro * r_out * on_off * eff_factor')

def def_partial_process_on_off_output_rule(m, tm, stf, sit, pro, com):
 # input ratio at maximum operation point
 R = m.r_out_dict[stf, pro, com]
 # input ratio at lowest operation point
 r = m.r_out_min_fraction_dict[stf, pro, com]
 min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]
 on_off = m.on_off[tm, stf, sit, pro]

 online_factor = min_fraction * (r - R) / (1 - min_fraction)
 throughput_factor = (R - min_fraction * r) / (1 - min_fraction)
 if com in m.com_env:
 return(m.e_pro_out[tm, stf, sit, pro, com] ==
 (m.dt * m.cap_pro[stf, sit, pro] * online_factor +
 m.tau_pro[tm, stf, sit, pro] * throughput_factor) * on_off +
 m.tau_pro[tm, stf, sit, pro] * r *
 (1 - on_off))
 else:
 return (m.e_pro_out[tm, stf, sit, pro, com] ==
 (m.dt * m.cap_pro[stf, sit, pro] * online_factor +
 m.tau_pro[tm, stf, sit, pro] * throughput_factor) * on_off)

Process Starting Ramp-up Rule: This constraint replaces the process
throughput ramping rule when the parameter process starting time
\(\overline{ST}_{yvp}^\text{start}\) is defined in the input
process sheet. This is done only until the variable process throughput
\(\tau_{yvpt}\) reaches the minimum load value and only while increasing
the process throughput \(\tau_{yvpt}\). The mathematical explanation of
this rule is given in Advanced Processes.

In script AdvancedProcesses.py the constraint process starting ramp-up rule
is defined and calculated by the following code fragment:

m.res_starting_rampup = pyomo.Constraint(
 m.tm, m.pro_rampup_start_tuples,
 rule=res_starting_rampup_rule,
 doc='throughput may not increase faster than maximal starting ramp up '
 'gradient until reaching minimum capacity')

def res_starting_rampup_rule(m, t, stf, sit, pro):
 min_fraction = m.min_fraction_dict[stf, sit, pro]
 start_time = m.process_dict['start-time'][(stf, sit, pro)]
 starting_ramp =min_fraction / start_time
 return (m.tau_pro[t - 1, stf, sit, pro] +
 m.cap_pro[stf, sit, pro] *
 m.process_dict['ramp-up-grad'][(stf, sit, pro)] * m.dt *
 m.on_off[t - 1, stf, sit, pro] +
 m.cap_pro[stf, sit, pro] *
 starting_ramp * m.dt *
 (1 - m.on_off[t - 1, stf, sit, pro])
 >=
 m.tau_pro[t, stf, sit, pro])

Process Output Ramping Rule: These constraints act as a limiter for the
process output \(\epsilon_{yvcpt}^\text{out}\) with the on/off feature
because the process on/off marker \(\omicron_{yvpt}\) can be both on and off
in the minimum load point. There are three possible cases, as follows, defined in
the script AdvanceProcesses.py. The mathematical explanation of this rule is
given in Advanced Processes

Case I: The parameter process minimum load fraction \(\underline{P}_{yvp}\)
is greater than the parameter process maximum power ramp up gradient
\(\overline{PG}_{yvp}^\text{up}\) and is divisible with it. It is defined
and calculated by the following code fragment:

m.res_output_minfraction_rampup = pyomo.Constraint(
 m.tm, m.pro_rampup_divides_minfraction_output_tuples -
 m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
 rule=res_output_minfraction_rampup_rule,
 doc='Output may not increase faster than the minimal working capacity')

def res_output_minfraction_rampup_rule(m, tm, stf, sit, pro, com):
 if tm != m.timesteps[1]:
 return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
 m.cap_pro[stf, sit, pro] * m.dt *
 m.process_dict['min-fraction'][(stf, sit, pro)] *
 m.r_out_dict[(stf, pro, com)] >=
 m.e_pro_out[tm, stf, sit, pro, com])
 else:
 return pyomo.Constraint.Skip

If the process has partial operation, the code changes to:

m.res_partial_output_minfraction_rampup = pyomo.Constraint(
 m.tm, m.pro_rampup_divides_minfraction_output_tuples &
 m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
 rule=res_partial_output_minfraction_rampup_rule,
 doc='Output may not increase faster than the minimal working capacity')

def res_partial_output_minfraction_rampup_rule(m, tm, stf, sit, pro, com):
 if tm != m.timesteps[1]:
 return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
 m.cap_pro[stf, sit, pro] * m.dt *
 m.process_dict['min-fraction'][(stf, sit, pro)] *
 m.r_out_min_fraction_dict[(stf, pro, com)] >=
 m.e_pro_out[tm, stf, sit, pro, com])
 else:
 return pyomo.Constraint.Skip

If the process has time variable efficiency, the code changes to:

m.res_timevar_output_minfraction_rampup = pyomo.Constraint(
 m.tm, m.pro_rampup_divides_minfraction_output_tuples &
 m.pro_timevar_output_tuples - m.pro_partial_on_off_output_tuples,
 rule=res_timevar_output_minfraction_rampup_rule,
 doc='Output may not increase faster than the minimal working capacity')

def res_timevar_output_minfraction_rampup_rule(m, tm, stf, sit, pro, com):
 if tm != m.timesteps[1]:
 return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
 m.cap_pro[stf, sit, pro] * m.dt *
 m.process_dict['min-fraction'][(stf, sit, pro)] *
 m.r_out_dict[(stf, pro, com)] *
 m.eff_factor_dict[(sit, pro)][stf, tm] >=
 m.e_pro_out[tm, stf, sit, pro, com])
 else:
 return pyomo.Constraint.Skip

If the process has both partial operation and time variable efficiency, the code changes to:

m.res_partial_timevar_output_minfraction_rampup = pyomo.Constraint(
 m.tm, m.pro_rampup_divides_minfraction_output_tuples &
 m.pro_partial_on_off_output_tuples & m.pro_timevar_output_tuples,
 rule=res_partial_timevar_output_minfraction_rampup_rule,
 doc='Output may not increase faster than the minimal working capacity')

def res_partial_timevar_output_minfraction_rampup_rule(m, tm, stf, sit, pro, com):
 if tm != m.timesteps[1]:
 return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
 m.cap_pro[stf, sit, pro] * m.dt *
 m.process_dict['min-fraction'][(stf, sit, pro)] *
 m.r_out_min_fraction_dict[(stf, pro, com)] *
 m.eff_factor_dict[(sit, pro)][stf, tm] >=
 m.e_pro_out[tm, stf, sit, pro, com])
 else:
 return pyomo.Constraint.Skip

Case II: The parameter process minimum load fraction \(\underline{P}_{yvp}\)
is greater than the parameter process maximum power ramp up gradient
\(\overline{PG}_{yvp}^\text{up}\), but is not divisible with it. It is defined
and calculated by the following code fragment:

m.res_output_minfraction_rampup_rampup = pyomo.Constraint(
 m.tm, m.pro_rampup_not_divides_minfraction_output_tuples -
 m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
 rule=res_output_minfraction_rampup_rampup_rule,
 doc='Output may not increase faster than the first multiple of the'
 'ramping up gradient greater than the minimal working capacity')

def res_output_minfraction_rampup_rampup_rule(m, tm, stf, sit, pro, com):
 ramp_up = m.process_dict['ramp-up-grad'][(stf, sit, pro)]
 min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]

 first_output_value = (math.floor(min_fraction / ramp_up) + 1) * ramp_up
 if tm != m.timesteps[1]:
 return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
 m.cap_pro[stf, sit, pro] * m.dt *
 first_output_value *
 m.r_out_dict[(stf, pro, com)] >=
 m.e_pro_out[tm, stf, sit, pro, com])
 else:
 return pyomo.Constraint.Skip

If the process has partial operation, the code changes to:

m.res_partial_output_minfraction_rampup_rampup = pyomo.Constraint(
 m.tm, m.pro_rampup_not_divides_minfraction_output_tuples &
 m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
 rule=res_partial_output_minfraction_rampup_rampup_rule,
 doc='Output may not increase faster than the first multiple of the'
 'ramping up gradient greater than the minimal working capacity')

def res_partial_output_minfraction_rampup_rampup_rule(m, tm, stf, sit, pro, com):
 ramp_up = m.process_dict['ramp-up-grad'][(stf, sit, pro)]
 min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]

 first_output_value = (math.floor(min_fraction / ramp_up) + 1) * ramp_up
 if tm != m.timesteps[1]:
 return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
 m.cap_pro[stf, sit, pro] * m.dt *
 first_output_value *
 m.r_out_min_fraction_dict[(stf, pro, com)] >=
 m.e_pro_out[tm, stf, sit, pro, com])
 else:
 return pyomo.Constraint.Skip

If the process has time variable efficiency, the code changes to:

m.res_timevar_output_minfraction_rampup_rampup = pyomo.Constraint(
 m.tm, m.pro_rampup_not_divides_minfraction_output_tuples &
 m.pro_timevar_output_tuples - m.pro_partial_on_off_output_tuples,
 rule=res_timevar_output_minfraction_rampup_rampup_rule,
 doc='Output may not increase faster than the first multiple of the'
 'ramping up gradient greater than the minimal working capacity')

def res_timevar_output_minfraction_rampup_rampup_rule(m, tm, stf, sit, pro, com):
 ramp_up = m.process_dict['ramp-up-grad'][(stf, sit, pro)]
 min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]

 first_output_value = (math.floor(min_fraction / ramp_up) + 1) * ramp_up
 if tm != m.timesteps[1]:
 return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
 m.cap_pro[stf, sit, pro] * m.dt *
 first_output_value *
 m.r_out_dict[(stf, pro, com)] *
 m.eff_factor_dict[(sit, pro)][stf, tm] >=
 m.e_pro_out[tm, stf, sit, pro, com])
 else:
 return pyomo.Constraint.Skip

If the process has both partial operation and time variable efficiency, the code changes to:

m.res_partial_timevar_output_minfraction_rampup_rampup = pyomo.Constraint(
 m.tm, m.pro_rampup_not_divides_minfraction_output_tuples &
 m.pro_partial_on_off_output_tuples & m.pro_timevar_output_tuples,
 rule=res_partial_timevar_output_minfraction_rampup_rampup_rule,
 doc='Output may not increase faster than the first multiple of the'
 'ramping up gradient greater than the minimal working capacity')

def res_partial_timevar_output_minfraction_rampup_rampup_rule(m, tm, stf, sit, pro, com):
 ramp_up = m.process_dict['ramp-up-grad'][(stf, sit, pro)]
 min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]

 first_output_value = (math.floor(min_fraction / ramp_up) + 1) * ramp_up
 if tm != m.timesteps[1]:
 return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
 m.cap_pro[stf, sit, pro] * m.dt *
 first_output_value *
 m.r_out_min_fraction_dict[(stf, pro, com)] *
 m.eff_factor_dict[(sit, pro)][stf, tm] >=
 m.e_pro_out[tm, stf, sit, pro, com])
 else:
 return pyomo.Constraint.Skip

Case III: The parameter process minimum load fraction \(\underline{P}_{yvp}\)
is smaller than the parameter process maximum power ramp up gradient
\(\overline{PG}_{yvp}^\text{up}\). It is defined and calculated by the following
code fragment:

m.res_output_rampup = pyomo.Constraint(
 m.tm, m.pro_rampup_bigger_minfraction_output_tuples -
 m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
 rule=res_output_rampup_rule,
 doc='Output may not increase faster than the ramping up gradient')

def res_output_rampup_rule(m, tm, stf, sit, pro, com):
 if tm != m.timesteps[1]:
 return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
 m.cap_pro[stf, sit, pro] * m.dt *
 m.process_dict['ramp-up-grad'][(stf, sit, pro)] *
 m.r_out_dict[(stf, pro, com)] >=
 m.e_pro_out[tm, stf, sit, pro, com])
 else:
 return pyomo.Constraint.Skip

If the process has partial operation, the code changes to:

m.res_partial_output_rampup = pyomo.Constraint(
 m.tm, m.pro_rampup_bigger_minfraction_output_tuples &
 m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
 rule=res_partial_output_rampup_rule,
 doc='Output may not increase faster than the ramping up gradient')

def res_partial_output_rampup_rule(m, tm, stf, sit, pro, com):
 if tm != m.timesteps[1]:
 return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
 m.cap_pro[stf, sit, pro] * m.dt *
 m.process_dict['ramp-up-grad'][(stf, sit, pro)] *
 m.r_out_min_fraction_dict[(stf, pro, com)] >=
 m.e_pro_out[tm, stf, sit, pro, com])
 else:
 return pyomo.Constraint.Skip

If the process has time variable efficiency, the code changes to:

m.res_timevar_output_rampup = pyomo.Constraint(
 m.tm, m.pro_rampup_bigger_minfraction_output_tuples &
 m.pro_timevar_output_tuples - m.pro_partial_on_off_output_tuples,
 rule=res_timevar_output_rampup_rule,
 doc='Output may not increase faster than the ramping up gradient')

def res_timevar_output_rampup_rule(m, tm, stf, sit, pro, com):
 if tm != m.timesteps[1]:
 return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
 m.cap_pro[stf, sit, pro] * m.dt *
 m.process_dict['ramp-up-grad'][(stf, sit, pro)] *
 m.r_out_dict[(stf, pro, com)] *
 m.eff_factor_dict[(sit, pro)][stf, tm] >=
 m.e_pro_out[tm, stf, sit, pro, com])
 else:
 return pyomo.Constraint.Skip

If the process has both partial operation and time variable efficiency, the code changes to:

m.res_partial_timevar_output_rampup = pyomo.Constraint(
 m.tm, m.pro_rampup_bigger_minfraction_output_tuples &
 m.pro_partial_on_off_output_tuples & m.pro_timevar_output_tuples,
 rule=res_partial_timevar_output_rampup_rule,
 doc='Output may not increase faster than the ramping up gradient')

def res_partial_timevar_output_rampup_rule(m, tm, stf, sit, pro, com):
 if tm != m.timesteps[1]:
 return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
 m.cap_pro[stf, sit, pro] * m.dt *
 m.process_dict['ramp-up-grad'][(stf, sit, pro)] *
 m.r_out_min_fraction_dict[(stf, pro, com)] *
 m.eff_factor_dict[(sit, pro)][stf, tm] >=
 m.e_pro_out[tm, stf, sit, pro, com])
 else:
 return pyomo.Constraint.Skip

Process Start-Up Rule: The constraint process start-up rule marks in the
variable process start marker \(\sigma_{yvpt}\) whether a process \(p\)
started in timestep \(t\) or not. The mathematical explanation of
this rule is given in Advanced Processes.

In script AdvancedProcesses.py the constraint process start ups rule
is defined and calculated by the following code fragment:

m.res_start_up = pyomo.Constraint(
 m.tm, m.pro_start_up_tuples,
 rule=res_start_ups_rule,
 doc='start >= on_off(t) - on_off(t-1)')

def res_start_up_rule(m, t, stf, sit, pro):
 return (m.start_up[t, stf, sit, pro] >= m.on_off[t, stf, sit, pro] -
 m.on_off[t - 1, stf, sit, pro])

Transmission Constraints

Transmission Capacity Rule: The constraint transmission capacity rule
defines the variable total transmission capacity \(\kappa_{yaf}\). The
variable total transmission capacity is defined by the constraint as the sum of
the variable transmission capacity installed \(K_{yaf}\) and the variable
new transmission capacity \(\hat{\kappa}_{yaf}\). The mathematical
explanation of this rule is given in Multinode optimization model.

In script transmission.py the constraint transmission capacity rule is
defined and calculated by the following code fragment:

m.def_transmission_capacity = pyomo.Constraint(
 m.tra_tuples,
 rule=def_transmission_capacity_rule,
 doc='total transmission capacity = inst-cap + new capacity')

def def_transmission_capacity_rule(m, stf, sin, sout, tra, com):
 if m.mode['int']:
 if (sin, sout, tra, com, stf) in m.inst_tra_tuples:
 if (min(m.stf), sin, sout, tra, com) in m.tra_const_cap_dict:
 cap_tra = m.transmission_dict['inst-cap'][
 (min(m.stf), sin, sout, tra, com)]
 else:
 cap_tra = (
 sum(m.cap_tra_new[stf_built, sin, sout, tra, com]
 for stf_built in m.stf
 if (sin, sout, tra, com, stf_built, stf) in
 m.operational_tra_tuples) +
 m.transmission_dict['inst-cap']
 [(min(m.stf), sin, sout, tra, com)])
 else:
 cap_tra = (
 sum(m.cap_tra_new[stf_built, sin, sout, tra, com]
 for stf_built in m.stf
 if (sin, sout, tra, com, stf_built, stf) in
 m.operational_tra_tuples))
 else:
 if (stf, sin, sout, tra, com) in m.tra_const_cap_dict:
 cap_tra = \
 m.transmission_dict['inst-cap'][(stf, sin, sout, tra, com)]
 else:
 cap_tra = (m.cap_tra_new[stf, sin, sout, tra, com] +
 m.transmission_dict['inst-cap'][
 (stf, sin, sout, tra, com)])

 return cap_tra

Transmission New Capacity Rule: The constraint transmission new capacity
rule defines the variable new trasmission capacity \(\hat{\kappa}_{yaf}\).
This variable is defined by the constraint as the product of the parameter
transmission new capacity block \({K}_{yaf}^\text{block}\) and the variable
new transmission capacity units \(\beta_{yaf}\). The mathematical explanation
of this rule is given in Multinode optimization model.

In script transmission.py the constraint transmission output rule is
defined and calculated by the following code fragment:

m.def_cap_tra_new = pyomo.Constraint(
 m.tra_block_tuples,
 rule=def_cap_tra_new_rule,
 doc='cap_tra_new = tra-block * cap_tra_new')

def def_cap_tra_new_rule(m, stf, sin, sout, tra, com):
 return(m.cap_tra_new[stf, sin, sout, tra, com] ==
 m.tra_cap_unit[stf, sin, sout, tra, com] *
 m.transmission_dict['tra-block'][(stf, sin, sout, tra, com)])

Transmission Output Rule: The constraint transmission output rule defines
the variable transmission output commodity flow \(\pi_{yaft}^\text{out}\).
The variable transmission output commodity flow is defined by the constraint as
the product of the variable transmission input commodity flow
\(\pi_{yaft}^\text{in}\) and the parameter transmission efficiency
\(e_{yaf}\). The mathematical explanation of this rule is given in
Multinode optimization model.

In script transmission.py the constraint transmission output rule is
defined and calculated by the following code fragment:

m.def_transmission_output = pyomo.Constraint(
 m.tm, m.tra_tuples,
 rule=def_transmission_output_rule,
 doc='transmission output = transmission input * efficiency')

def def_transmission_output_rule(m, tm, stf, sin, sout, tra, com):
 return (m.e_tra_out[tm, stf, sin, sout, tra, com] ==
 m.e_tra_in[tm, stf, sin, sout, tra, com] *
 m.transmission_dict['eff'][(stf, sin, sout, tra, com)])

Transmission Input By Capacity Rule: The constraint transmission input by
capacity rule limits the variable transmission input commodity flow
\(\pi_{yaft}^\text{in}\). This constraint prevents the transmission power
from exceeding the possible power input capacity of the line. The constraint
states that the variable transmission input commodity flow
\(\pi_{yaft}^\text{in}\) must be less than or equal to the variable total
transmission capacity \(\kappa_{yaf}\), scaled by the size of the time
steps :math: Delta t. The mathematical explanation of this rule is given in
Multinode optimization model.

In script transmission.py the constraint transmission input by capacity
rule is defined and calculated by the following code fragment:

m.res_transmission_input_by_capacity = pyomo.Constraint(
 m.tm, m.tra_tuples,
 rule=res_transmission_input_by_capacity_rule,
 doc='transmission input <= total transmission capacity')

def res_transmission_input_by_capacity_rule(m, tm, stf, sin, sout, tra, com):
 return (m.e_tra_in[tm, stf, sin, sout, tra, com] <=
 m.dt * m.cap_tra[stf, sin, sout, tra, com])

Transmission Capacity Limit Rule: The constraint transmission capacity
limit rule limits the variable total transmission capacity
\(\kappa_{yaf}\). This constraint restricts a transmission \(f\)
through an arc \(a\) in support timeframe \(y\) from having more total
power output capacity than an upper bound and having less than a lower bound.
The constraint states that the variable total transmission capacity
\(\kappa_{yaf}\) must be greater than or equal to the parameter
transmission capacity lower bound \(\underline{K}_{yaf}\) and less than or
equal to the parameter transmission capacity upper bound
\(\overline{K}_{yaf}\). The mathematical explanation of this rule is given
in Multinode optimization model.

In script transmission.py the constraint transmission capacity limit rule
is defined and calculated by the following code fragment:

m.res_transmission_capacity = pyomo.Constraint(
 m.tra_tuples,
 rule=res_transmission_capacity_rule,
 doc='transmission.cap-lo <= total transmission capacity <= '
 'transmission.cap-up')

def res_transmission_capacity_rule(m, stf, sin, sout, tra, com):
 return (m.transmission_dict['cap-lo'][(stf, sin, sout, tra, com)],
 m.cap_tra[stf, sin, sout, tra, com],
 m.transmission_dict['cap-up'][(stf, sin, sout, tra, com)])

Transmission Symmetry Rule: The constraint transmission symmetry rule
defines the power capacities of incoming and outgoing arcs \(a , a'\) of a
transmission \(f\) in support timeframe \(y\). The constraint states
that the power capacities \(\kappa_{af}\) of the incoming arc \(a\) and
the complementary outgoing arc \(a'\) between two sites must be equal. The
mathematical explanation of this rule is given in Multinode optimization model.

In script transmission.py the constraint transmission symmetry rule is
defined and calculated by the following code fragment:

m.res_transmission_symmetry = pyomo.Constraint(
 m.tra_tuples,
 rule=res_transmission_symmetry_rule,
 doc='total transmission capacity must be symmetric in both directions')

def res_transmission_symmetry_rule(m, stf, sin, sout, tra, com):
 return m.cap_tra[stf, sin, sout, tra, com] == (m.cap_tra
 [stf, sout, sin, tra, com])

DCPF Transmission Constraints

The following constraints are included in the model if the optional DC
Power Flow feature is activated.

DC Power Flow Rule: The constraint DC Power Flow rule defines the power flow
of transmission lines, which are modelled with DCPF. This constraint states that
the power flow on a transmission line is equal to the product of voltage angle
differences of two connecting sites \(v_\text{out}\) and \({v_\text{in}}\)
and the admittance of the transmission line. This constraint is only applied
to the transmission lines modelled with DCPF. The mathematical explanation of
this rule is given in Multinode optimization model. In script transmission.py
the constraint DC Power Flow Rule is defined and calculated by the following
code fragment:

m.def_dc_power_flow = pyomo.Constraint(
 m.tm, m.tra_tuples_dc,
 rule=def_dc_power_flow_rule,
 doc='transmission output = (angle(in)-angle(out))/ 57.2958 '
 '* -1 *(-1/reactance) * (base voltage)^2')

def def_dc_power_flow_rule(m, tm, stf, sin, sout, tra, com):
 return (m.e_tra_in[tm, stf, sin, sout, tra, com] ==
 (m.voltage_angle[tm, stf, sin] - m.voltage_angle[tm, stf, sout]) / 57.2958 * -1 *
 (-1 / m.transmission_dict['reactance'][(stf, sin, sout, tra, com)])
 * m.site_dict['base-voltage'][(stf, sin)]**2)

DCPF Transmission Input By Capacity Rule: The constraint DCPF transmission
input by capacity rule expands the constraint transmission input by capacity
rule for transmission lines modelled with DCPF. This constraint limits the
variable transmission input commodity flow \(\pi_{yaft}^\text{in}\) of
DCPF transmission lines also with a lower bound. This constraint prevents the
absolute value of the transmission power from exceeding the possible power input
capacity of the line especially when the transmission power can be negative.
The constraint states that the additive inverse of variable transmission input
commodity flow \(-\pi_{yaft}^\text{in}\) must be less than or equal to the
variable total transmission capacity \(\kappa_{yaf}\), scaled by the size of
the time steps :math: Delta t. This constraint is only applied to the
tranmission lines modelled with DCPF. The mathematical explanation of this rule
is given in
Multinode optimization model.

In script transmission.py the constraint transmission input by capacity
rule is defined and calculated by the following code fragment:

m.res_transmission_dc_input_by_capacity = pyomo.Constraint(
 m.tm, m.tra_tuples_dc,
 rule=res_transmission_dc_input_by_capacity_rule,
 doc='-dcpf transmission input <= total transmission capacity')

Voltage Angle Limit Rule: The constraint voltage angle limit rule limits the
maximum and minimum difference of voltage angles \(\theta_{yvt}\) of two sites
\(v_\text{out}\) and \({v_\text{in}}\) connected with a DCPF
transmission line with the parameter voltage angle difference limit
\(\overline{dl}_{yaf}\). This constraint is only applied
to the transmission lines modelled with DCPF. The mathematical explanation of
this rule is given in Multinode optimization model. In script transmission.py
the constraint voltage angle limit rule is defined and given by the following
code fragment:

m.def_angle_limit = pyomo.Constraint(
 m.tm, m.tra_tuples_dc,
 rule=def_angle_limit_rule,
 doc='-angle limit < angle(in) - angle(out) < angle limit')

def def_angle_limit_rule(m, tm, stf, sin, sout, tra, com):
 return (- m.transmission_dict['difflimit'][(stf, sin, sout, tra, com)],
 (m.voltage_angle[tm, stf, sin] - m.voltage_angle[tm, stf, sout]),
 m.transmission_dict['difflimit'][(stf, sin, sout, tra, com)])

Absolute Transmission Flow Constraints: The two absolute transmission flow
constraints are included in the model to create the variable
absolute value of transmission commodity flow
\({\pi_{yaft}^{\text{in}}}^\prime\). By limiting the negative
\(-{\pi_{yaft}^{\text{in}}}^\prime\)
and positive \({\pi_{yaft}^{\text{in}}}^\prime\) of substitute variable
‘’e_tra_abs’’ with the variable \(\pi_{yaft}^\text{in}\) and minimizing the
substitute value \({\pi_{yaft}^{\text{in}}}^\prime\) the absolute value of
transmission commodity flow is retrieved. These constraints are only applied to
the transmission lines modelled with DCPF. The mathematical explanation of
these rules are given in Multinode optimization model. In script transmission.py
the constraint Absolute Transmission Flow Constraints are defined and
given by the following
code fragment:

m.e_tra_abs1 = pyomo.Constraint(
 m.tm, m.tra_tuples_dc,
 rule=e_tra_abs_rule1,
 doc='transmission dc input <= absolute transmission dc input')
m.e_tra_abs2 = pyomo.Constraint(
 m.tm, m.tra_tuples_dc,
 rule=e_tra_abs_rule2,
 doc='-transmission dc input <= absolute transmission dc input')

def e_tra_abs_rule1(m, tm, stf, sin, sout, tra, com):
 return (m.e_tra_in[tm, stf, sin, sout, tra, com] <=
 m.e_tra_abs[tm, stf, sin, sout, tra, com])

def e_tra_abs_rule2(m, tm, stf, sin, sout, tra, com):
 return (-m.e_tra_in[tm, stf, sin, sout, tra, com] <=
 m.e_tra_abs[tm, stf, sin, sout, tra, com])

Transmission Symmetry Rule: The above mentioned constraint transmission symmetry rule
is only applied to the transmission lines modelled with transport model if the
DCPF is activated. Since the DCPF transmission lines do not include the complementary
arcs, this constraint is ignored for these transmission lines. For this reason,
the constraint is indexed with the transmission tuple set m.tra_tuples_tp if
the DCPF is activated.

In script transmission.py the constraint transmission symmetry rule is
defined as following if the DCPF is activated:

m.res_transmission_symmetry = pyomo.Constraint(
 m.tra_tuples_tp,
 rule=res_transmission_symmetry_rule,
 doc='total transmission capacity must be symmetric in both directions')

Storage Constraints

Storage State Rule: The constraint storage state rule is the main storage
constraint and it defines the storage energy content of a storage \(s\) in
a site \(v\) in support timeframe \(y\) at a timestep \(t\). This
constraint calculates the storage energy content at a timestep \(t\) by
adding or subtracting differences, such as ingoing and outgoing energy, to/from
a storage energy content at a previous timestep \(t-1\) multiplied by 1
minus the self-discharge rate \(d_{yvs}\) (which is scaled exponentially
with the timestep size \(\delta t\)). Here ingoing energy is given by the
product of the variable storage input commodity flow
\(\epsilon_{yvst}^\text{in}\) and the parameter storage efficiency during
charge \(e_{yvs}^\text{in}\). Outgoing energy is given by the variable
storage output commodity flow \(\epsilon_{yvst}^\text{out}\) divided by the
parameter storage efficiency during discharge \(e_{yvs}^\text{out}\). The
mathematical explanation of this rule is given in Energy Storage.

In script storage.py the constraint storage state rule is defined and
calculated by the following code fragment:

m.def_storage_state = pyomo.Constraint(
 m.tm, m.sto_tuples,
 rule=def_storage_state_rule,
 doc='storage[t] = (1 - selfdischarge) * storage[t-1] + input * eff_in - output / eff_out')

def def_storage_state_rule(m, t, stf, sit, sto, com):
 return (m.e_sto_con[t, stf, sit, sto, com] ==
 m.e_sto_con[t - 1, stf, sit, sto, com] *
 (1 - m.storage_dict['discharge']
 [(stf, sit, sto, com)]) ** m.dt.value +
 m.e_sto_in[t, stf, sit, sto, com] *
 m.storage_dict['eff-in'][(stf, sit, sto, com)] -
 m.e_sto_out[t, stf, sit, sto, com] /
 m.storage_dict['eff-out'][(stf, sit, sto, com)])

Storage Power Rule: The constraint storage power rule defines the variable
total storage power \(\kappa_{yvs}^\text{p}\). The variable total storage
power is defined by the constraint as the sum of the parameter storage power
installed \(K_{yvs}^\text{p}\) and the variable new storage power
\(\hat{\kappa}_{yvs}^\text{p}\). The mathematical explanation of this rule
is given in Energy Storage.

In script storage.py the constraint storage power rule is defined and
calculated by the following code fragment:

m.def_storage_power = pyomo.Constraint(
 m.sto_tuples,
 rule=def_storage_power_rule,
 doc='storage power = inst-cap + new power')

def def_storage_power_rule(m, stf, sit, sto, com):
 if m.mode['int']:
 if (sit, sto, com, stf) in m.inst_sto_tuples:
 if (min(m.stf), sit, sto, com) in m.sto_const_cap_p_dict:
 cap_sto_p = m.storage_dict['inst-cap-p'][
 (min(m.stf), sit, sto, com)]
 else:
 cap_sto_p = (
 sum(m.cap_sto_p_new[stf_built, sit, sto, com]
 for stf_built in m.stf
 if (sit, sto, com, stf_built, stf) in
 m.operational_sto_tuples) +
 m.storage_dict['inst-cap-p'][(min(m.stf), sit, sto, com)])
 else:
 cap_sto_p = (
 sum(m.cap_sto_p_new[stf_built, sit, sto, com]
 for stf_built in m.stf
 if (sit, sto, com, stf_built, stf)
 in m.operational_sto_tuples))
 else:
 if (stf, sit, sto, com) in m.sto_const_cap_p_dict:
 cap_sto_p = m.storage_dict['inst-cap-p'][(stf, sit, sto, com)]
 else:
 cap_sto_p = (m.cap_sto_p_new[stf, sit, sto, com] +
 m.storage_dict['inst-cap-p'][(stf, sit, sto, com)])

 return cap_sto_p

Storage Capacity Rule: The constraint storage capacity rule defines the
variable total storage size \(\kappa_{yvs}^\text{c}\). The variable total
storage size is defined by the constraint as the sum of the parameter storage
content installed \(K_{yvs}^\text{c}\) and the variable new storage size
\(\hat{\kappa}_{yvs}^\text{c}\). The mathematical explanation of this rule
is given in Energy Storage.

In script storage.py the constraint storage capacity rule is defined and
calculated by the following code fragment:

m.def_storage_capacity = pyomo.Constraint(
 m.sto_tuples,
 rule=def_storage_capacity_rule,
 doc='storage capacity = inst-cap + new capacity')

def def_storage_capacity_rule(m, stf, sit, sto, com):
 if m.mode['int']:
 if (sit, sto, com, stf) in m.inst_sto_tuples:
 if (min(m.stf), sit, sto, com) in m.sto_const_cap_c_dict:
 cap_sto_c = m.storage_dict['inst-cap-c'][
 (min(m.stf), sit, sto, com)]
 else:
 cap_sto_c = (
 sum(m.cap_sto_c_new[stf_built, sit, sto, com]
 for stf_built in m.stf
 if (sit, sto, com, stf_built, stf) in
 m.operational_sto_tuples) +
 m.storage_dict['inst-cap-c'][(min(m.stf), sit, sto, com)])
 else:
 cap_sto_c = (
 sum(m.cap_sto_c_new[stf_built, sit, sto, com]
 for stf_built in m.stf
 if (sit, sto, com, stf_built, stf) in
 m.operational_sto_tuples))
 else:
 if (stf, sit, sto, com) in m.sto_const_cap_c_dict:
 cap_sto_c = m.storage_dict['inst-cap-c'][(stf, sit, sto, com)]
 else:
 cap_sto_c = (m.cap_sto_c_new[stf, sit, sto, com] +
 m.storage_dict['inst-cap-c'][(stf, sit, sto, com)])

 return cap_sto_c

Storage New Capacity Rule: The constraint storage new capacity rule defines
the newly installed capacity of a storage \(\hat{\kappa}_{yvs}^\text{c}\).
This variable is defined by the constraint as the product of the variable
new storage size units \(\beta_{yvs}^\text{c}\) and the parameter storage
new capacity block \({K}_{yvs}^\text{c,block}\). The mathematical explanation
of this rule is given in Energy Storage.

In script storage.py the constraint storage capacity rule is defined and
calculated by the following code fragment:

m.def_new_cap_sto_c = pyomo.Constraint(
 m.sto_block_c_tuples,
 rule=def_new_cap_sto_c_rule,
 doc='cap_sto_c_new = cap_sto_c_unit * c-block')

def def_new_cap_sto_c_rule(m, stf, sit, sto, com):
 return (m.cap_sto_c_new[stf, sit, sto, com] ==
 m.sto_cap_c_unit[stf, sit, sto, com] *
 m.sto_block_c_dict[stf, sit, sto, com])

Storage New Power Rule: The constraint storage new power rule defines
the newly installed power of a storage \(\hat{\kappa}_{yvs}^\text{p}\).
This variable is defined by the constraint as the product of the variable
new power size units \(\beta_{yvs}^\text{p}\) and the parameter storage
new power block \({K}_{yvs}^\text{p,block}\). The mathematical explanation
of this rule is given in Energy Storage.

In script storage.py the constraint storage capacity rule is defined and
calculated by the following code fragment:

m.def_new_cap_sto_p = pyomo.Constraint(
 m.sto_block_p_tuples,
 rule=def_new_cap_sto_p_rule,
 doc='cap_sto_p_new = cap_sto_p_unit * p-block')

def def_new_cap_sto_p_rule(m, stf, sit, sto, com):
 return (m.cap_sto_p_new[stf, sit, sto, com] ==
 m.sto_cap_p_unit[stf, sit, sto, com] *
 m.sto_block_p_dict[stf, sit, sto, com])

Storage Input By Power Rule: The constraint storage input by power rule
limits the variable storage input commodity flow
\(\epsilon_{yvst}^\text{in}\). This constraint restricts a storage
\(s\) in a site \(v\) and support timeframe \(y\) at a timestep
\(t\) from having more input power than the storage power capacity. The
constraint states that the variable \(\epsilon_{yvst}^\text{in}\) must be
less than or equal to the variable total storage power
\(\kappa_{yvs}^\text{p}\), scaled by the size of the time steps
:math: Delta t. The mathematical explanation of this rule is given in
Energy Storage.

In script storage.py the constraint storage input by power rule is defined
and calculated by the following code fragment:

m.res_storage_input_by_power = pyomo.Constraint(
 m.tm, m.sto_tuples,
 rule=res_storage_input_by_power_rule,
 doc='storage input <= storage power')

def res_storage_input_by_power_rule(m, t, stf, sit, sto, com):
 return (m.e_sto_in[t, stf, sit, sto, com] <= m.dt *
 m.cap_sto_p[stf, sit, sto, com])

Storage Output By Power Rule: The constraint storage output by power rule
limits the variable storage output commodity flow
\(\epsilon_{yvst}^\text{out}\). This constraint restricts a storage
\(s\) in a site \(v\) and support timeframe \(y\) at a timestep
\(t\) from having more output power than the storage power capacity. The
constraint states that the variable \(\epsilon_{vst}^\text{out}\) must be
less than or equal to the variable total storage power
\(\kappa_{yvs}^\text{p}\), scaled by the size of the time steps
\(\Delta t\). The mathematical explanation of this rule is given in
Energy Storage.

In script storage.py the constraint storage output by power rule is defined
and calculated by the following code fragment:

m.res_storage_output_by_power = pyomo.Constraint(
 m.tm, m.sto_tuples,
 rule=res_storage_output_by_power_rule,
 doc='storage output <= storage power')

def res_storage_output_by_power_rule(m, t, stf, sit, sto, co):
 return (m.e_sto_out[t, stf, sit, sto, co] <= m.dt *
 m.cap_sto_p[stf, sit, sto, co])

Storage State By Capacity Rule: The constraint storage state by capacity
rule limits the variable storage energy content
\(\epsilon_{yvst}^\text{con}\). This constraint restricts a storage
\(s\) in a site \(v\) and support timeframe \(y\) at a timestep
\(t\) from having more storage content than the storage content capacity.
The constraint states that the variable \(\epsilon_{yvst}^\text{con}\) must
be less than or equal to the variable total storage size
\(\kappa_{yvs}^\text{c}\). The mathematical explanation of this rule is
given in Energy Storage.

In script storage.py the constraint storage state by capacity rule is defined
and calculated by the following code fragment.

m.res_storage_state_by_capacity = pyomo.Constraint(
 m.t, m.sto_tuples,
 rule=res_storage_state_by_capacity_rule,
 doc='storage content <= storage capacity')

def res_storage_state_by_capacity_rule(m, t, stf, sit, sto, com):
 return (m.e_sto_con[t, stf, sit, sto, com] <=
 m.cap_sto_c[stf, sit, sto, com])

Storage Power Limit Rule: The constraint storage power limit rule limits
the variable total storage power \(\kappa_{yvs}^\text{p}\). This contraint
restricts a storage \(s\) in a site \(v\) and support timeframe
\(y\) from having more total power output capacity than an upper bound and
having less than a lower bound. The constraint states that the variable total
storage power \(\kappa_{yvs}^\text{p}\) must be greater than or equal to
the parameter storage power lower bound \(\underline{K}_{yvs}^\text{p}\)
and less than or equal to the parameter storage power upper bound
\(\overline{K}_{yvs}^\text{p}\). The mathematical explanation of this rule
is given in Energy Storage.

In script storage.py the constraint storage power limit rule is defined and
calculated by the following code fragment:

m.res_storage_power = pyomo.Constraint(
 m.sto_tuples,
 rule=res_storage_power_rule,
 doc='storage.cap-lo-p <= storage power <= storage.cap-up-p')

def res_storage_power_rule(m, stf, sit, sto, com):
 return (m.storage_dict['cap-lo-p'][(stf, sit, sto, com)],
 m.cap_sto_p[stf, sit, sto, com],
 m.storage_dict['cap-up-p'][(stf, sit, sto, com)])

Storage Capacity Limit Rule: The constraint storage capacity limit rule
limits the variable total storage size \(\kappa_{yvs}^\text{c}\). This
constraint restricts a storage \(s\) in a site \(v\) and support
timeframe \(y\) from having more total storage content capacity than an
upper bound and having less than a lower bound. The constraint states that the
variable total storage size \(\kappa_{yvs}^\text{c}\) must be greater than
or equal to the parameter storage content lower bound
\(\underline{K}_{yvs}^\text{c}\) and less than or equal to the parameter
storage content upper bound \(\overline{K}_{yvs}^\text{c}\). The
mathematical explanation of this rule is given in Energy Storage.

In script storage.py the constraint storage capacity limit rule is defined
and calculated by the following code fragment:

m.res_storage_capacity = pyomo.Constraint(
 m.sto_tuples,
 rule=res_storage_capacity_rule,
 doc='storage.cap-lo-c <= storage capacity <= storage.cap-up-c')

def res_storage_capacity_rule(m, stf, sit, sto, com):
 return (m.storage_dict['cap-lo-c'][(stf, sit, sto, com)],
 m.cap_sto_c[stf, sit, sto, com],
 m.storage_dict['cap-up-c'][(stf, sit, sto, com)])

Initial And Final Storage State Rule:
The constraint initial and final storage state rule defines and restricts the
variable storage energy content \(\epsilon_{yvst}^\text{con}\) of a storage
\(s\) in a site \(v\) and support timeframe \(y\) at the initial
timestep \(t_1\) and at the final timestep \(t_N\). There are two
distinct cases:

1. The initial and final storage states are specified by a value of the
parameter \(I_{yvs}\) between 0 and 1.
2. \(I_{yvs}\) is not specified (e.g. by setting it ‘#NV’ in the input
sheet). In this case the initial and final storage state are still equal but
variable.

In case 1 the constraints are written in the following way:

Initial storage state: Initial storage represents the storage state in a
storage at the beginning of the simulation. The variable storage energy content
\(\epsilon_{yvst}^\text{con}\) at the initial timestep \(t_1\) is
defined by this constraint. The constraint states that the variable
\(\epsilon_{vst_1}^\text{con}\) must be equal to the product of the
parameters storage content installed \(K_{yvs}^\text{c}\) and initial and
final state of charge \(I_{yvs}\).

Final storage state: Final storage represents the storage state in a storage at
the end of the simulation. The variable storage energy content
\(\epsilon_{yvst}^\text{con}\) at the final timestep \(t_N\) is
restricted by this constraint. The constraint states that the variable
\(\epsilon_{yvst_N}^\text{con}\) must be greater than or equal to the
product of the parameters storage content installed \(K_{yvs}^\text{c}\)
and initial and final state of charge \(I_{yvs}\). The mathematical
explanation of this rule is given in Energy Storage.

In script storage.py the constraint initial and final storage state rule is
then defined and calculated by the following code fragment:

m.res_initial_and_final_storage_state = pyomo.Constraint(
 m.t, m.sto_init_bound_tuples,
 rule=res_initial_and_final_storage_state_rule,
 doc='storage content initial == and final >= storage.init * capacity')

In case 2 the constraint becomes a lot easier, since the initial and final
state are simply compared to each other by the following inequality:

\[\forall v\in V, s\in S\colon\ \epsilon_{vst_1}^\text{con}
\leq \epsilon_{vst_N}^\text{con}\]

In script storage.py the constraint initial and final storage state rule is
then defined and calculated by the following code fragment:

m.res_initial_and_final_storage_state_var = pyomo.Constraint(
 m.t, m.sto_tuples - m.sto_init_bound_tuples,
 rule=res_initial_and_final_storage_state_var_rule,
 doc='storage content initial <= final, both variable')

Storage Energy to Power Ratio Rule:
For certain type of storage technologies, the power and energy capacities cannot
be independently sized but are dependent to each other. Hence, the constraint
storage energy to power ratio rule sets a linear dependence between the
capacities through a user-defined “energy to power ratio”
\(k_{yvs}^\text{E/P}\). It has to be noted that this constraint is only
active for the storages with a positive value under the column “ep-ratio” in
the input file, and when this value is not given, the power and energy
capacities can be sized independently. The mathematical explanation of this
rule is given in Energy Storage.

In script storage.py the constraint storage energy to power rule is
then defined and calculated by the following code fragment:

m.def_storage_energy_power_ratio = pyomo.Constraint(
 m.sto_en_to_pow_tuples,
 rule=def_storage_energy_power_ratio_rule,
 doc='storage capacity = storage power * storage E2P ratio')

def def_storage_energy_power_ratio_rule(m, stf, sit, sto, com):
 return (m.cap_sto_c[stf, sit, sto, com] == m.cap_sto_p[stf, sit, sto, com] *
 m.storage_dict['ep-ratio'][(stf, sit, sto, com)])

Cost Constraints

The variable total system cost \(\zeta\) is calculated by the cost
function. In cases of CO2-minimization the total system cost is constrained by
the following expression:

\[\zeta = \zeta_\text{inv} + \zeta_\text{fix} + \zeta_\text{var} +
\zeta_\text{fuel} + \zeta_\text{rev} + \zeta_\text{pur} +
\zeta_\text{startup} + \zeta_\text{env} \leq \overline{L}_{cost}\]

This constraint is given in model.py by the following code fragment.

def res_global_cost_limit_rule(m, stf):
 if math.isinf(m.global_prop_dict["value"][stf, "Cost limit"]):
 return pyomo.Constraint.Skip
 elif m.global_prop_dict["value"][stf, "Cost limit"] >= 0:
 return(pyomo.summation(m.costs) <= m.global_prop_dict["value"]
 [stf, "Cost limit"])
 else:
 return pyomo.Constraint.Skip

‘urbs’ module description

This part gives a brief overview over the architecture of the program.
The data flow in an urbs model is visualized in the following graph:

[image: _images/Dataflow.png]
‘urbs’ uses a modular structure to build and execute the optimization and to
automatically generate the results. All scripts are placed in the folder
‘urbs’. In subfolder ‘features’ constraint expressions for the mathematical
model are defined. These will not be discussed here and only the highest level
functions will be discussed. The scripts used for these are the following
(in alphabetical order):

identify.py

In this scripts the dictionary of input dataframes ‘data’ is parsed to conclude
the structure of the problem to be built.

input.py

This file handles the input and prepares the mathematical model itself.

model.py

This file just includes the central function used for model generation.

output.py

This file contains lower level functions to retrieve data from a solved model
instance.

plot.py

This script generates automated output pictures using the function

report.py

This script handles the automated generation of an excel data sheet from the
solved model instance.

runfunctions.py

This file contains the central function for running a predefined set of inputs
or a scenario thereof.

saveload.py

This file contains two functions to save and load a collection of inputs and
the corresponding outputs of a model instance.

scenarios.py

In this script scenario functions are defined. These are used to automatically
change the inputs as given in dictionary ‘data’. In this way multiple runs of
similar model instances can be automated.

validation.py

This file makes sure that the input given is not leading to an infeasible or
non-sensical model. It generates error messages for certain known errors. It is
a organically growing script.

Coupling of Transmission and Distribution System Modules

	Overview

	Distribution System Framework
	Implementations: model.py

	Implementations: transmission.py

	Automated Coupling
	1. Import of Microgrid Data

	2. Model Connection

	3. Parameter Scaling

	4. Scenario Shifting

	5. RE Profiles

	6. Reactive Power Flows

	7. Concatenation

	8. Worklfow

	Time Series Aggregation with Typeperiods
	Typeperiod Motivation

	Approach with the ‘tsam’ Method

	Enabling Seasonal Storage Solutions

	‘CoTraDis’ application guide
	Remarks on Input Data

	How to Determine Multipliers

	Remarks on the Scenario Shifting Approach

Overview

To completely understand the following new CoTraDis documentation you should already be familiar with the general urbs model (consult Users guide of the urbs framework).
Before applying the developed CoTraDis model framework you should start with this overview that explains the underlying ideas
of coupling transmission and distribution systems as developed in the master thesis of Beneharo Reveron Baecker:
“Implementation of a novel energy system model coupling approach to co-optimize transmission and active distribution systems”, 2021.
The related documentation is structured into four main parts:

	The development of a model framework that enables the consideration of distribution systems. The implementations to consider their characteristics properly are described in Distribution System Framework.

	An automated coupling of transmission and distribution system data. The implementation can be seen in the section Automated Coupling.

	A suitable approach to reduce the computational complexity. The implementations make use of the typeperiod idea in combination with time series aggregation methods. It is decribed in detailin the section Time Series Aggregation with Typeperiods. If you want to understand the mathematical background of tsam, you should first have a look at the documentation of the open source python tsam package [https://tsam.readthedocs.io/en/latest/index.html] described by Kotzuer et al.

	Finally the ‘CoTraDis’ application guide gives ideas on how to use the provided framework for future projects.

Distribution System Framework

This section explains the implementations to consider specific distribution system characteristics.
Major additions & modifications were applied to the the following scripts:

	model.py:

	transmission.py:

which will be described below.
| Before dealing with the code, a short summary of required aspects to consider will be given.

Distribution systems are different from transmission systems in a number of facets. Differences to highlight are the
reactance-to-resistance ratio (X/R) and their common radial composition. Depending on these attributes an AC
optimal-power-flow model may be helpful to deal with distribution system reactive power and voltage constraints.
Hence, the “LinDistFlow” model linearization has been introduced into the given framework as shown in transmission.py.
Besides, we enhanced the urbs framework by integrating several aspects that characterize classic distribution systems:

	radially-operated open ring grid segments

	a transformer between both system levels modelled with a boundary bus

	reactive power demand for households

	reactive power line flows and an apparent power line flow constraint

	a central reactive power compensation system

	inverters with a predefined permittible ratio of reactive to active power generation.

The microgrids to describe the distribution system can be freely defined with the microgrid input sheets.
The predefined microgrid structure with their assigned technologies as provided in the input data are illustrated below:

[image: ../_images/Microgrids.jpg]

Implementations: model.py

The extensions within this module mainly include reactive power consideration for processes. In order to do so, all components located at distribution system nodes are identified with the ‘min-voltage’ parameter’ which is determined in the “sites” sheet of the microgrid input data. This set is used in this module and in the urbs/transmission.py module as explained later.

m.sit_tuples_ac = pyomo.Set(
 within=m.stf * m.sit,
 initialize=[(stf, site) for (stf, site) in m.sit_tuples
 if m.site_dict['min-voltage'][(stf, site)] > 0],
 doc='Combinations of support timeframes and sites with ac characteristics')

In this module the reactive power output share is typically indicated with the power factor \(\phi\) that can be
defined for each process in the input sheet.It describes the ratio of real power over apparent power. With this for
instance PV-inverters can be enabled to provide inductive and capacitive reactive power.
The permissible ratio of active and reactive power output for generators is implemented into the model with the
following rules that connect the reactive with the active power output by defining upper and lower generation limits for
the previously defined set:

def def_process_output_reactive_rule1(m, tm, stf, sit, pro):
 return (m.e_pro_out[tm, stf, sit, pro, 'electricity-reactive'] <=
 m.e_pro_out[tm, stf, sit, pro, 'electricity']
 * math.tan(math.acos(m.process_dict['pf-min'][(stf, sit, pro)])))
def def_process_output_reactive_rule2(m, tm, stf, sit, pro):
 return (m.e_pro_out[tm, stf, sit, pro, 'electricity-reactive'] >=
 -m.e_pro_out[tm, stf, sit, pro, 'electricity']
 * math.tan(math.acos(m.process_dict['pf-min'][(stf, sit, pro)])))

Furthermore, a set with all boundary buses denoted as slackbuses representing the transformer on the distribution system site is defined as follows:

m.sit_slackbus = pyomo.Set(
 within=m.stf * m.sit,
 initialize=[(stf, site)for (stf, site) in m.sit_tuples
 if m.site_dict['ref-node'][(stf, site)] == 1],
 doc='Set of all reference nodes in defined microgrids')

In the transmission.py module this set is applied to define the voltage level of each microgrid as defined with the base-voltage parameters.

Implementations: transmission.py

Transmission lines can only transport one single commodity in the given model framework. Therefore, imaginary extra lines are created in the transdisthelper.py module. Active and reactive power flows are coupled with a redefined transmission line capacity constraint using a new rule that considers the apparent power:

def def_transmission_input_by_apparent_power_rule(m, tm, stf, sin, sout, tra, com):
 return (m.e_tra_in[tm, stf, sin, sout, tra, 'electricity']**2
 + m.e_tra_in[tm, stf, sin, sout, tra, 'electricity-reactive']**2
 <= (m.dt * m.cap_tra[stf, sin, sout, tra, com])**2)

To consider the correct lines in a coupled model the distribution system transmission tuple set is created for all predefined lines.
The resistance is required in the input sheet to activate the distribution system linearization method. The resistance parameter should be greater than 0 and given in per-unit system. The new m.def_ac_power_flow constraint applies the following rule to the resulting tupel set of lines:

 def def_ac_power_flow_rule(m, tm, stf, sin, sout, tra, com):
return (m.voltage_squared[tm, stf, sin] == m.voltage_squared[tm, stf, sout] +
 2* (m.transmission_dict['resistance'][(stf, sin, sout, tra, 'electricity')]
 * m.e_tra_in[tm, stf, sin, sout, tra, 'electricity']
 + m.transmission_dict['reactance'][(stf, sin, sout, tra, 'electricity-reactive')]
 * m.e_tra_in[tm, stf, sin, sout, tra, 'electricity-reactive']))

In comparison to the DC-OPF Multinode optimization model model, the key difference is that the nodal voltage magnitudes \(V^2\) are related to the active and reactive power branch flows with the respective line impedance.
After creating the new variable voltage_squared for this quantity

m.voltage_squared = pyomo.Var(
 m.tm, m.sit_tuples_ac,
 within=pyomo.Reals,
 doc='Voltage^2 of a site')

another constraint is introduced in order to monitor the permissible voltage range for all distribution system sites included in a new set that has been defined in urbs/model.py.
This is achieved with the new def_voltage_limit constraint applying the following rule:

def def_voltage_limit_rule(m, tm, stf, sin):
 return ((m.site_dict['base-voltage'][(stf, sin)] * m.site_dict['min-voltage'][(stf, sin)])**2,
 m.voltage_squared[tm, stf, sin],
 (m.site_dict['base-voltage'][(stf, sin)] * m.site_dict['max-voltage'][(stf, sin)])**2)

Moreover, the voltage of all nodes within the introduced slackbus set is scaled to the base voltage of the respective grid, that is defined within the input sheet:

def def_slackbus_voltage_rule(m, tm, stf, sin):
 return (m.voltage_squared[tm, stf, sin] == m.site_dict['base-voltage'][(stf, sin)]**2)

Automated Coupling

A central goal in this work is to consider different system levels within a single multi-commodity energy system model for expansion and operation planning.
A key aspect to realize this for our energy system planning approach is to integrate the bottom level microgrids within each associated top level region.
In the following, a walkthrough on the transdisthelper.py script will be given to establish understanding regarding
how the model coupling implementations work.

1. Import of Microgrid Data

Import microgrid data with a predefined selection list:

for set_number, set in enumerate(microgrid_set_list): # top region microgrid setting
 top_region_name = data['site'].index.get_level_values(1)[set_number]
 for type_nr, quantity_nr in enumerate(set):
 microgrid_entries = microgrid_data_initial[type_nr]['site'].index.get_level_values(1)
 n = 0
 while n < quantity_nr:
 microgrid_data_input = copy.deepcopy(microgrid_data_initial[type_nr])
 for entry in microgrid_entries:

Note

So far, demand and RE capacity factor timeseries are scaled for entire microgrid categories of a region.
In comparison to the variety of millions of demand and weather curves of large regions, this leads to unrealistically high
simultaneity as the number of different timeseries in the model is limited. Thereby, peaks for generation and demand
curves get clearly higher leading to overestimated peak load capacitiy requirements and thus increasing overall system costs.
The idea of a quantity number >1 in the selection list was to build different microgrids of the same type with
automated timeseries variability to counteract this effect. Due to computational limits, this hasn’t been pursued yet
but is kept in the script for potential future work. However, in our approach, this increased peaks can be reduced
with the applied timeseries aggregation method that has a beneficial smoothing effect on demand curves.

 Time Series Aggregation with Typeperiods

Time Series Aggregation with Typeperiods

Typeperiod Motivation

The type period module has been adapted into the urbs framework by Daniel Zinsmeister and modified to fit into our
approach as described below. It allows to scale selected periods to represent the entire year. In energy system models
it is popular to do so as there are recurring patterns in relevant timeseries such as demand or solar irradiation
profiles. For instance, typical periods for summer and winter time can be chosen and scaled with the corresponding
incidence of expected summer/winter periods. Thereby, economic (costs) and environmental (emissions) effects can be scaled adequately.

Approach with the ‘tsam’ Method

Hereby, the challenge is to
choose the most representative period of a season. The timestep selection must hold for all input timeseries.
Considering only one solar irradiation curve when defining two typical periods for summer and winter, it is
possible to manually choose the best fitting weeks within the year. However, even a simplified model of a country
considers approximately 100 distinct profiles. Hence, it is not possible to manually choose the most suitable
representative periods and a mathematical and automated method is necessary instead. Therefore, to choose the best
fitting typeperiods an open source python package called tsam is used, that applies machine learning methods and has
been developed by Leander Kotzur, Maximilian Hoffmann, Peter Markewitz, Martin Robinius and Detlef Stolten.To understand
the tsam procedure in detail see their provided tsam documentation [https://tsam.readthedocs.io/en/latest/index.html].
Summarized, a predefined number of type periods with a selected number of hours per period is calculated to optimally represent
the original data for all timeseries simultaneously. This is realized by optimizing cluster groups with the Root-Mean-Squared-Error
(RMSE) as objective functional value. Thereby, redundant data are minimized and thereby computational complexity can be substantially decreased.

In our approach before giving the timeseries data to the tsam algorithm, for all redundant profiles, a ‘Python’ dictionary is created to
remember the equal profiles which have been handed over. Next all duplicates are deleted.
By doing so the number of input timeseries in our approach could be reduced from 1638 to 95.

def run_tsam(data, noTypicalPeriods, hoursPerPeriod, cross_scenario_data):
 ### bring together all time series data
 time_series_data = pd.concat([data['demand'], data['supim'], data['buy_sell_price'],
 data['eff_factor']], axis=1, sort=True)
 ### create dict
 equal_col_dict = dict()
 for col1 in time_series_data.columns:
 time_series_data2 = time_series_data.drop(columns = col1)
 for col2 in time_series_data2.columns:
 if time_series_data[col1].equals(time_series_data2[col2]):
 equal_col_dict[col1] = col2
 break
 ### drop duplicate timeseries
 time_series_data = time_series_data.T.drop_duplicates().T

This dictionary is used after the application of the timeseries aggregation to allocate the results to all original profiles.

Enabling Seasonal Storage Solutions

The motivation to apply typical periods is to weight cluster periods based on their total incidence number.
The explicit chain of periods and thus the transition between distinct periods is not considered. Thereby, the overall
number of periods to model keeps low and thus the computational complexity is reduced. Despite, the disadvantage is that
the possibility of energy exchange between periods is disregarded. As a consequence, storage components must be
modelled with an additional constraint denoted as cyclicity condition setting all period’s final storage SOCs equal to
the initial values.

original timeset for cyclicity rule
m.t_endofperiod = pyomo.Set(
 within=m.t,
 initialize=t_endofperiod_list,
 ordered=True,
 doc='timestep at the end of each timeperiod')

cyclicity contraint
m.res_storage_state_cyclicity_typeperiod = pyomo.Constraint(
 m.t_endofperiod, m.sto_tuples,
 rule=res_storage_state_cyclicity_typeperiod_rule,
 doc='storage content initial == storage content at the end of each timeperiod')

cyclicity rule without tsam
def res_storage_state_cyclicity_typeperiod_rule(m, t, stf, sit, sto, com):
 return (m.e_sto_con[m.t[1], stf, sit, sto, com] == m.e_sto_con[t, stf, sit, sto, com])

The resulting main disadvantage is that long-term storage solutions that are essential for RE-dominant energy systems
cannot be considered appropriately.
Therefore, we apply a time series aggregation method with typical weeks combined with an additional storage constraint
that enables the exchange of energy between consecutive, alternating periods (for instance the type periods A and B).
This relaxes the cyclicity condition within a given type period, i.e. a total SOC change within a given type period A is allowed.
The basic idea is illustrated below for four typical weeks:

[image: ../_images/TSA.jpg]
The definition of required sets, variables, constraints and rules to implement this idea are presented below:

sets
m.t_endofperiod = pyomo.Set(
 within=m.t,
 initialize=t_endofperiod_list,
 ordered=True,
 doc='timestep at the end of each timeperiod')
m.subsequent_typeperiods = pyomo.Set(
 within=m.t * m.t,
 initialize=subsequent_typeperiods_list,
 ordered=True,
 doc='subsequent timesteps between two typeperiods')
m.start_end_typeperiods = pyomo.Set(
 within=m.t * m.t,
 initialize=start_end_typeperiods_list,
 ordered=True,
 doc='start and end of each modeled typeperiod as tuple')

SOC variable
m.deltaSOC = pyomo.Var(
 m.t_endofperiod, m.sto_tuples,
 within=pyomo.Reals,
 doc='Variable to describe the delta of a storage within each period')

constraints
constraint to describe the SOC difference of a storage within a repeating period A
m.res_delta_SOC = pyomo.Constraint(
 m.start_end_typeperiods, m.sto_tuples,
 rule=res_delta_SOC,
 doc='delta_SOC_A = weight * (SOC_A_tN - SOC_A_t0)')

SOC constraint for two consecutive typeperiods A and B
m.res_typeperiod_delta_SOC = pyomo.Constraint(
 m.subsequent_typeperiods, m.sto_tuples,
 rule=res_typeperiod_deltaSOC_rule,
 doc='SOC_B_t0 = SOC_A_t0 + delta_SOC_A')

new ciclycity constraint for typeperiods
m.res_storage_state_cyclicity_typeperiod = pyomo.Constraint(
 m.sto_tuples,
 rule=res_storage_state_cyclicity_rule_typeperiod,
 doc='storage content end >= storage content start - deltaSOC[last_typeperiod]')

rules
SOC rule for each repeating typeperiod
def res_delta_SOC(m, t_0, t_end, stf, sit, sto, com):
 return (m.deltaSOC[t_end, stf, sit, sto, com] ==
 (m.typeperiod_weights[t_end] - 1) * (m.e_sto_con[t_end, stf, sit, sto, com]
 - m.e_sto_con[t_0, stf, sit, sto, com]))

new storage rule using tsam considering the delta SOC per repeating typeperiod
def res_typeperiod_deltaSOC_rule(m, t_A, t_B, stf, sit, sto, com):
 return (m.e_sto_con[t_B, stf, sit, sto, com] ==
 m.e_sto_con[t_A, stf, sit, sto, com] + m.deltaSOC[t_A, stf, sit, sto, com])

new ciclycity rule for typeperiods
def res_storage_state_cyclicity_rule_typeperiod(m, stf, sit, sto, com):
 return (m.e_sto_con[m.t[len(m.t)], stf, sit, sto, com] >=
 m.e_sto_con[m.t[1], stf, sit, sto, com] - m.deltaSOC[m.t[len(m.t)], stf, sit, sto, com])

 ‘CoTraDis’ application guide

‘CoTraDis’ application guide

This section serves as a guide for those who would like to use the CoTraDis module.
First the adjusted runme file is introduced. Next, special input parameters to consider are presented.
Finally, the default scenario framework is discussed in order to enable you to define own model scenarios.

The script starts with the specification of the input files. The input folder must be located in the same folder as the run_transdist.py script.
In this folder the main transmission system file is located including another folder that contains input files for each desired microgrid type.
The desired input files to be imported must be defined at the beginning of the script

input_files = 'Transmission_Level.xlsx' # for single year file name, for intertemporal folder name
microgrid_files = ['Microgrid_rural_A.xlsx','Microgrid_urban_A.xlsx']

Then the result name and the result directory is set

result_name = 'Trans-Dist'

Next, the objective function to be minimized by the model is determined (options: ‘cost’ or ‘CO2’)

objective function
objective = 'cost' # set either 'cost' or 'CO2' as objective

and the solver to use muste be chosen. Gurobi is our predefined solver - to use it an academic license must be downloaded
at the Gurobi website [https://www.gurobi.com/downloads/free-academic-license/] after creating an account.

Choose Solver (cplex, glpk, gurobi, ...)
solver = 'gurobi'

To apply time series aggregation methods (tsam) the number of typical periods and the length of the periods must be defined:

input data for tsam method
noTypicalPeriods = 4
hoursPerPeriod = 168

Watch out! An increasing number of typeperiods crucially influences the computational load due to the introduced seasonal storage constraint (all subsequent alternating typeperiods must be modeled).
Evidence has shown, that especially at the beginning when increasing the noTypicalPeriods parameter, the computational load increases rapidly.
For higher numbers, the constellation of subsequent weeks varies which can even result in lower weeks to model (noTypicalPeriods : modeledWeeks - 2 : 3, 4 : 9, 6 : 14, 8 : 18, 10 : 21, 12 : 20).
These values may change for each individual model with its constellation of timeseries for intermittent resources and demand.

If you don’t use tsam you must choose the time range to be modeled (default of 8760 hours for the entire year)

simulation timesteps
(offset, length) = (0,8760) # time step selection

Remarks on Input Data

In this section input data that must be additionally considered in the input excel sheet are listed to simplify the
application for users:

Tranmission System Input File:

Sheet “Global”:

	transDist parameter to concatenate distribution system data: 1 or 0

	tsam parameter: 1 or 0

Sheet “Site”:

	microgrid setting to select desired microgrids per region: list

	multiplier to scale chosen microgrids: list

Distribution System Input File:

Sheet “Site”:

	base voltage of the distribution system level: value

	ref-node to indicate reference node with transformer interface: 1 or 0

	min/max-voltage to define permissible voltage range: value

Note

Permissible voltage range must be adjusted to the length of microgrid branches

In our case study for German distribution systems we identified a possible voltage range from 0.95 to 1.03 per unit.
These values are representative for actual grids which have more nodes that can be modeled.
Therefore, to get a meaningful voltage constraint, the range must be appropriately reduced.

 Python Module Index

 Python Module Index

 u

 		 	

 		
 u	

 	
 	
 urbs	

 Index

Index

 C
 | U

C

 	
 	commodity_subset() (in module urbs)

U

 	
 	urbs (module), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]

_images/CodeFlowDiagramm.png
x = DS-share

dc = central TS demand

de = DS electricity demand
dm = DS mobility demand
dn = DS heat demand

N = interface efficiency

——process flow——p
— —data flow— — -

Start:
Integrate Distribution
System Data

DS data: —DS data — import DS data

_ with selection list
selection

BB:[1,1]
BE:[0,1]

[rural, urban]

allocate specific top
region indices to DS data

scale all relevant postpone
entity data demand scaling*

X < 100% x == 100%

store d, & dj, for

dc = dc+ (1-X)(dm*dn) I subsequent scenarios

dc=dc-XdeIn

copy CF-vectors for RE
resources from TS into DS
(TS + DS):
BB, BB_rural,
add reactive power BB_urban,
components to DS data BE, BE_urban...

J

L concatenate DS data)
o TS+
with TS data TS+DS data- coupled
system
data |

) Yes
TSA active

apply TSA
method

L

End:
Integrate Distribution
System Data

catch up
demand scaling

_images/Microgrids.jpg
Smgle family house B Battery electric vehicle

n Multi-apartment house Heat Pump

Photovoltaic @ Heat Storage

E’ Battery

_images/On-off.png
in,out
fpe’ A

o pin
Kyrpe

- out.env
Kyrpe

- .out
Kyrpe

- out
P, Ky

oe —— Input ¢

out
pe
w—F1vironmental

out,env
Output g2

PK, Ky

— Output €

_images/Dataflow.png
saveload.py
— .h5-file
save

input.py model.py Solver chosen report.py

Input model
P . Solved m —* Report
parameters instance m report]

read_excel create_model solve

plot.py

— Plots
plot

_images/Flex_Op.png
Source (e.g. Gas)

Intermediate

Output 1 (Heat) Output 2 (Elec)

Unit (Mode 1)

Uit (operational state)

€02

Unit (Mode 2)

_images/Part-load-on-off.png
P Ky

e Input €5

out
—— Output €5

—— Efficiency 7,

m—Fn1vironmental

out,env
Output ep

Ky

maz

_images/Prop_Op.png
Operational state

Input 1

Process 1

Input 2

Demand

_images/TSA.jpg
Original Data

= v} il g
o o
£]
b= : <
time [week]
&
= TSA Sequence - Typeweek (Occurence):
A(2), B(1), A(5), B(2), C(6), B(3), D(18), B(9), A(6)
it ibiiiiii g
F]
: B
‘¢t D R

time [week]

nav.xhtml

 Table of Contents

 		
 urbs: A linear optimisation model for distributed energy systems

 		
 Users guide

 		
 Overview model structure

 		
 Commodity

 		
 Process

 		
 Transmission

 		
 Storage

 		
 Time series

 		
 Get started

 		
 Inputs

 		
 runscript explained

 		
 Imports

 		
 Input Settings

 		
 Output Settings

 		
 Scenarios

 		
 Run scenarios

 		
 Business park example explained

 		
 Task

 		
 Input files

 		
 Run script

 		
 Modeling nuggets

 		
 Different operational modes

 		
 Proportional operation

 		
 Scenario generation

 		
 Mathematical description

 		
 Structure of an urbs model

 		
 Energy system entities

 		
 Minimal optimization model

 		
 Objective

 		
 Costs

 		
 Process expansion constraints

 		
 Commodity dispatch constraints

 		
 Process dispatch constraints

 		
 Intertemporal optimization model

 		
 Costs

 		
 Unit expansion constraints

 		
 Commodity dispatch constraints

 		
 Multinode optimization model

 		
 Transmission capacity constraints

 		
 Commodity dispatch constraints

 		
 Transmission dispatch constraints

 		
 DC Power Flow feature

 		
 Energy Storage

 		
 Costs

 		
 Storage expansion constraints

 		
 Commodity dispatch constraints

 		
 Storage dispatch constraints

 		
 Trading with an external market

 		
 Costs

 		
 Commodity dispatch constraints

 		
 Demand side management

 		
 Example of a DSM process

 		
 Commodity dispatch constraints

 		
 Advanced Processes

 		
 Time Variable Efficiency

 		
 Minimum Load and Part Load Behaviors

 		
 On/off Behavior

 		
 Costs

 		
 Model Implementation

 		
 Sets

 		
 Elementary sets

 		
 Tuple Sets

 		
 Commodity Type Subsets

 		
 Operational state tuples

 		
 Variables

 		
 Cost Variables

 		
 Commodity Variables

 		
 Process Variables

 		
 Transmission Variables

 		
 DCPF Transmission Variables

 		
 Storage Variables

 		
 Demand Side Management Variables

 		
 Parameters

 		
 Technical Parameters

 		
 Economic Parameters

 		
 Equations

 		
 Objective function

 		
 Constraints

 		
 ‘urbs’ module description

 		
 identify.py

 		
 input.py

 		
 model.py

 		
 output.py

 		
 plot.py

 		
 report.py

 		
 runfunctions.py

 		
 saveload.py

 		
 scenarios.py

 		
 validation.py

 		
 Coupling of Transmission and Distribution System Modules

 		
 Overview

 		
 Distribution System Framework

 		
 Implementations: model.py

 		
 Implementations: transmission.py

 		
 Automated Coupling

 		
 1. Import of Microgrid Data

 		
 2. Model Connection

 		
 3. Parameter Scaling

 		
 4. Scenario Shifting

 		
 5. RE Profiles

 		
 6. Reactive Power Flows

 		
 7. Concatenation

 		
 8. Worklfow

 		
 Time Series Aggregation with Typeperiods

 		
 Typ