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CHAPTER 1

Contents

1.1 User’s manual

These documents give a general overview and help you getting started from after the installation (which
is covered in the README.md file on GitHub) to you first running model.

1.1.1 Users guide

Welcome to urbs. The following sections will help you get started.

Overview model structure

urbs is a generator for linear energy system optimization models.

urbs consists of several model entities. These are commodities, processes, transmission and storage.
Demand and intermittent commodity supply through are modelled through time series datasets.

Commodity

Commodities are goods that can be generated, stored, transmitted and consumed. By convention, they
are represented by their energy content (in MWh), but can be changed (to J, kW, t, kg) by simply using
different (consistent) units for all input data. Each commodity must be exactly one of the following six
types:

• Stock: Buyable at any time for a given price. Supply can be limited per timestep or for a whole
year. Examples are coal, gas, uranium or biomass.

• SupIm: Supply intermittent stands for fluctuating resources like solar radiation and wind energy,
which are available according to a timeseries of values, which could be derived from weather data.
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• Demand: These commodities have a timeseries for the requirement associated and must be pro-
vided by output from other process or from storage. Usually, there is only one demand commodity
called electricity (abbreviated to Elec), but multiple (e.g. electricity, space heating, process heat,
space cooling) demands can be specified.

• Env: The special commodity CO2 is of this type and represents the amount (in tons) of greenhouse
gas emissions from processes. Its total amount can be limited, to investigate the effect of policies
on the model.

• Buy/Sell: Commodities of these two types can be traded with an external market. Similar to Stock
commodities they can be limited per hour or per year. As opposed to Stock commodities the price
at which they can be traded is not fixed but follows a user defined time series.

Stock and environmental commodities have three numeric attributes that represent their price, total an-
nual and per timestep supply or emission limit, respectively. Environmental commodities (i.e. CO2)
have a maximum allowed quantity that may be created across the entire modeling horizon.

Commodities are defined over the tuple (year, site, commodity, type), for example
(2020, 'Norway', 'Wind', 'SupIm') for wind in Norway with a time series or (2020,
'Iceland', 'Electricity', 'Demand') for an electricity demand time series in Iceland.

Process

Processes describe conversion technologies from one commodity to another. They can be visualised like
a black box with input(s) (commodity) and output(s) (commodity). Process input and output ratios are
the main technical parameters for processes. Fixed costs for investment and maintenance (per capacity)
and variable costs for operation (per output) are the economical parameters.

Processes are defined over two tuples. The first tuple (year, site, process) specifies the loca-
tion of a given process e.g. (2030, 'Iceland', 'Turbine') would locate a process Turbine
at site Iceland. The second tuple (year, process, commodity, direction) then speci-
fies the inputs and outputs for that process. For example, (2030, 'Turbine', 'Geothermal',
'In') and (2030, 'Turbine', 'Electricity', 'Out') describes that the process named
Turbine has a single input Geothermal and the single output Electricity.

Transmission

Transmission allows instantaneous transportation of commodities between sites. It is charac-
terised by an efficiency and costs, just like processes. Transmission is defined over the tu-
ple (year, site in, site out, transmission, commodity). For example, (2030,
'Iceland', 'Norway', 'Undersea cable', 'Electricity') would represent an un-
dersea cable for electricity between Iceland and Norway.

Storage

Storage describes the possibility to deposit a deliberate amount of energy in the form of one commodity
at one time step; with the purpose of retrieving it later. Efficiencies for charging/discharging depict
losses during input/output. Storage is characterised by capacities both for energy content (in MWh)
and charge/discharge power (in MW). Both capacities have independent sets of investment, fixed and
variable cost parameters to allow for a very flexible parametrization of various storage technologies;
ranging from batteries to hot water tanks.
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Storage is defined over the tuple (year, site, storage, stored commodity). For exam-
ple, (2020, 'Norway', 'Pump storage', 'Electricity') represents a pump storage
power plant in Norway that can store and retrieve energy in form of electricity.

Time series

Demand

Each combination (year, site, demand commodity) may have one time series, describing
the aggregate demand (typically MWh) for a commodity within a given timestep. They are a crucial
input parameter, as the whole optimization aims to satisfy these demands with minimal costs by the
given technologies (process, storage, transmission). An additional feature for demand commodities is
demand side management (DSM) which allows for the shifting of demands in time.

Intermittent Supply

Each combination (year, site, supim commodity) must be supplied with one time series,
normalized to a maximum value of 1 relative to the installed capacity of a process using this commodity
as input. For example, a wind power time series should reach value 1, when the wind speed exceeds the
modeled wind turbine’s design wind speed is exceeded. This implies that any non-linear behaviour of
intermittent processes can already be incorporated while preparing this timeseries.

Buy/Sell prices

Each combination (year, Buy/sell commodity) must be supplied with one time series which
represents the price for purchasing/selling the given commodities in the given modeled year.

Time variable efficiency

Each combination (year, site, process) can optionally be supplied with one time series which
multiplies the outputs of the process with an acoording factor.

Get started

Welcome to urbs! Here you can learn how to use the program and what to do to create your own
optimization problems and run them.

Inputs

There are two different types of inputs the user has to make in order to set up and solve an optimization
problem with urbs.

First, there are the model parameters themselves, i.e. the parameters specifying the behavior of the dif-
ferent model entities such as commodities or processes. These parameters are entered into spreadsheets
with a standardized structure. These then have to be placed in the subfolder Input. There can be
no further information given on those parameters here since they make up the particular energy system

1.1. User’s manual 5
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models. There are, however, two examples provided with the code, which are explained elsewhere in
this documentation.

Second, there are the settings of the modeling run such as the modeling horizon or the solver to be
employed. These settings are made in a run script. For the standard example such scripts are given
named runme.py for the example mimo-example and runBP.py for the example Business park.
To run a modeling run you then simply execute the according run script by typing:

$ python3 runscript.py

in the command prompt.

You can immediately test this after the installation by running one of the two standard examples using
the corresponding example run scripts.

runscript explained

The runscript can be subdivided into several parts. These will be discussed here in detail.

Imports

The script starts with importing the relevant python libraries as well as the module urbs.

import os
import shutil
import urbs

The included packages have the following functions:

• os and shutil are builtin Python modules, included here for their data path and copying operations.

• urbs is the directory which includes the modules, whose functions are used mainly
in this script. These are prepare_result_directory(), setup_solver() and
run_scenario().

More functions can be found in the document API reference.

In the following sections the user defined input, output and scenario settings are described.

Input Settings

The script starts with the specification of the input files, which is either a single .xlsx file located in the
same folder as the runscript or a collection of .xlsx files located in the subfolder Input:

input_files = 'Input'
result_name = 'Mimo-ex'
result_dir = urbs.prepare_result_directory(result_name) # name + time
→˓stamp

# copy input file to result directory
try:

shutil.copytree(input_files, os.path.join(result_dir, 'Input'))
except NotADirectoryError:

(continues on next page)
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(continued from previous page)

shutil.copyfile(input_files, os.path.join(result_dir, input_files))
# copy runme.py to result directory
shutil.copy(__file__, result_dir)

The input file/folder and the runscript are automatically copied into the result folder.

Next variables specifying the desired solver and objective function are set:

# choose solver (cplex, glpk, gurobi, ...)
solver = 'glpk'

# objective function
objective = 'cost' # set either 'cost' or 'CO2' as objective

The solver has to be licensed for the specific user, where the open source solver “glpk” is used as the
standard. For the objective function urbs currently allows for two options: “cost” and “CO2” (case
sensitive). In the former case the total system cost and in the latter case the total CO2-emissions are
minimized.

The model parameters are finalized with a specification of timestep length and modeled time horizon:

# simulation timesteps
(offset, length) = (3500, 168) # time step selection
timesteps = range(offset, offset+length+1)
dt = 1 # length of each time step (unit: hours)

The variable timesteps is the list of timesteps to be simulated. Its members must be a subset of the
labels used in input_file’s sheets “Demand” and “SupIm”. It is one of the function arguments to
create_model() and accessible directly, so that one can quickly reduce the problem size by reducing
the simulation length, i.e. the number of timesteps to be optimised. Variable dt is the duration of
each timestep in the list in hours, where any positiv real value is allowed.

range() is used to create a list of consecutive integers. The argument +1 is needed, because
range(a,b) only includes integers from a to b-1:

>>> range(1,11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Output Settings

The desired output is also specified by the user in the runscript. It is split into two parts: reporting and
plotting. The former is used to generate an excel output file and the latter for standard graphs.

Reporting

urbs by default generates an .xlsx-file as an ouput in result_dir. This file includes all commodities of
interest to the user and can be specified as report tuples each consisting of a given year, sites and
commodities combination. Information about these commodities is summarized both in sum (in
sheet “Energy sums”) and as individual timeseries (in sheet “. . . timeseries”).

1.1. User’s manual 7
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# detailed reporting commodity/sites
report_tuples = [

(2019, 'North', 'Elec'),
(2019, 'Mid', 'Elec'),
(2019, 'South', 'Elec'),
(2019, ['North', 'Mid', 'South'], 'Elec'),
(2024, 'North', 'Elec'),
(2024, 'Mid', 'Elec'),
(2024, 'South', 'Elec'),
(2024, ['North', 'Mid', 'South'], 'Elec'),
(2029, 'North', 'Elec'),
(2029, 'Mid', 'Elec'),
(2029, 'South', 'Elec'),
(2029, ['North', 'Mid', 'South'], 'Elec'),
(2034, 'North', 'Elec'),
(2034, 'Mid', 'Elec'),
(2034, 'South', 'Elec'),
(2034, ['North', 'Mid', 'South'], 'Elec'),
]

# optional: define names for sites in report_tuples report_sites_name = {(‘North’, ‘Mid’, ‘South’): ‘All’}

Optionally it is possible to define clusters of sites for aggregated information and with
report_sites_name it is then possible to name these. If they are empty, the default value will
be taken.

Plotting

urbs generates default result images. Which images exactly are desired can be set by the user. via the
following input lines:

# plotting commodities/sites
plot_tuples = [

(2019, 'North', 'Elec'),
(2019, 'Mid', 'Elec'),
(2019, 'South', 'Elec'),
(2019, ['North', 'Mid', 'South'], 'Elec'),
(2024, 'North', 'Elec'),
(2024, 'Mid', 'Elec'),
(2024, 'South', 'Elec'),
(2024, ['North', 'Mid', 'South'], 'Elec'),
(2029, 'North', 'Elec'),
(2029, 'Mid', 'Elec'),
(2029, 'South', 'Elec'),
(2029, ['North', 'Mid', 'South'], 'Elec'),
(2034, 'North', 'Elec'),
(2034, 'Mid', 'Elec'),
(2034, 'South', 'Elec'),
(2034, ['North', 'Mid', 'South'], 'Elec'),
]

# optional: define names for sites in plot_tuples
plot_sites_name = {('North', 'Mid', 'South'): 'All'}

# plotting timesteps

(continues on next page)
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(continued from previous page)

plot_periods = {
'all': timesteps[1:]
}

The logic is similar to the reporting case discussed above. With the setting of plotting timesteps the
exact range of the plotted result can be set. In the default case shown this range is all modeled timesteps.
For larger optimization timestep ranges this can be impractical and instead the following syntax can be
used to hard code which steps are to be plotted exactly.

# plotting timesteps
plot_periods = {

'win': range(1000:1168),
'sum': range(5000:5168)
}

In this example two 1 week long ranges are plotted between the specified time steps. Using this make
sure, that the chosen ranges are subsets of the modeled time steps themselves.

The plot colors can be customized using the module constant COLORS. All plot colors are user-definable
by adding color tuple() (r, g, b) or modifying existing tuples for commodities and plot decora-
tion elements. Here, new colors for displaying import/export are added. Without these, pseudo-random
colors are generated in to_color().

# create timeseries plot for each demand (site, commodity) timeseries
for sit, com in prob.demand.columns:

Scenarios

This section deals with the definition of different scenarios. Starting from the same base scenarios,
defined by the data in input_file, they serve as a short way of defining the difference in input data.
If needed, completely separate input data files could be loaded as well.

The scenarios list in the end of the input file allows then to select the scenarios to be actually run.

scenarios = [
urbs.scenario_base,
urbs.scenario_stock_prices,
urbs.scenario_co2_limit,
urbs.scenario_co2_tax_mid,
urbs.scenario_no_dsm,
urbs.scenario_north_process_caps,
urbs.scenario_all_together

]

The following scenario functions are specified in the subfolder urbs in script scenarios.py.

Scenario functions

A scenario is simply a function that takes the input data and modifies it in a certain way. with the
required argument data, the input data dict.:

1.1. User’s manual 9
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# SCENARIOS
def scenario_base(data):

# do nothing
return data

The simplest scenario does not change anything in the original input file. It usually is called “base”
scenario for that reason. All other scenarios are defined by 1 or 2 distinct changes in parameter values,
relative to this common foundation.:

def scenario_stock_prices(data):
# change stock commodity prices
co = data['commodity']
stock_commodities_only = (co.index.get_level_values('Type') == 'Stock')
co.loc[stock_commodities_only, 'price'] *= 1.5
return data

For example, scenario_stock_prices() selects all stock commodities from the DataFrame
commodity, and increases their price value by 50%. See also pandas documentation Selection by
label for more information about the .loc function to access fields. Also note the use of Augmented
assignment statements (*=) to modify data in-place.:

def scenario_co2_limit(data):
# change global CO2 limit
hacks = data['hacks']
hacks.loc['Global CO2 limit', 'Value'] *= 0.05
return data

Scenario scenario_co2_limit() shows the simple case of changing a single input data value. In
this case, a 95% CO2 reduction compared to the base scenario must be accomplished. This drastically
limits the amount of coal and gas that may be used by all three sites.:

def scenario_north_process_caps(data):
# change maximum installable capacity
pro = data['process']
pro.loc[('North', 'Hydro plant'), 'cap-up'] *= 0.5
pro.loc[('North', 'Biomass plant'), 'cap-up'] *= 0.25
return data

Scenario scenario_north_process_caps() demonstrates accessing single values in the
process DataFrame. By reducing the amount of renewable energy conversion processes (hy-
dropower and biomass), this scenario explores the “second best” option for this region to supply its
demand.:

def scenario_all_together(data):
# combine all other scenarios
data = scenario_stock_prices(data)
data = scenario_co2_limit(data)
data = scenario_north_process_caps(data)
return data

Scenario scenario_all_together() finally shows that scenarios can also be combined by chain-
ing other scenario functions, making them dependent. This way, complex scenario trees can written
with any single input change coded at a single place and then building complex composite scenarios
from those.

10 Chapter 1. Contents

https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-label
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-label
http://docs.python.org/2/reference/ simple_stmts.html#augmented-assignment-statements
http://docs.python.org/2/reference/ simple_stmts.html#augmented-assignment-statements
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame


urbs Documentation, Release 1.0.0

Run scenarios

This now finally is the function that gets everything going. It is invoked in the very end of the runscript.

for scenario in scenarios:
prob = urbs.run_scenario(input_files, solver, timesteps, scenario,

result_dir, dt, objective,
plot_tuples=plot_tuples,
plot_sites_name=plot_sites_name,
plot_periods=plot_periods,
report_tuples=report_tuples,
report_sites_name=report_sites_name)

Having prepared settings, input data and scenarios, the actual computations happen in the function
run_scenario() of the script runfunctions.py in subfolder urbs. It is executed for each
of the scenarios included in the scenario list. The following sections describe the content of function
run_scenario(). In a nutshell, it reads the input data from its argument input_file, modifies
it with the supplied scenario, runs the optimisation for the given timesteps and writes report and
plots to result_dir.

Reading input

# scenario name, read and modify data for scenario
sce = scenario.__name__
data = read_input(input_files,year)
data = scenario(data)
validate_input(data)

Function read_input() returns a dict data of up to 12 pandas DataFrames with hard-coded col-
umn names that correspond to the parameters of the optimization problem (like eff for efficiency or
inv-cost-c for capacity investment costs). The row labels on the other hand may be freely cho-
sen (like site names, process identifiers or commodity names). By convention, it must contain the six
keys commodity, process, storage, transmission, demand, and supim. Each value must
be a pandas.DataFrame, whose index (row labels) and columns (column labels) conforms to the
specification given by the example dataset in the spreadsheet mimo-example.xlsx.

data is then modified by applying the scenario() function to it. To then rule out a list of known
errors, that accumulate through growing user experience, a variety of validation functions specified in
script validate.py in subfolder urbs is run on the dict data.

Solving

# create model
prob = urbs.create_model(data, dt, timesteps)

# refresh time stamp string and create filename for logfile
now = prob.created
log_filename = os.path.join(result_dir, '{}.log').format(sce)

# solve model and read results
optim = SolverFactory('glpk') # cplex, glpk, gurobi, ...

(continues on next page)
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(continued from previous page)

optim = setup_solver(optim, logfile=log_filename)
result = optim.solve(prob, tee=True)

This section is the “work horse”, where most computation and time is spent. The optimization prob-
lem is first defined (create_model()) and populated with parameter values with values. The
SolverFactory object is an abstract representation of the solver used. The returned object optim
has a method set_options() to set solver options (not used in this tutorial).

The remaining line calls the solver and reads the result object back into the prob object, which is
queried to for variable values in the remaining script file. Argument tee=True enables the realtime
console output for the solver. If you want less verbose output, simply set it to False or remove it.

Business park example explained

In this part the input files of the standard example Business park will be explained in detail.

Task

The task we set ourselves here is to build our own intertemporal model. The task is the following:

The technical staff of a business park management company wants you to find the cost optimal energy
system for their business park. You are to provide this with increasingly stricter CO2 emission limits
over time. As the company expects to operate this business park for a long time still, they want you to
help developing a long term strategy how to transform the energy supply infrastructure of the business
park in cost optimal way over the time frame of 3 decades. The company also expects that the business
park will be increasingly closely interacting with the neighboring small city and its energy system. All
current and expected demand curves are given to you. You also have full access to regional climate
models and all relevant parameters for the energy conversion units relevant for your problem.

Input files

The task set is intertemporal. That is we need to provide several .xlsx input files, one for each modeled
year. Here we chose to use 3 files representing modeled years 10 years apart. For the given task this
seems to be a good compromise between accuracy and computational effort. The files are named 2020.
xlsx, 2030.xlsx and 2040.xlsx and sit in the folder Input (Business park). We will
now proceed with a detailed walkthrough of the individual files.

Sheet Global

Here you can now specify the global properties needed for the modeling of the energy system. Note that
this sheet has different entries for the different input files:

• Support timeframe (All files): Give the value for the modeled year here.

• Discount rate (Only first file): This value gives the discount rate that is used for intertemporal
planning. It stands for the annual devaluation of money across the modeling horizon. In the
example a discount rate of 3 % is used.
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• CO2 limit (All files ): This parameter limits the CO2 emissions across all sites within one modeled
year, the CO2 budget sets a cap on the total emissions across all sites in the entire modeling
horizon. If no restriction is desired enter ‘inf’ here. In the example increasingly strict values for
the CO2 limit are used for the different modeled years, from 60 kt/a in 2020 over 45 kt/a in 2030
to 30 kt/a in 2040. This represents the will of the company to achieve milestones in the emission
reductions while gradually changing their energy infrastructure.

• CO2 budget (Only first file): While the CO2 limit specified for each year limits the CO2 emissions
across all sites within one modeled year, the CO2 budget sets a cap on the total emissions across
all sites in the entire modeling horizon. If no restriction is desired enter ‘inf’ here. The CO2
budget is only active when the Objective is set to its default value ‘cost’. In the example a CO2
budget of 1.2 Mt is used. This budget imposes a stricter limit on the emissions than the combined
targets for the individual modeled year. In terms of climate impact his limit is the more important
one. For all CO2 limitations the business park and the city are considered together since in the
assumed case the company running the business park wants to act as an electricity provider for
the city as well.

• Cost budget (Only first file): With this parameter a limit on the total system cost over the entire
modeling horizon can be set. If no restriction is desired enter ‘inf’ here. The Cost budget is
only active when the Objective is set to the value ‘CO2’. In the example no CO2 optimization is
considered this parameter is thus set to infinity.

• Last year weight (Only last file): In intertemporal modeling each modeled year is repeated until
the next modeled year is reached. This is done ba assigning a weight to the costs accrued in each
of the modeled years. For the last modeled year the number of repetitions has to be set by the user
here, where a high number leads to a stronger weighting of the last modeled year, i.e. of the final
energy system configuration. In the example the last year has a weight of 10 years. This means
that it will be equally weighted identically to the others which always represent all years until the
ext modeled year.

Sheet Site

In this sheet you can specify the site names and also the area of each site. The line index represents all
the sites. The only site specific property to be set is then:

• Area: Specifies the usable area for processes in the given site. The area does not need to be the
total floor area. It is used to limit the use of area consuming processes and can be seen as, e.g., the
roof area for solar technologies.

In the example two sites ‘Business park’ and ‘City’ are given. These and their respective areas do
not change. The areas here represent roof areas for PV and the city has more of this.

Sheet Commodity

In this sheet all the commodities, i.e. energy or material carriers, are specified. The line index com-
pletes a commodity tuple, i.e. a connection (year, site, commodity, type). There are three
properties to be specified for all commodities of types Stock, Buy, Sell and Environmental.

• Price denotes the cost of taking one unit of energy from the stock for Stock commodities or
emitting one unit of Environmental. For Buy and Sell commodities this is not directly a price
but a multiplier for the time series given in the sheet ‘Buy-Sell-Price’. It is thus typically set to 1
for these commodity types.

1.1. User’s manual 13
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• max limits the total amount of the commodity that may be bought, sold or emitted per year.

• maxperhaour limits the total amount of the commodity that may be bought, sold or emitted per
hour (not timestep but really hour).

In the site ‘Business park’ there are 9 commodities defined:

• Solar (West/East) is of type SupIm and represents the capacity factor timeseries of solar panels
mounted with a given inclination (10° both West and East).

• Grid electricity is of type Buy and represents the electricity price as bought from the regional
grid operator. The business park pays constant price over the year. In the site ‘City’ this price is
different and hence a multiplier is used to increase the wholesale price for households.

• Gas is of type Stock and represents the price for the purchase of natural gas from the local
provider.

• Electricity, Heat and Cooling are of type Demand and represent the hourly demand for these three
energy carriers.

• Intermediate is of type Stock. However, it is not possible to buy this commodity from the stock. It
is introduced to allow for a flexible operation of a combined heat and power (CHP) plant according
to section Modeling nuggets.

• Intermediate low temperature is of type Stock. It is also not buyable from an external source. Its
purpose is to make the operation of the cooling processes more realistic by preventing the storage
of high temperature cooling from ambient air cooling in cold storages.

In site ‘City’ one additional commodity, Operation decentral units is introduced. It is of type SupIm
and makes sure that the different heating technologies usable in the site all operate at a fixed share of
the total heat demand. This is necessary, since these technologies are build up in a decentral way in the
individual houses. The idea behind this is laid out in section Modeling nuggets.

Sheet Process

In this sheet the energy conversion technologies are described. Here only the economical and some
general technical parameters are set. The interactions with the commodities are introduced in the next
sheet. The following parameters are set here for the processes:

• Installed capacity (MW) (Only first file) gives the capacity of the process that is already istalled
at the start of the modeling horizon.

• Lifetime of installed capacity (years) (Only first file) gives the rest lifetime of the installed
processes in years. A process can be used in a modeled year y still if the lifetime plus the first
modeled year exceeds the next year y+1.

• Minimum capacity (MW) denotes a capacity target that has to be met by the process in a given
modeled year. This means that the system will build at least this capacity.

• Maximum capacity (MW) restricts the capacity that can be built to the specified value.

• Maximum power gradient (1/h) restricts the ramping of process operational states, i.e. the
change in the throughput variable. The value gives the fraction of the total capacity that can be
changed in one hour. A value of 1 thus restricts the change from idle to full operational state (or
vice versa) to at least a duration of one hour.
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• Minimum load fraction gives a lower limit for the operational state of a process as a fraction of
the total capacity. It is only relevant for processes where part-load behavior is modeled. A value
here is only active when ‘Ratio-Min’ is numerical for at least one input commodity.

• Investment cost (C/MW) denotes the capacity specific investment costs for the process. You
should give the book value here. The program will then translate this into the correct total, dis-
counted cost within the model horizon.

• Annual fix costs (C/MW) represent the amount of money that has to be spent annually for the
operation of a process capacity. They can represent, e.g., labour costs or calendaric ageing costs.

• Variable costs (C/MWh) are linked to the operation of a process and are to be paid for each unit
of throughput through the process. They can represent anything from usage ageing to taxes.

• Weighted average cost of capital denotes the interest rate or expected return on investment with
which the investor responsible for the energy system calculates.

• Depreciation period denotes both the economical and technical lifetime of all units in the system.
It thus determines two things: the total costs of a given investment and the end of operational time
for all units in the energy system modeled.

• Area use per capcacity (m^2/MW) specifies the physical area a given process takes up at the site
it is built. This can be used, e.g. to restrict the capacity of solar technologies by a total maximal
roof area. The restricting area is defined in sheet ‘Site’.

While the details of the processes will be discussed in more detail in the next section one mention on
the processes ‘Load dump’ and ‘Slack’ is made here. These processes are not introduced to represent
real units but help making operation more realistic and error fixing more easy. A load dump process
just destroys energy which is sometimes necessary in order to prevent the system from doing unrealistic
gymnastics to keep the vertex rule. A ‘Slack’ process can create a demand commodity out of thin air for
an extremely high price. It thus indicates when the problem is not feasible, making error fixing much
easier. Both should typically be included in models.

Sheet Process-Commodity

In this sheet the technical properties of processes are set. These properties are given for each process
independent of the site where the process is located. You need to make an imput for all the processes
defined in the ‘Process’ sheet. The line index is a tuple (process, commodity, direction),
where ‘Direction’ has to be set as either ‘In’ or ‘Out’ and specifies wether a commodity is an in- or
an output of a given process. Under the column ‘ratio’ you then have to specify the commodity in- or
outflows per installed capacity and time step at the point of full operation. The efficiency of the process
for the conversion of one input into one output commodity is then given by the ratio of the chosen values.
For example, in the modeled year 2020 the process ‘Gas engine power plant’ converts 2.2 MWh of ‘Gas’
into one MWh each of ‘Electricity’ and ‘Heat’ while emitting 0.2 t of ‘CO2’. This corresponds to an
efficiency of 0.45 for ‘Heat’ and ‘Electricity’ conversion.

If a process has a more complex part load behavior, where, e.g., the efficiency changes this can be partly
captured by setting values in the ‘ratio-min’ column. These specify the commodity flows at the minimum
operation point specified in the ‘Process’ sheet under ‘min-fract’. The process will then no longer be
allowed to turn off so use this carefully. In the present case this behavior is set for the combined heat
and power plant ‘CHP (Operational state)’ only.

There are a few special settings made in the example. First, the CHP plant is divided into three parts.
The idea behind this is described in Modeling nuggets. The two processes ‘CHP (Electricity driven)’ and
‘CHP (Heat driven)’ specify the commodity flows in the two extreme operational states. The system can
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then chose all linear interpolations between both states by guiding the commodity flow of ‘Intermediate’
through the two processes in the desired ratio. Second, the cooling technologies are implemented in a
two stage way. The reason for this is that the process ‘Ambient air cooling’ is extremely efficient and
extremely cheap. While it can only be used in certain time intervals (see explanation of ‘TimeVarEff’
further below), its output could nevertheless be stored otherwise which is not realistic. The introduction
of commodity ‘Intermediate low temperature’ prevents this. It is the output of all the cooling technolo-
gies except for ‘Ambient air cooling’ and is also the one that can be stored (see below).

Sheet Transmission

In this sheet the parameters for transmission lines between sites are specified. The line index is part
of a transmission tuple (Site In, Site Out, Transmission, Commodity). Note that for
each transmission the inverse one with the same properties should also be given. The parameters are the
following:

• Efficiency (1) specifies the transport efficiency of the transmission line.

• Lifetime of installed capacity (years) (Only first file) gives the rest lifetime of the installed
transmission lines in years. A transmission line can be used in a modeled year y still if the lifetime
plus the first modeled year exceeds the next year y+1.

• Investment cost (C/MW) denotes the capacity specific investment costs for the transmission line.
You should give the book value here. The program will then translate this into the correct total,
discounted cost within the model horizon.

• Annual fix costs (C/MW) represent the amount of money that has to be spent annually for the
operation of a transmission capacity. They can represent, e.g., labour costs or calendaric ageing
costs.

• Variable costs (C/MWh) are linked to the operation of a given transmission line.

• Installed capacity (MW) (Only first file) gives the transmission capacity of transmission lines
already installed at the start of the modeling horizon.

• Minimum capacity (MW) denotes a transmission capacity target that has to be met by the trans-
mission lines in a given modeled year. This means that the system will build at least this transmis-
sion capacity.

• Maximum capacity (MW) restricts the transmission capacity that can be built to the specified
value.

• Weighted average cost of capital denotes the interest rate or expected return on investment with
which the investor responsible for the energy system calculates.

• Depreciation period denotes both the economical and technical lifetime of all units in the system.
It thus determines two things: the total costs of a given investment and the end of operational time
for all units in the energy system modeled.

In the example the only commodity that can be transported from one site to the other is electricity.

Sheet Storage

In this sheet the parameters for storage units are specified. Each storage unit is indexed with parts of
a storage tuple (storage, commodity). In storages charging/discharging power and the capacity
are sized independently. The parameters specifying the storage properties are the following:
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• Installed capacity (MWh) (Only first file) gives the storage capacity of storages already installed
at the start of the modeling horizon.

• Installed storage power (MW) (Only first file) gives the charging/discharging power of storages
already installed at the start of the modeling horizon.

• Lifetime of installed capacity (years) (Only first file) gives the rest lifetime of the installed
storages in years. A storage can be used in a modeled year y still if the lifetime plus the first
modeled year exceeds the next year y+1.

• Minimum storage capacity (MWh) denotes a storage capacity target that has to be met by the
storage in a given modeled year. This means that the system will build at least this capacity.

• Maximum storage capacity (MWh) restricts the storage capacity that can be built to the specified
value.

• Minimum storage power (MW) denotes a storage charging/discharging power target that has to
be met by the storage in a given modeled year. This means that the system will build at least this
power.

• Maximum storage power (MW) restricts the storage charging/discharging that can be built to
the specified value.

• Efficiency input (1) specifies the charging efficiency of the storage.

• Efficiency output (1) specifies the discharging efficiency of the storage.

• Investment cost capacity (C/MWh) denotes the storage capacity specific investment costs for
the storage. You should give the book value here. The program will then translate this into the
correct total, discounted cost within the model horizon.

• Investment cost power (C/MW) denotes the storage charging/discharging power specific invest-
ment costs for the storage. You should give the book value here. The program will then translate
this into the correct total, discounted cost within the model horizon.

• Annual fix costs capacity (C/MWh) represent the amount of money that has to be spent annually
for the operation of a storage capacity. They can represent, e.g., labour costs or calendaric ageing
costs.

• Annual fix costs power (C/MW) represent the amount of money that has to be spent annually
for the operation of a storage power. They can represent, e.g., labour costs or calendaric ageing
costs.

• Variable costs capacity (C/MWh) are linked to the operation of a given storage state, i.e. they
lead to costs whenever a storage has a non-zero state of charge. These costs should typically set
to zero but can be used to manipulate the storage duration or model state-of-charge dependent
ageing.

• Variable costs power (C/MWh) are linked to the charging and discharging of a storage. Each
unit of commodity leaving the storage requires the payment of these costs.

• Weighted average cost of capital denotes the interest rate or expected return on investment with
which the investor responsible for the energy system calculates.

• Depreciation period denotes both the economical and technical lifetime of all units in the system.
It thus determines two things: the total costs of a given investment and the end of operational time
for all units in the energy system modeled.

• Initial storage state can be used to set the state of charge of a storages in the beginning of the
modeling time steps. If nan is given this value is an optimization variable. In any case the storage
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content in the end is the same as in the beginning to avoid windfall profits from simply discharging
a storage.

• Discharge gives the hourly discharge of a storage. Over time, when no charging or discharging
occurs, the storage content will decrease exponentially.

In the example there are no storages in site ‘City’ and there is a storage for each demand in site ‘Business
park’. The commodity ‘Cooling’ is not directly storable to avoid an unrealistic behavior for the process
‘Ambient air cooling’ as was discussed above in the ‘Process-Commodity’ section.

Sheets Demand, SupIm, Buy/Sell price

In these sheets the time series for all the demands, capacity factors of processes using commodities of
type ‘SupIm’ and market prices for ‘Buy’ and ‘Sell’ commodities are to be specified. For the former
two the syntax ‘site.commodity’ has to be used as a column index to specify the corresponding tuple.

Sheet TimeVarEff

In this sheet a time series for the output of processes can be given. This is always useful, when processes
are somehow dependent on external parameters. The syntax to be used to specify which process is to
be addressed by this is ‘site.process’. In the present example, this is used for the process ‘Ambient air
cooling’ which has a boolean ‘TimeVarEff’ curve giving the value ‘1’ for temperatures below a threshold
and ‘0’ else.

This concludes the input generation. Of course all parameters have to be set in all the input sheets.

Run script

To run the example you can make a copy of the file runme.py calling it, e.g., run_BP.py in the same
folder. You now just have to make 3 modifications. First, replace the report tuples by:

report_tuples = [
(2020, 'Business park', 'Electricity'),
(2020, 'Business park', 'Heat'),
(2020, 'Business park', 'Cooling'),
(2020, 'Business park', 'Intermediate low temperature'),
(2020, 'Business park', 'CO2'),
(2030, 'Business park', 'Electricity'),
(2030, 'Business park', 'Heat'),
(2030, 'Business park', 'Cooling'),
(2030, 'Business park', 'Intermediate low temperature'),
(2030, 'Business park', 'CO2'),
(2040, 'Business park', 'Electricity'),
(2040, 'Business park', 'Heat'),
(2040, 'Business park', 'Cooling'),
(2040, 'Business park', 'Intermediate low temperature'),
(2040, 'Business park', 'CO2'),
(2020, 'City', 'Electricity'),
(2020, 'City', 'Heat'),
(2020, 'City', 'CO2'),
(2030, 'City', 'Electricity'),
(2030, 'City', 'Heat'),

(continues on next page)
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(2030, 'City', 'CO2'),
(2040, 'City', 'Electricity'),
(2040, 'City', 'Heat'),
(2040, 'City', 'CO2'),
(2020, ['Business park', 'City'], 'Electricity'),
(2020, ['Business park', 'City'], 'Heat'),
(2020, ['Business park', 'City'], 'CO2'),
(2030, ['Business park', 'City'], 'Electricity'),
(2030, ['Business park', 'City'], 'Heat'),
(2030, ['Business park', 'City'], 'CO2'),
(2040, ['Business park', 'City'], 'Electricity'),
(2040, ['Business park', 'City'], 'Heat')
(2040, ['Business park', 'City'], 'CO2'),
]

# optional: define names for sites in report_tuples
report_sites_name = {('Business park', 'City'): 'Together'}

and the plot tuples by:

plot_tuples = [
(2020, 'Business park', 'Electricity'),
(2020, 'Business park', 'Heat'),
(2020, 'Business park', 'Cooling'),
(2020, 'Business park', 'Intermediate low temperature'),
(2020, 'Business park', 'CO2'),
(2030, 'Business park', 'Electricity'),
(2030, 'Business park', 'Heat'),
(2030, 'Business park', 'Cooling'),
(2030, 'Business park', 'Intermediate low temperature'),
(2030, 'Business park', 'CO2'),
(2040, 'Business park', 'Electricity'),
(2040, 'Business park', 'Heat'),
(2040, 'Business park', 'Cooling'),
(2040, 'Business park', 'Intermediate low temperature'),
(2040, 'Business park', 'CO2'),
(2020, 'City', 'Electricity'),
(2020, 'City', 'Heat'),
(2020, 'City', 'CO2'),
(2030, 'City', 'Electricity'),
(2030, 'City', 'Heat'),
(2030, 'City', 'CO2'),
(2040, 'City', 'Electricity'),
(2040, 'City', 'Heat'),
(2040, 'City', 'CO2'),
(2020, ['Business park', 'City'], 'Electricity'),
(2020, ['Business park', 'City'], 'Heat'),
(2020, ['Business park', 'City'], 'CO2'),
(2030, ['Business park', 'City'], 'Electricity'),
(2030, ['Business park', 'City'], 'Heat'),
(2030, ['Business park', 'City'], 'CO2'),
(2040, ['Business park', 'City'], 'Electricity'),
(2040, ['Business park', 'City'], 'Heat')
(2040, ['Business park', 'City'], 'CO2'),
]

(continues on next page)
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# optional: define names for sites in plot_tuples
plot_sites_name = {('Business park', 'City'): 'Together'}

In this way you get a meaningful output for the optimization runs. Second, the scenarios are made for the
other example and are as such no longer usable here. Thus only the base scenario is to be run. Change
the list scenario to the following:

scenarios = [
urbs.scenario_base

]

Having completed all these steps you can execute the code.

Modeling nuggets

Here you can find a collection of non-trivial modeling ideas that can be used in linear energy system
modeling with urbs. It is meant for more advanced users and you should fully understand the two
standard examples mimo-example and Business park before proceeding. What follows is a loose
collection of modeling approaches and does not follow any internal logic.

Different operational modes

For many power plants as, e.g., combined heat and power plants (CHP) there are different modes of
operation. These and intermediate states between the extremes can be well captured in urbs models
using the approach sketched in the following picture:

Here the vertical lines represent the commodities and the rectangle are processes. The arrows indicate
in- and output commodities of the processes. In the case shown the power plant ‘Unit’ would be able to
operate between a state where only ‘Output 1’ comes out and a state where only ‘Output 2’ comes out.
The two extreme cases can, however, also be chosen as combinations of both outputs already.

The idea behind the figure is the following: The commodity ‘Intermediate’ is to be produced exclu-
sively by the process ‘Unit (operational state)’. It thus simply tracks the throughput of this process. Due
to the vertex rule (Kirchhoff´s current law) the commodity ‘Intermediate’ once produced needs to be
consumed immediately. This can happen either via ‘Unit (Mode 1)’, ‘Unit (Mode 2)’ or a linear com-
bination of both. The result is then the desired choice for the optimizer between states formed by linear
combinations of the two modes. The commodity ‘Intermediate’ is best chosen as a Stock commodity
where either the price is set to infinity or the maximum allowed usage per hour, or year (or both) is set
to zero. This ensures that the commodity has to be produced by the process and cannot be bought from
an external source, which for the present case would of course be absurd.
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All process parameters and the setting of part load, time variable efficiency etc. is best done for the ‘Unit
(operational state)’ process. The two other processes should in turn be used as mathematical entities that
are defined by their ‘process commodity’ input only.

Proportional operation

Often many individual consumers are lumped together in one site. If a demand of these consumers is
then met by a collection of decentral units it is important that the different technology options for these
decentral units each fulfill a fixed fraction of the demand in each time step. This means that the different
technology options are proportional to each other and the demand.

This behavior can be enforced by the following design:

Here the vertical lines represent the commodities and the rectangle are processes. The arrows indicate
in- and output commodities of the processes.

For the desired result the commodity ‘Operational state’ has to be of type SupIm and the corresponding
time series has to be set as the normalized demand. in this way the optimizer can still size the two tech-
nology options ‘Process 1’ and ‘Process 2’ optimally while being forced to operate them proportionally
to each other and to the demand. Other input or output (not shown) commodities can then be associated
with the process operation as usual and will be dragged along by the forced operation.

Scenario generation

For a sensitivity analysis, it might be helpful to not manually create all scenario definitions automatically.
For example, if one is interested in how installed capacities of PV and storage change the output, one
might define ranges for each capacity. If there are four thresholds for the PV capacity and five for storage
capacity, creating all 20 scenarios by hand is quite tiresome.

In this example, one wants to run an optimization with capacities 20 GW, 30 GW, 40 GW and 50 GW
for PV and 50 GW, 60 GW, 70 GW, 80 GW and 90 GW for storage capacities.

Therefore, a function factory is created, which takes the values for PV and storage capacity and creates
a scenario function out of it. This is done in the file scenarios.py:

def create_scenario_pv_sto(pv_val, sto_val):
def scenario_pv_sto(data):

# set PV capacity for all sites
pro = data['process']
solar = pro.index.get_level_values('Process') == 'Photovoltaics'
pro.loc[solar, 'inst-cap'] = pv_val
pro.loc[solar, 'cap-up'] = sto_val

# set storage content capacity
sto = data['storage']

(continues on next page)
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for site_sto_tuple in sto.index:
sto.loc[site_sto_tuple, 'inst-cap-c'] = sto_val
sto.loc[site_sto_tuple, 'cap-up-c'] = sto_val

return data
# define name for scenario dependent on pv and storage values
scenario_pv_sto.__name__ = f"scenario_pv{int(pv_val/1000)}_sto{int(sto_

→˓val/1000)}"
return scenario_pv_sto

In runme.py the following has to be added:

# define range for sensitvity
pv_vals = range(20000, 50001, 10000)
sto_vals = range(50000, 90001, 10000)

# create scenario functions
scenarios = []
for pv_val in pv_vals:

for sto_val in sto_vals:
scenarios.append(urbs.create_scenario_pv_sto(pv_val, sto_val))

1.2 Mathematical documentation

Continue here if you want to understand the theoretical conception of the model generator, the logic
behind the equations and the structure of the features.

1.2.1 Mathematical description

In this Section the mathematical description of a model generated by urbs will be explained. The
structure here follows the basic code structure and proceeds as follows:

First, a short introduction into the type of optimization problem solvable with urbs is given. This is
followed by the description of the minimal possible model in urbs. As a next step the two main expan-
sions of models, which also increase the index depth of all variables and parameters are discussed in
the parts ‘Intertemporal modeling’ and ‘Multinode modeling’. The description is then concluded by the
additional description of various feature modules. The latter are discussed in full index depth, i.e., with
all features introduced in minimal, intertemporal and multinode modeling.

Structure of an urbs model

urbs is an abstract generator for linear optimization problems. Such problems can in general be written
in the following standard form:

min 𝑐T𝑥

s.t. 𝐴𝑥 = 𝑏

𝐵𝑥 ≤ 𝑑.

where 𝑥 is the variable vector, 𝑐 the coefficient vector for the objective function and 𝐴 and 𝐵 the
matrices for the equality and inequality constraints, respectively. The equality constraints could also
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be represented by inequality constraints, which is not done here for simplicity reasons. There are two
options for the objective function: either the total system costs or environmental emissions can be used.
The structure of the following parts will be first a description of 𝑥 and 𝑐 and subsequently a general
formulation of the constraint functions that make up the matrices 𝐴 and 𝐵 as well as the vectors 𝑏 and
𝑑. All variables and equations will be first presented for a minimally complex problem and the optional
additional variables and equations are presented in extra parts.

Energy system entities

For all models that can be generated with urbs, the energy system is built up out of the following entities:

• Commodities, which represent the various forms of material and energy flows in the system.

• Processes, which convert commodities from one type to another. These entities are always
multiple-input/multiple-output (mimo) that is, a certain fixed set of input commodities is con-
verted into another fixed set of output commodities.

• Transmission lines, that allow for the transport of commodities between the modeled spatial ver-
tices.

• Storages, which allow the storage of a single type of commodity.

• DSM potentials, which make the time shifting of demands possible.

Minimal optimization model

The minimal model in urbs is a simple expansion and dispatch model with only processes being able to
fulfill the given demands. All spatial information is neglected in this case. The minimal model is already
multiple-input/multiple output (mimo) and the variable vector takes the following form:

𝑥T = (𝜁, 𝜌𝑐𝑡⏟ ⏞ 
commodity variables

, 𝜅𝑝, ̂︀𝜅𝑝, 𝜏𝑝𝑡, 𝜖in
𝑐𝑝𝑡, 𝜖

out
𝑐𝑝𝑡⏟  ⏞  

process variables

).

Here, 𝜁 represents the total annualized system cost, 𝜌𝑐𝑡 the amount of commodities 𝑐 taken from a virtual,
infinite stock at time 𝑡, 𝜅𝑝 and ̂︀𝜅𝑝 the total and the newly installed process capacities of processes 𝑝, 𝜏𝑝𝑡
the operational state of processes 𝑝 at time 𝑡 and 𝜖in

𝑐𝑝𝑡 and 𝜖out
𝑐𝑝𝑡 the total inputs and outputs of commodities

𝑐 to and from process 𝑝 at time 𝑡, respectively.

Objective

For any urbs problem as the objective function either the total system costs or the total emissions of CO2
can be chosen. In the former (standard) case this leads to an objective vector of:

𝑐 = (1, 0, 0, 0, 0, 0, 0),

where only the costs are part of the objective function. For the latter choice of objective no such simple
structure can be written.

1.2. Mathematical documentation 23



urbs Documentation, Release 1.0.0

Costs

In the minimal model the total cost variable can be split into the following sum:

𝜁 = 𝜁inv + 𝜁fix + 𝜁var + 𝜁fuel + 𝜁env,

where 𝜁inv are the annualized invest costs, 𝜁fix the annual fixed costs, 𝜁var the total variable costs accu-
mulating over one year, 𝜁fuel the accumulated fuel costs over one year and 𝜁env the annual penalties for
environmental pollution. These costs are then calculated in the following way:

Annualized invest costs

Investments are typically depreciated over a longer period of time than the standard modeling horizon of
one year. To overcome distortions in the overall cost function urbs uses the annual cash flow (CAPEX)
for the calculation of the investment costs in the cost function. This is captured by multiplying the total
invest costs for a given process 𝐶𝑝 with the so-called annuity factor 𝑓𝑝, i.e.:

𝜁inv,𝑝 = 𝑓𝑝 · 𝐶𝑝

For an interest rate of 𝑖 and a depreciation period of 𝑛 years the annuity factor can be derived using the
remaining debt after 𝑘 payments 𝐶𝑘:

After 0 Payments: 𝐶0 = 𝐶(1 + 𝑖)

After 1 Payment: 𝐶1 = (𝐶0 − 𝑓𝐶)(1 + 𝑖) = 𝐶(1 + 𝑖)2 − 𝑓𝐶(1 + 𝑖)

After 2 Payments: 𝐶2 = (𝐶1 − 𝑓𝐶)(1 + 𝑖) = 𝐶(1 + 𝑖)3 − 𝑓𝐶(1 + 𝑖)2 − 𝑓𝐶(1 + 𝑖)

...

After n Payments: 𝐶𝑛 = 𝐶(1 + 𝑖)𝑛 + 𝐶
𝑛−1∑︁
𝑘=0

(1 + 𝑖)𝑘 = (1 + 𝑖)𝑛 + 𝑓

(︂
1 − (1 + 𝑖)𝑛

𝑖

)︂
.

Since the outstanding debt becomes 0 at the end of the depreciation period this leads to:

𝑓 =
(1 + 𝑖)𝑛 · 𝑖

(1 + 𝑖)𝑛 − 1

The annualized invest costs for all investments made by the optimizer are then given by:

𝜁inv =
∑︁

𝑝∈𝑃exp

𝑓𝑝𝑘
inv
𝑝 ̂︀𝜅𝑝,

where 𝑘inv
𝑝 signifies the specific invest costs of process 𝑝 per unit capacity and 𝑃exp is the subset of all

processes that are actually expanded.

Annual fixed costs

The annual fixed costs represent maintenance and staff payments the processes used. They are playing
a role for unit expansion only and are given as parameters for all allowed processes. Fixed costs scale
with the capacity (in W) of the processes, and can be calculated using:

𝜁fix =
∑︁
𝑝∈𝑃

𝑘fix
𝑝 𝜅𝑝,

where 𝑘fix
𝑝 represents the specific annual fix costs for process 𝑝.
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Annual variable costs

Variable costs represent both, additional maintenance requirements due to usage of processes and taxes
or tariffs. They scale with the utilization of processes (in Wh) and can be calculated in the following
way:

𝜁var = 𝑤∆𝑡
∑︁
𝑡∈𝑇𝑚

𝑝 ∈ 𝑃𝑘var
𝑝𝑡 𝜏𝑝𝑡,

where 𝑘var
𝑝𝑡 are the specific variable costs per time integrated process usage, and 𝑤 and ∆𝑡 are a weight

factor that extrapolates the actual modeled time horizon to one year and the timestep length in hours,
respectively.

Annual fuel costs

The usage of fuel adds an additional cost factor to the total costs. As with variable costs these costs
occur when processes are used and are dependent on the total usage of the fuel (stock) commodities:

𝜁fuel = 𝑤∆𝑡
∑︁
𝑡∈𝑇𝑚

𝑐 ∈ 𝐶stock𝑘
fuel
𝑐 𝜌𝑐,

where 𝑘fuel
𝑐 are the specific fuel costs. The distinction between variable and fuel costs is introduced for

clarity of the results, both could in principle be merged into one class of costs.

Annual environmental costs

Environmental costs occur when the emission of an environmental commodity is penalized by a fine.
Environmental commodities do not have to be balanced but can be emitted to the surrounding. The total
production of the polluting environmental commodity is then given by:

𝜁env = −𝑤∆𝑡
∑︁
𝑡∈𝑇𝑚

𝑐 ∈ 𝐶env𝑘
env
𝑐 CB(𝑐, 𝑡),

where 𝑘env
𝑐 are the specific costs per unit of environmental commodity and 𝐶𝐵 is the momentary com-

modity balance of commodity 𝑐 at time 𝑡. The minus sign is due to the sign convention used for the
commodity balance which is positive when the system takes in a unit of a commodity.

After this discussion of the individual cost terms the constraints making up the matrices 𝐴 and 𝐵 are
discussed now.

Process expansion constraints

The unit expansion constraints are independent of the modeled time. In case of the minimal model the
are restricted to two constraints only limiting the allowed capacity expansion for each process. The total
capacity of a given process is simply given by:

∀𝑝 ∈ 𝑃 :

𝜅𝑝 = 𝐾𝑝 + ̂︀𝜅𝑝,
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where 𝐾𝑝 is the already installed capacity of process 𝑝. The newly installed capacity can also be an
integer, expressed as the product between the parameter process new capacity block 𝐾block

𝑝 and the
variable new process capacity units 𝛽𝑝:

̂︀𝜅𝑝 = 𝐾block
𝑝 · 𝛽𝑝

Process capacity limit rule

The capacity of each process 𝑝 is limited by a maximal and minimal capacity, 𝐾𝑝 and 𝐾𝑝, respectively,
which are both given to the model as parameters:

∀𝑝 ∈ 𝑃 :

𝐾𝑝 ≤ 𝜅𝑝 ≤ 𝐾𝑝.

All further constraints are time dependent and are determinants of the unit commitment, i.e. the time
series of operation of all processes and commodity flows.

Commodity dispatch constraints

In this part the rules governing the commodity flow timeseries are shown.

Vertex rule (“Kirchhoffs current law”)

This rule is the central rule for the commodity flows and states that all commodity flows, (except for
those of environmental commodities) have to be balanced in each time step. As a helper function the
already mentioned commodity balance is calculated in the following way:

∀𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

CB(𝑐, 𝑡) =
∑︁

(𝑐,𝑝)∈𝐶out
𝑝

𝜖in
𝑐𝑝𝑡 −

∑︁
(𝑐,𝑝)∈𝐶in

𝑝

𝜖out
𝑐𝑝𝑡.

Here, the tuple sets 𝐶 in,out
𝑝 represent all input and output commodities of process 𝑝, respectively. The

commodity balance thus simply calculates how much more of commodity 𝑐 is emitted by than added to
the system via process 𝑝 in timestep 𝑡. Using this term the vertex rule for the various commodity types
can now be written in the following way:

∀𝑐 ∈ 𝐶st, 𝑡 ∈ 𝑇𝑚 : 𝜌𝑐𝑡 ≥ CB(𝑐, 𝑡),

where 𝐶st is the set of stock commodities and:

∀𝑐 ∈ 𝐶dem, 𝑡 ∈ 𝑇𝑚 : −𝑑𝑐𝑡 ≥ CB(𝑐, 𝑡),

where 𝐶dem is the set of demand commodities and 𝑑𝑐𝑡 the corresponding demand for commodity 𝑐 at
time 𝑡. These two rules thus state that all stock commodities that are consumed at any time in any process
must be taken from the stock and that all demands have to be fulfilled at each time step.
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Stock commodity limitations

There are two rule that govern the retrieval of stock commodities from stock: The total stock and the
stock per hour rule. The former limits the total amount of stock commodity that can be retrieved annually
and the latter limits the same quantity per timestep. the two rules take the following form:

∀𝑐 ∈ 𝐶st :

𝑤
∑︁
𝑡∈𝑇𝑚

𝜌𝑐𝑡 ≤ 𝐿𝑐

∀𝑐 ∈ 𝐶st, 𝑡 ∈ 𝑇𝑚 :

𝜌𝑐𝑡 ≤ 𝑙𝑐,

where 𝐿𝑐 and 𝑙𝑐 are the totally allowed annual and hourly retrieval of commodity 𝑐 from the stock,
respectively.

Environmental commodity limitations

Similar to stock commodities, environmental commodities can also be limited per hour or per year. Both
properties are assured by the following two rules:

∀𝑐 ∈ 𝐶env :

− 𝑤
∑︁
𝑡∈𝑇𝑚

CB(𝑐, 𝑡) ≤𝑀 𝑐

∀𝑐 ∈ 𝐶env, 𝑡 ∈ 𝑇𝑚 :

− CB(𝑐, 𝑡) ≤ 𝑚𝑐,

where 𝑀 𝑐 and 𝑚𝑐 are the totally allowed annual and hourly emissions of environmental commodity 𝑐
to the atmosphere, respectively.

Process dispatch constraints

So far, apart from the commodity balance function, the interaction between processes and commodities
have not been discussed. It is perhaps in order to start with the general idea behind the modeling of
the process operation. In urbs all processes are mimo-processes, i.e., in general they take in multiple
commodities as inputs and give out multiple commodities as outputs. The respective ratios between the
respective commodity flows remain normally fixed. The operational state of the process is then captured
in just one variable, the process throughput 𝜏𝑝𝑡 and is is linked to the commodity flows via the following
two rules:

∀𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖in
𝑝𝑐𝑡 = 𝑟in

𝑝𝑐𝜏𝑝𝑡

𝜖out
𝑝𝑐𝑡 = 𝑟out

𝑝𝑐 𝜏𝑝𝑡,

where 𝑟in, out
𝑝𝑐 are the constant factors linking the commodity flow to the operational state. The efficiency

𝜂 of the process 𝑝 for the conversion of commodity 𝑐1 into commodity 𝑐2 is then simply given by:

𝜂 =
𝑟out
𝑝𝑐2

𝑟in
𝑝𝑐1

.
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Basic process throughput rules

The throughput 𝜏𝑝𝑡 of a process is limited by its installed capacity and the specified minimal operational
state. Furthermore, the switching speed of a process can be limited:

∀𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇𝑚 :

𝜏𝑝𝑡 ≤ 𝜅𝑝

𝜏𝑝𝑡 ≥ 𝑃 𝑝𝜅𝑝

𝜏𝑝𝑡 − 𝜏𝑝(𝑡−1) ≤ ∆𝑡𝑃𝐺
up
𝑝 𝜅𝑝

𝜏𝑝𝑡 − 𝜏𝑝(𝑡−1) ≥ −∆𝑡𝑃𝐺
down
𝑝 𝜅𝑝

,

where 𝑃 𝑝 is the normalized, minimal operational state of the process and 𝑃𝐺up
𝑝 and 𝑃𝐺down

𝑝 are the
normalized, maximal ramping up gradient, respectively ramping down gradient of the operational state
in full capacity per timestep.

Intermittent supply rule

If the input commodity is of type ‘SupIm’, which means that it represents an operational state rather
than a proper material flow, the operational state of the process is governed by this alone. This feature
is typically used for renewable energies but can be used whenever a certain operation time series of a
given process is desired

∀𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶sup, 𝑡 ∈ 𝑇𝑚 :

𝜖in
𝑐𝑝𝑡 = 𝑠𝑐𝑡𝜅𝑝.

Here, 𝑠𝑐𝑡 is the time series that governs the exact operation of process 𝑝, leaving only its capacity 𝜅𝑝 as
a free variable.

This concludes the minimal model.

Intertemporal optimization model

Intertemporal models are a more general type of model than the minimal case. For such models a
second time domain is introduced to capture the behavior of the system over a timeframe of many years,
thus rendering a modeling of the system development, rather than the optimal system configuration,
possible. To keep the model as small as possible while still capturing most of the intertemporal behavior,
the second time slice is approximated by a number of support timeframes (years) 𝑌 = (𝑦1, ..., 𝑦𝑛),
which is in general smaller than the total model horizon. Each modeled timeframe is then essentially
a minimal (or multinode-) model in its own right. The basic approximative assumptions linking the
modeled timeframes are then given by:

• Each modeled year is repeated 𝑘 times if the next modeled year is 𝑘 years later. The last year is
repeated a user specified number of times.

• The depreciation period is assumed to be also the operational period of any unit built. There is no
operation in an economically fully depreciated state.

• A unit can only be operated in a given modeled year when it is operational for the entire period
that year represents, i.e., until the next modeled year.
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• All payments are exponentially discounted with a discount rate 𝑗 that is set once for the entire
modeling horizon.

The variable vector is as a first step only changed in so far, as the second time domain is entering the
index. It now reads:

𝑥T = (𝜁, 𝜌𝑦𝑐𝑡⏟ ⏞ 
commodity variables

, 𝜅𝑦𝑝, ̂︀𝜅𝑦𝑝, 𝜏𝑦𝑝𝑡, 𝜖in
𝑦𝑐𝑝𝑡, 𝜖

out
𝑦𝑐𝑝𝑡⏟  ⏞  

process variables

).

Here, 𝜁 represents the total discounted system costs over the entire modeling horizon, 𝜌𝑦𝑐𝑡 the amount of
commodities 𝑐 taken from a virtual, infinite stock in year 𝑦 at time 𝑡, 𝜅𝑦𝑝 and ̂︀𝜅𝑦𝑝 the total and the newly
installed process capacities in year 𝑦 of processes 𝑝, 𝜏𝑦𝑝𝑡 the operational state in year 𝑦 of processes 𝑝 at
time 𝑡 and 𝜖in

𝑦𝑐𝑝𝑡 and 𝜖out
𝑦𝑐𝑝𝑡 the total inputs and outputs in year 𝑦 of commodities 𝑐 to and from process 𝑝

at time 𝑡, respectively.

All dispatch constraint equations for commodities and processes described in the minimal model section,
as well as all such constraints for transmissions, storages, DSM described in their respective dedicated
sections, remain structurally the same in an intertemporal model. The only modification there is, that
the modeled year shows up as an additional index.

The parts that change in a more meaningful way are the costs and the unit expansion constraints.

Costs

As in the minimal model the total cost variable can be split into the following sum:

𝜁 = 𝜁inv + 𝜁fix + 𝜁var + 𝜁fuel + 𝜁env,

where 𝜁inv are the discounted invest costs accumulated over the entire modeled period, 𝜁fix the dis-
counted, accumulated fixed costs, 𝜁var the discounted, sum over the modeled years of all variable costs
accumulated over each year, 𝜁fuel the discounted sum over the modeled years of fuel costs accumulated
over each year and 𝜁env the discounted total penalty for environmental pollution.

All costs are discounted by the same exponent 𝑗 for the entire modeling horizon on a yearly basis. This
means that any payment 𝑥 that has to be made in a year 𝑘 will be discounted for the cost function 𝜁 by:

𝑥discounted = (1 + 𝑗)−𝑘 · 𝑥

Since all non-modeled years are just treated as exact copies of the last modeled year before them, the
discounted sum of fix, variable, fuel and environmental costs can simply be taken as the costs of the
representative modeled year 𝑚 multiplied by a factor 𝐷𝑚. If the distance to the next modeled year is 𝑘,
it can be calculated via:

𝐷𝑚 =
𝑚+𝑘−1∑︁
𝑙=𝑚

(1 + 𝑗)−𝑙 = (1 + 𝑗)−𝑚
𝑘−1∑︁
𝑙=0

(1 + 𝑗)−𝑙 = (1 + 𝑗)−𝑚 1 − (1 + 𝑗)−𝑘

1 − (1 + 𝑗)−1
=

= (1 + 𝑗)1−𝑚 1 − (1 + 𝑗)−𝑘

𝑗
.

So for example the variable costs for modeled year 𝑚 and its 𝑘 identical, non-modeled copies
𝜁
{𝑚,𝑚+1,..,𝑚+𝑘−1}
var are given by:

𝜁
{𝑚,𝑚+1,..,𝑚+𝑘−1}
var = 𝐷𝑚 · 𝜁𝑚var,

if 𝜁𝑚var is the sum of all variable costs accumulated by the use of units in the year 𝑚 alone by the model.
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Intertemporal calculation of invest costs

In the intertemporal model, invest costs are calculated using the annuity method. This directly entails
that there are no rest values of any units built by the model that have to be considered for the cost
function. It is then possible to multiply the annuity payments 𝑓𝐶 for a unit with investment costs 𝐶
built in year 𝑚 simply with the factor 𝐷𝑚. The only difference is, that the investment annuity payments
are not restricted to the modeled years but have to be paid for the entire depreciation period provided
that it is within the modeled time horizon. When the depreciation period is 𝑛 and 𝑘 is the number of
payments that fall in the modeled time horizon, the total costs 𝐶total of an investment of size 𝐶 made in
year 𝑚 is given by:

𝐶 total
m = 𝐷𝑚 · 𝑓 · 𝐶 = (1 + 𝑗)1−𝑚 1 − (1 + 𝑗)−𝑘

𝑗
· (1 + 𝑖)𝑛 · 𝑖

(1 + 𝑖)𝑛 − 1
· 𝐶 =

= (1 + 𝑗)1−𝑚 · 𝑖
𝑗
·
(︂

1 + 𝑖

1 + 𝑗

)︂𝑛

· (1 + 𝑗)𝑛 − (1 + 𝑗)𝑛−𝑘

(1 + 𝑖)𝑛 − 1⏟  ⏞  
=:𝐼m

·𝐶

For either 𝑖 = 0 or 𝑗 = 0 a distinction has to be made, which takes the following form:

• 𝑖 = 0, 𝑗 = 0:

𝐶 total
m =

𝑘

𝑛⏟ ⏞ 
=:𝐼m

·𝐶

• 𝑖 ̸= 0, 𝑗 = 0:

𝐶 total
m = 𝑘 · 𝑓 · 𝐶 = 𝑘 · (1 + 𝑖)𝑛 · 𝑖

(1 + 𝑖)𝑛 − 1⏟  ⏞  
=:𝐼m

·𝐶

• 𝑖 = 0, 𝑗 ̸= 0:

𝐶 total
m =

1

𝑛
· (1 + 𝑗)−𝑚

𝑘−1∑︁
𝑙=0

(1 + 𝑗)−𝑙 · 𝐶 =
1

𝑛
· (1 + 𝑗)−𝑚 · (1 + 𝑗)𝑘 − 1

(1 + 𝑗)𝑘 · 𝑗⏟  ⏞  
=:𝐼m

·𝐶

In any case the total invest costs are then given by:

𝜁inv =
∑︁
𝑦∈𝑌

𝑝 ∈ 𝑃𝐶 total
m =

∑︁
𝑦∈𝑌

𝑝 ∈ 𝑃𝐼y𝑘
inv
𝑦𝑝 ̂︀𝜅𝑦𝑝

Unit expansion constraints

Apart from the costs there are also changes in the unit expansion constraints for an intertemporal model.
These changes mostly concern how the amount of installed units is found. This becomes an issue since

30 Chapter 1. Contents



urbs Documentation, Release 1.0.0

units built in an earlier modeled year or already installed in the first modeled year, may or may not be
operational in a given modeled year 𝑚 and through 𝑚 + 𝑘 − 1. Here, 𝑘 is the distance to the next
modeled year or the end of the modeled horizon in case of 𝑚 being the last modeled year. To properly
calculate the capacity of a process in a year 𝑦 the following two sets are necessary:

𝑂 := {(𝑝, 𝑦𝑖, 𝑦𝑗)|𝑝 ∈ 𝑃, {𝑦𝑖, 𝑦𝑗} ∈ 𝑌, 𝑦𝑖 ≤ 𝑦𝑗 , 𝑦𝑖 + 𝐿𝑝 ≥ 𝑦𝑗+1}

𝑂inst := {(𝑝, 𝑦𝑗)|𝑝 ∈ 𝑃0, 𝑦 ∈ 𝑌, 𝑦0 + 𝑇𝑝 ≥ 𝑦𝑗+1},

where 𝐿𝑝 is the lifetime of processes 𝑝, 𝑃0 the subset of processes that are already installed in the first
modeled year 𝑦0 and 𝑇𝑝 the rest lifetime of already installed processes. If 𝑦𝑗 is the last modeled year,
𝑦𝑗+1 stands for the end of the model horizon.

With these two sets the installed process capacity in a given year is then given by:

𝜅𝑦𝑝 =
∑︁
𝑦′∈𝑌

(𝑝, 𝑦′, 𝑦) ∈ 𝑂̂︀𝜅𝑦′𝑝 +𝐾𝑝 , if (𝑝, 𝑦) ∈ 𝑂inst

𝜅𝑦𝑝 =
∑︁
𝑦′∈𝑌

(𝑝, 𝑦′, 𝑦) ∈ 𝑂̂︀𝜅𝑦′𝑝 , else

where 𝐾𝑝 is the installed capacity of process 𝑝 at the beginning of the modeling horizon. Since for each
modeled year still the capacity constraint

∀𝑦 ∈ 𝑌, 𝑝 ∈ 𝑃 :

𝐾𝑦𝑝 ≤ 𝜅𝑦𝑝 ≤ 𝐾𝑦𝑝

is valid, the set constraints can have effects across years and especially the modeller has to be careful
not to set infeasible constraints.

Commodity dispatch constraints

While in an intertemporal model all commodity constraints within one modeled year remain valid one
addition is possible concerning CO2 emissions. Here, a budget can be given, which is valid over the
entire modeling horizon:

−𝑤
∑︁
𝑦∈𝑌

𝑡 ∈ 𝑇𝑚CB(𝑦,CO2, 𝑡) ≤ 𝐿CO2

Here, 𝐿𝑐 is the global budget for the emission of the environmental commodity. Currently this is hard
coded for CO2 only.

This rule concludes the model additions introduced by intertemporal modeling.

Multinode optimization model

The introduction of multiple spatial nodes into the model is the second big extension of the minimal
model that is possible. Similar to the intertemporal model expansion it also adds an index level to
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all variables and parameters. This addition is perpendicular to the intertemporal modeling and both
extensions do not interact in any complex way with each other. Here, the multinode model extension
will be shown without the intertemporal extension, i.e., it is shown as an extension to the minimal model.
In this case the variable vector of the optimization problem reads:

𝑥T = (𝜁, 𝜌𝑣𝑐𝑡⏟ ⏞ 
commodity variables

, 𝜅𝑣𝑝, ̂︀𝜅𝑣𝑝, 𝜏𝑣𝑝𝑡, 𝜖in
𝑣𝑐𝑝𝑡, 𝜖

out
𝑣𝑐𝑝𝑡⏟  ⏞  

process variables

, 𝜅𝑎𝑓 , ̂︀𝜅𝑎𝑓 , 𝜋in
𝑎𝑓𝑡, 𝜋

out
𝑎𝑓𝑡⏟  ⏞  

transmission variables

).

Here, 𝜁 represents the total annualized system cost across all modeled vertices 𝑣 ∈ 𝑉 , 𝜌𝑣𝑐𝑡 the amount
of commodities 𝑐 taken from a virtual, infinite stock at vertex 𝑣 and time 𝑡, 𝜅𝑣𝑝 and ̂︀𝜅𝑣𝑝 the total and the
newly installed process capacities of processes 𝑝 at vertex 𝑣, 𝜏𝑣𝑝𝑡 the operational state of processes 𝑝 at
vertex 𝑣 and time 𝑡, 𝜖in

𝑣𝑐𝑝𝑡 and 𝜖out
𝑣𝑐𝑝𝑡 the total inputs and outputs of commodities 𝑐 to and from process 𝑝

at vertex 𝑣 and time 𝑡, 𝜅𝑎𝑓 and ̂︀𝜅𝑎𝑓 the installed and new capacities of a transmission line 𝑓 linking two
vertices with the arc 𝑎 and 𝜋in

𝑎𝑓𝑡 and 𝜋out
𝑎𝑓𝑡 the in- and outflows into arc 𝑎 via transmission line 𝑓 at time 𝑡.

There are no qualitative changes to the cost function only the sum of all units now extends over processes
and transmission lines.

Transmission capacity constraints

Transmission lines are modeled as unidirectional arcs in urbs. This means that they have a input site and
an output site. Furthermore, an arc already specifies a commodity that can travel across it. However,
from the modelers point of view the transmissions rather behave like non-directional edges, linking both
sites with the identical capacity in both directions. This behavior is then ensured by the transmission
symmetry rule, which sets the capacity of both unidirectional arcs to be identical:

∀𝑎 ∈ 𝑉 × 𝑉 × 𝐶, 𝑓 ∈ 𝐹 :

𝜅𝑎𝑓 = 𝜅𝑎′𝑓 ,

where 𝑎′ is the inverse arc of 𝑎. The transmission capacity is then calculated similar to process capacities
in the minimal model:

∀𝑎 ∈ 𝑉 × 𝑉 × 𝐶, 𝑓 ∈ 𝐹 :

𝜅𝑎𝑓 = 𝐾𝑎𝑓 + ̂︀𝜅𝑎𝑓 ,
where 𝐾𝑎𝑓 represents the already installed and ̂︀𝜅𝑎𝑓 the new capacity of transmission 𝑓 installed in arc
𝑎. The new capacity can also be expressed as the product of the parameter transmission capacity block
𝐾block

𝑦𝑎𝑓 and the variable new transmission capacity units 𝛽𝑦𝑎𝑓 :

̂︀𝜅𝑎𝑓 = 𝐾block
𝑦𝑎𝑓 · 𝛽𝑦𝑎𝑓

Transmission capacity limit rule

Completely analogous to processes also transmission line capacities are limited by a maximal and min-
imal allowed capacity 𝐾𝑎𝑓 and 𝐾𝑎𝑓 via:

∀𝑎 ∈ 𝑉 × 𝑉 × 𝐶, 𝑓 ∈ 𝐹 :

𝐾𝑎𝑓 ≤ 𝜅𝑎𝑓 ≤ 𝐾𝑎𝑓

Commodity dispatch constraints

Apart from these time independent rules, the time dependent rules governing the unit utilization are
amended with respect to the minimal model by the introduction of transmission lines.
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Amendments to the Vertex rule

The vertex rule is changed, since additional commodity flows through the transmission lines occur in
each vertex. The commodity balance function is thus changed to:

∀𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

CB(𝑐, 𝑡) =
∑︁

(𝑐,𝑝)∈𝐶in
𝑝

𝜖in
𝑣𝑐𝑝𝑡 +

∑︁
(𝑎,𝑓)∈𝐴in

𝑣

𝜋in
𝑎𝑓𝑡 −

∑︁
(𝑐,𝑝)∈𝐶out

𝑝

𝜖out
𝑣𝑐𝑝𝑡 −

∑︁
(𝑎,𝑓)∈𝐴out

𝑣

𝜋out
𝑎𝑓𝑡.

Here, the new tuple sets 𝐴in,out
𝑣 represent all input and output arcs 𝑎 connecting vertex 𝑣, respectively.

The commodity balance is thereby allowing for commodities to leave the system at vertex 𝑣 via arcs as
well as processes. Apart from this change to the commodity balance the vertex rule and the other rules
restricting commodity flows remain unchanged with respect to the minimal model.

Global CO2 limit

In addition to the general vertex specific constraint for the emissions of environmental commodities as
discussed in the minimal model, there is a hard coded possibility to limit the CO2 emissions across all
modeled sites:

−𝑤
∑︁
𝑣∈𝑉

𝑡 ∈ 𝑇𝑚CB(𝑣,CO2, 𝑡) ≤ 𝐿CO2,𝑦

Transmission dispatch constraints

There are two main constraints for the commodity flows to and from transmission lines. The first restricts
the total amount of commodity 𝑐 flowing in arc 𝑎 on transmission line 𝑓 to the total capacity of the line:

∀𝑎 ∈ 𝑉 × 𝑉 × 𝐶, 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇𝑚 :

𝜋in
𝑎𝑓𝑡 ≤ 𝜅𝑎𝑓 .

Here, the input into the arc 𝜋in
𝑎𝑓𝑡 is taken as a reference for the total capacity. The output of the arc in the

target site is then linked to the input with the transmission efficiency 𝑒𝑎𝑓

∀𝑎 ∈ 𝑉 × 𝑉 × 𝐶, 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇𝑚 :

𝜋out
𝑎𝑓𝑡 = 𝑒𝑎𝑓 · 𝜋in

𝑎𝑓𝑡.

DC Power Flow feature

Transmission lines can be modelled with DC Power Flow as an optional feature to represent the AC
network grid. With the DC Power Flow feature, the variable voltage angle is introduced for the ver-
tices connected with DC Power Flow transmission lines The DC Power Flow is defined by the relation
between the voltage angle 𝜃𝑣𝑡 of connecting vertices.

It is possible to combine the default transmission model with the DC Power Flow transmission model.
The DCPF feature can be activated on the selected transmission lines. This way two different sets of
transmission tuples, subject to different constraints, will be modelled. These transmission tuple sets are
defined as the set of transport model (default) transmission lines 𝐹 𝑇𝑃

𝑐𝑣out𝑣in
and the set of DCPF transmis-

sion lines 𝐹𝐷𝐶𝑃𝐹
𝑐𝑣out𝑣in

1.2. Mathematical documentation 33



urbs Documentation, Release 1.0.0

Usage

This feature can be activated for selected transmission lines by including the following parameters:

• The reactance𝑋𝑎𝑓 of a transmission line is required to be included in the model input to model the
given transmission line with DCPF. This parameter should be greater than 0 and given in per-unit
system. If this parameter is excluded from the model input, DCPF will not be activated for the
transmission line.

• The voltage angle difference of two connecting sites should be limited with angle difference limit
𝑑𝑙𝑎𝑓 to create a stable model. This parameter is required to limit the voltage angle difference
between two connecting sites. A degree value between 0 and 91 is allowed.

• The base voltage 𝑉𝑎𝑓base of transmission lines are required to convert the power flow from per-unit
system to MW. The base voltage parameter is required in kV for every transmission line, which
should be modelled with DCPF. The value of this parameter should be greater than 0.

• Since the DC Power Flow model ignores the loss of a transmission line, the efficiency 𝑒𝑎𝑓 of the
transmission lines modelled with the DCPF should be set to 100% represented with the value “1”.

Contrary to the default transmission line representation, DC Power Flow transmission lines are repre-
sented with a single bidirectional arc between two vertices. The complementary arc of a DC Power Flow
transmission line will be excluded from the model even if it is defined by the user. Depending on the
voltage angle difference of two connecting sites, the power flow 𝜋𝑎𝑓𝑡 on a DC Power Flow transmission
line can be both negative or positive indicating the direction of the flow.

DC Power Flow Equation

Power flow on a transmission line modelled with DCPF:

𝜋in
𝑎𝑓𝑡 =

(𝜃𝑣in𝑡 − 𝜃𝑣out𝑡)

57.2958
(− −1

𝑋𝑎𝑓
)𝑉 2

𝑎𝑓base

Here 𝜃𝑣in𝑡 and 𝜃𝑣out𝑡 are the voltage angles of the source site 𝑣in and destinaton site 𝑣out. These are
converted to radian from degrees by dividing by 57,2958. 𝑋𝑎𝑓 is the reactance of the transmission line
in per unit system and (− −1

𝑋𝑎𝑓
) is the admittance of the transmission line.

Constraints

Constraints applied to the DCPF transmission lines vary from those applied to the transport transmission
lines.

Symmetry rule is ignored for the DCPF transmission lines, since these lines only consist of single bidi-
rectional arcs. Since the DCPF transmission lines do not have complementary arcs the fixed and in-
vestment costs would be halved. To prevent this error caused by the excluded symmetry constraint for
DCPF transmission lines, fixed and investment prices for DCPF lines are doubled automatically before
calculating the costs.

The constraint which restricts the commodity flow 𝜋in
𝑎𝑓𝑡 on a transmission line with the installed capacity

𝜅𝑎𝑓 is expanded for DCPF transmission lines. The additional constraint restricts the lower limit of the
power flow, since the power flow with DCPF can also be negative.

−𝜋in
𝑎𝑓𝑡 ≤ 𝜅𝑎𝑓
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Voltage angle difference of two connecting vertices 𝑣in and 𝑣out is restricted with the angle difference
limit parameter 𝑑𝑙𝑎𝑓 given for a DCPF transmission 𝑓 on an arc 𝑎

−𝑑𝑙𝑎𝑓 ≤ (𝜃𝑣in𝑡 − 𝜃𝑣out𝑡) ≤ 𝑑𝑙𝑎𝑓

Two additional constraints are used in DCPF feature to retrieve the absolute value 𝜋in
𝑎𝑓𝑡

′ of the power
flow on a DCPF transmission line, which is included in the variable cost calculation. With the help of
these constraints and minimization of objective function , which includes the substitute variable 𝜋in

𝑎𝑓𝑡
′,

the substitute variable will be equal to the absolute value of the power flow variable |𝜋in
𝑎𝑓𝑡|

𝜋in
𝑎𝑓𝑡

′ ≥ 𝜋in
𝑎𝑓𝑡

𝜋in
𝑎𝑓𝑡

′ ≥ −𝜋in
𝑎𝑓𝑡

Energy Storage

Storages can optionally be set in urbs. They introduce additional variables and constraints, contribute
to the cost function but do not increase the index depth of all variables and parameters. For this and
all the further features all variables will be written in the full index depth, i.e. for intertemporal models
with multiple vertices. For storages the capacity and the charging/discharging power are expanded
independently. For each storage one commodity is specified which is stored. It is thus not necessary
to specify the commodity as an extra index in the variables and parameters. With added storages the
variable vector then reads:

𝑥T = (𝜁, 𝜌𝑦𝑣𝑐𝑡⏟ ⏞ 
commodity variables

, 𝜅𝑦𝑣𝑝, ̂︀𝜅𝑦𝑣𝑝, 𝜏𝑦𝑣𝑝𝑡, 𝜖in
𝑦𝑣𝑐𝑝𝑡, 𝜖

out
𝑦𝑣𝑐𝑝𝑡⏟  ⏞  

process variables

, 𝜅𝑦𝑎𝑓 , ̂︀𝜅𝑦𝑎𝑓 , 𝜋in
𝑦𝑎𝑓𝑡, 𝜋

out
𝑦𝑎𝑓𝑡⏟  ⏞  

transmission variables

,

𝜅c
𝑦𝑣𝑠, 𝜅

p
𝑦𝑣𝑠, ̂︀𝜅c

𝑦𝑣𝑠, ̂︀𝜅p
𝑦𝑣𝑠, 𝜖

in
𝑦𝑣𝑠𝑡, 𝜖

out
𝑦𝑣𝑠𝑡, 𝜖

con
𝑦𝑣𝑠𝑡⏟  ⏞  

storage variables

).

Here, the new storage variables 𝜅c,p
𝑦𝑣𝑠 and ̂︀𝜅c,p

𝑦𝑣𝑠 stand for the total and new capacities of storage capacity
and power of storage unit 𝑠, in modeled year 𝑦 at vertex 𝑣, respectively, the variables 𝜖in,out

𝑦𝑣𝑠𝑡 represent the
input and output to storage 𝑠 in year 𝑦 at vertex 𝑣 at time 𝑡 and 𝜖con

𝑦𝑣𝑠𝑡 the storage state.

Costs

The costs are changed in a straightforward way. The invest, fix and variable costs are now summed over
the storage capacities, powers and the total amount of charged and discharged commodity in addition to
the process indices. As in the case of transmissions there are no qualitative changes to the costs.
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Storage expansion constraints

Storages are expanded in their capacity and charging and discharging power separately. The respective
constraints read:

𝜅c,p
𝑦𝑣𝑠 =

∑︁
𝑦′∈𝑌

(𝑠, 𝑣, 𝑦′, 𝑦) ∈ 𝑂̂︀𝜅c,p
𝑦′𝑣𝑠 +𝐾𝑣𝑠 , if (𝑠, 𝑣, 𝑦) ∈ 𝑂inst

𝜅c,p
𝑦𝑣𝑠 =

∑︁
𝑦′∈𝑌

(𝑠, 𝑣, 𝑦′, 𝑦) ∈ 𝑂̂︀𝜅c,p
𝑦′𝑣𝑠 , else,

where 𝜅c,p
𝑦𝑣𝑠 are the total installed capacity and power, repectively, in year 𝑦 at site 𝑣 of storage 𝑠 and̂︀𝜅c,p

𝑦𝑣𝑠 the corresponding

newly installed storage capacities and powers. Both newly installed quantities can also be expressed as
the product of the parameter storage new capacity/power block 𝐾c,p block

𝑦𝑣𝑠 and the variable new storage
size/power units 𝛽c,p

𝑦𝑣𝑠:

̂︀𝜅c,p
𝑦𝑣𝑠 = 𝐾c,p block

𝑦𝑣𝑠 · 𝛽c,p
𝑦𝑣𝑠

Both total installed quantities are then also given an upper and a lower bond via:

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆 :

𝐾c
𝑦𝑣𝑠 ≤ 𝜅c

𝑦𝑣𝑠 ≤ 𝐾
c
𝑦𝑣𝑠

𝐾p
𝑦𝑣𝑠 ≤ 𝜅p

𝑦𝑣𝑠 ≤ 𝐾
p
𝑦𝑣𝑠

Commodity dispatch constraints

The commodity unit utilization constraints are expanded by the use of storages.

Amendments to the Vertex rule

The vertex rule is changed, since additional commodity flows into and out of the storages can occur. The
commodity balance function is thus changed to:

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

CB(𝑦, 𝑣, 𝑐, 𝑡) =
∑︁

(𝑦,𝑣,𝑐,𝑝)∈𝐶 in
𝑦,𝑣,𝑐,𝑝

𝜖in
𝑣𝑐𝑝𝑡 +

∑︁
(𝑦,𝑣,𝑠,𝑐)∈𝐶𝑦,𝑣,𝑠,𝑐

𝜖in
𝑦𝑣𝑠𝑡 +

∑︁
(𝑦,𝑎,𝑓)∈𝐴in

𝑣

𝜋in
𝑎𝑓𝑡−

−
∑︁

(𝑦,𝑣,𝑐,𝑝)∈𝐶out
𝑝

𝜖out
𝑣𝑐𝑝𝑡 −

∑︁
(𝑦,𝑣,𝑠,𝑐)∈𝐶𝑦,𝑣,𝑠,𝑐

𝜖out
𝑦𝑣𝑠𝑡 −

∑︁
(𝑦,𝑎,𝑓)∈𝐴out

𝑣

𝜋out
𝑎𝑓𝑡.

Here, the new tuple sets 𝐶 in,out
𝑦,𝑣,𝑠,𝑐 represent all inputs and outputs in year 𝑦 at vertex 𝑣 of commodity 𝑐

into storage 𝑠. The variables 𝜖in,out
𝑦𝑣𝑠𝑡 are then the inputs and outputs of commodities to and from storages.
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Storage dispatch constraints

In a storage the energy content 𝜖con
𝑦𝑣𝑠𝑡 has to be calculated. This is achieved by simply adding all inputs

to and subtracting all outputs from the storage content at the previous time step 𝜖con
𝑦𝑣𝑠(𝑡−1):

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇𝑚 :

𝜖con
𝑦𝑣𝑠𝑡 = 𝜖con

𝑦𝑣𝑠(𝑡−1) · (1 − 𝑑𝑦𝑣𝑠)
Δ𝑡 + 𝑒in

𝑦𝑣𝑠 · 𝜖in
𝑦𝑣𝑠𝑡 −

𝜖out
𝑦𝑣𝑠𝑡

𝑒out
𝑦𝑣𝑠

.

Here, 𝑒in,out
𝑦𝑣𝑠 are the efficiencies for charging and discharging, respectively, and 𝑑𝑦𝑣𝑠 is the hourly self

discharge rate.

Basic storage dispatch rules

Similar to processes and transmission lines, inputs and outputs are limited by the power capacity of the
storage:

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇𝑚 :

𝜖in,out
𝑦𝑣𝑠𝑡 ≤ ∆𝑡 · 𝜅p

𝑦𝑣𝑠.

Additionally, the storage content is limited by the total storage energy capacity:

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇𝑚 :

𝜖con
𝑦𝑣𝑠𝑡 ≤ 𝜅c

𝑦𝑣𝑠.

Initial and final state

In order to avoid windfall profits for the optimization by, e.g., emptying a storage over the model horizon,
the initial and final storage content are linked via:

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆 :

𝜖con
𝑦𝑣𝑠(𝑡1)

≤ 𝜖con
𝑦𝑣𝑠𝑡𝑁

,

where 𝑡1,𝑁 are the initial and final modeled timesteps, respectively. The inequality simplifies the model
solving by relaying an otherwise unnecessarily strict constraint. A small disadvantage arises when the
system can gain costs or save CO2 by filling a storage. This case is, however, not too common. It is
additionally possible for the user to fix the initial storage content via:

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆 :

𝜖con
𝑣𝑠𝑡1 = 𝜅c

𝑦𝑣𝑠𝐼𝑦𝑣𝑠,

where 𝐼𝑦𝑣𝑠 is the fraction of the total storage capacity that is filled at the beginning of the modeling
period.

Fixed energy/power ratio

It is sometimes desirable to fix the ratio between energy capacity and charging/discharging power for
a given storage. This is modeled by the possibility to set a linear dependence between the capacities
through a user-defined “energy to power ratio” 𝑘E/P

𝑦𝑣𝑠. Note that this constraint is only active for the
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storages with a positive value under the column “ep-ratio” in the input file, and when this value is not
given, the power and energy capacities can be sized independently

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆 :

𝜅𝑐𝑦𝑣𝑠 = 𝜅𝑝𝑦𝑣𝑠𝑘
E/P
𝑦𝑣𝑠.

This concludes the storage feature.

Trading with an external market

In urbs it is possible to model the trade with an external market. For this two new commodity types,
buy and sell commodities, are introduced. For each a time series representing the momentary cost at
each timestep is given. This time series is of course known to the model in advance, which has two
implications. First, the modeled system is considered too small to influence the external market and any
possible influence is not captured by the model, and, second, the perfect price foresight can distort the
results when compared to a realistic trader in a market. For models with buy and sell commodities the
variable vector takes the following form:

𝑥T = (𝜁, 𝜌𝑦𝑣𝑐𝑡, 𝜚𝑦𝑣𝑐𝑡, 𝜓𝑦𝑣𝑐𝑡⏟  ⏞  
commodity variables

, 𝜅𝑦𝑣𝑝, ̂︀𝜅𝑦𝑣𝑝, 𝜏𝑦𝑣𝑝𝑡, 𝜖in
𝑦𝑣𝑐𝑝𝑡, 𝜖

out
𝑦𝑣𝑐𝑝𝑡⏟  ⏞  

process variables

, 𝜅𝑦𝑎𝑓 , ̂︀𝜅𝑦𝑎𝑓 , 𝜋in
𝑦𝑎𝑓𝑡, 𝜋

out
𝑦𝑎𝑓𝑡⏟  ⏞  

transmission variables

),

where 𝜚𝑦𝑣𝑐𝑡 is the amount of sell commodity 𝑐 sold to the external market in year 𝑦 from vertex 𝑣 at time
𝑡 and 𝜓𝑦𝑣𝑐𝑡 is the amount of buy commodity 𝑐 bought from the external market in year 𝑦 at vertex 𝑣 and
time 𝑡.

Costs

The cost function is amended by two new cost types when the trading with an external market is modeled,
the purchase and the revenue costs

𝜁 = 𝜁inv + 𝜁fix + 𝜁var + 𝜁fuel + 𝜁rev + 𝜁pur + 𝜁env.

The two new cost types are then specified by the following equations:

𝜁rev = − 𝑤∆𝑡
∑︁
𝑦∈𝑌

𝑣 ∈ 𝑉

𝑐 ∈ 𝐶𝑠𝑒𝑙𝑙

𝑡 ∈ 𝑇𝑚𝐷𝑚 · 𝑘bs
𝑦𝑣𝑐𝑡 · 𝜚𝑦𝑣𝑐𝑡

𝜁pur =𝑤∆𝑡
∑︁
𝑦∈𝑌

𝑣 ∈ 𝑉

𝑐 ∈ 𝐶𝑏𝑢𝑦

𝑡 ∈ 𝑇𝑚𝐷𝑚 · 𝑘bs
𝑦𝑣𝑐𝑡 · 𝜓𝑦𝑣𝑐𝑡,

where 𝑘bs
𝑦𝑣𝑐𝑡 represents the time series of the given buy and sell commodity prices.
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Commodity dispatch constraints

Buy and sell commodities change the vertex rule (Kirchhoff’s current law), by adding a new way for in-
an output flows of commodities. The rule is thus amended by the following two equations:

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶sell, 𝑡 ∈ 𝑇𝑚 :

− 𝜚𝑐𝑡 ≥ CB(𝑐, 𝑡)

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶buy, 𝑡 ∈ 𝑇𝑚 :

𝜓𝑐𝑡 ≥ CB(𝑐, 𝑡).

The commodity balance itself is not changed. The new rules state that any amount of energy sold needs
to be provided to (negative CB) the system via processes, storages or transmission lines, while buy
commodity consumed by processes, storages or transmission lines in the system has to be replenished.

Buy/sell commodity limitations

The trade with the market in each modeled year and each vertex can be limited per time step and for an
entire year. This introduces the following constraints:

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶sell :

𝑤
∑︁
𝑡∈𝑇𝑚

𝜚𝑐𝑡 ≤ 𝐺𝑦𝑣𝑐

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶sell, 𝑡 ∈ 𝑇𝑚 :

𝜚𝑦𝑣𝑐𝑡 ≤ 𝑔𝑦𝑣𝑐

and

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶buy :

𝑤
∑︁
𝑡∈𝑇𝑚

𝜓𝑐𝑡 ≤ 𝐵𝑦𝑣𝑐

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶buy, 𝑡 ∈ 𝑇𝑚 :

𝜚𝑦𝑣𝑐𝑡 ≤ 𝑏𝑦𝑣𝑐.

Here, the parameters 𝑏𝑦𝑣𝑐 and 𝐵𝑦𝑣𝑐 limit the hourly and yearly maximums of buy from and 𝑔𝑦𝑣𝑐 and
𝐺𝑦𝑣𝑐 the hourly and yearly maximum of selling to the external market.

This concludes the discussion of the modeled trading with an external market.

Demand side management

Demand side management allows for the shifting of demands in time. It thus gives the model the
possibility to divert from the strict restriction that all demands have to be fulfilled at all timesteps.
Demand side management adds two variables to an urbs problem and the variable vector then reads:

𝑥T = (𝜁, 𝜌𝑦𝑣𝑐𝑡⏟ ⏞ 
commodity variables

, 𝜅𝑦𝑣𝑝, ̂︀𝜅𝑦𝑣𝑝, 𝜏𝑦𝑣𝑝𝑡, 𝜖in
𝑦𝑣𝑐𝑝𝑡, 𝜖

out
𝑦𝑣𝑐𝑝𝑡⏟  ⏞  

process variables

, 𝜅𝑦𝑎𝑓 , ̂︀𝜅𝑦𝑎𝑓 , 𝜋in
𝑦𝑎𝑓𝑡, 𝜋

out
𝑦𝑎𝑓𝑡⏟  ⏞  

transmission variables

, 𝛿
up
𝑦𝑣𝑐𝑡, 𝛿

down
𝑦𝑣𝑐𝑡(𝑡𝑡)⏟  ⏞  

DSM variables

).

1.2. Mathematical documentation 39



urbs Documentation, Release 1.0.0

The new variable 𝛿up
𝑦𝑣𝑐𝑡 represent the upshift of the momentary demand at time 𝑡 and 𝛿down

𝑦𝑣𝑐𝑡(𝑡𝑡) the corre-
sponding downshifts. The downshifts need two time indices as they are referencing to the corresponding
upshift with the first index 𝑡 and the timesteps they actually occur via the second time index 𝑡𝑡. The lat-
ter is then restricted to an interval around the reference upshift since loads cannot in general be shifted
indefinitely. As it is modeled in urbs, DSM does not introduce any costs. To clarify the terms used for
the DSM feature the following illustrative example is helpful.

Example of a DSM process

An example scenario with parameters below can be used to clarify the mathematical structure of a DSM
process.

Site Commodity delay eff recov cap-max-do cap-max-up
South Elec 3 1 1 2000 2000

First, an series of three upshifts, i.e. demand increases, indexed with the modeled timesteps 3,4 and 5
occurs in the example.

Table 1: DSM upshift process
𝑡

1 0
2 0
3 1445
4 1580
5 2000
6 0

The corresponding downshifts can then be visualized using a matrix, where the row index 𝑡 corresponds
to the upshifts above, that have to be compensated by downshifts. The modeled timesteps where the
downshifts actually occur are labeled by 𝑡𝑡 and represent the column indices.

Table 2: DSM downshift process
𝑡 \ 𝑡𝑡 1 2 3 4 5 6
1 0 0 0 0
2 0 0 0 0 0
3 1445 0 0 0 0 0
4 555 0 555 0 0 470
5 2000 0 0 0 0
6 0 0 0 0

The DSM upshift process is relatively easy to understand, for every time step 𝑡 one upshift is made and
it can not exceed 2000. The table for DSM downshift process shows, that the sum over all elements for
every row index 𝑡, is equal to the upshift made at time step 𝑡. The blank spaces in the table are because
of delay time restriction. For instance, an upshift in 𝑡 = 1 may not be compensated with a downshift in
𝑡𝑡 = 5, as delay time is equal to 3 in our example. The restriction of the total DSM downshifts is given
by the sum of all column elements for every index 𝑡𝑡. This sum may not exceed 2000 as well, due to
given parameters.
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Commodity dispatch constraints

Demand side management changes the vertex rule. Every upshift 𝛿up
𝑦𝑣𝑐𝑡 leads to an additional demand,

i.e., to an additional required output of the system, and vice versa for the downshifts. Effectively this
changes the vertex rule (Kirchhoff’s current law) for demand commodities with DSM to:

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶dem, 𝑡 ∈ 𝑇𝑚 :

− 𝑑𝑦𝑣𝑐𝑡 − 𝛿
up
𝑦𝑣𝑐𝑡 ≥ CB(𝑦, 𝑣, 𝑐, 𝑡)

− 𝑑𝑦𝑣𝑐𝑡 +
∑︁

𝑡𝑡∈[𝑡−𝑦𝑦𝑣𝑐,𝑡+𝑦𝑦𝑣𝑐]

𝛿down
𝑦𝑣𝑐(𝑡𝑡)𝑡 ≥ CB(𝑦, 𝑣, 𝑐, 𝑡).

The downshift equation requires a little elaboration. Here, the total downshift occurring at a timestep 𝑡
can be caused by downshifts linked to different upshifts, which in the notation above occur at times 𝑡𝑡.
All downshift contributions within the delay time 𝑦𝑦𝑣𝑐 of their respective upshifts are then summed up.

DSM variables rule

This central constraint rule for DSM in urbs links the up- and down shifts of DSM events. An upshift
(multiplied with the DSM efficiency) at time 𝑡 must be compensated with multiple downshifts during a
certain time interval. The lower and upper bounds of this time interval are given by 𝑡−𝑦𝑦𝑣𝑐 and 𝑡+𝑦𝑦𝑣𝑐,
where 𝑦𝑦𝑣𝑐 is the delay time parameter specifying the allowed duration of a DSM event. Inside this time
interval, another time index 𝑡𝑡 is required. It is used to index the downshift processes that are always
linked to one upshift. Of course, the intervals of several upshifts can overlap. Mathematically, this rule
can be noted like this:

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶DSM
𝑑𝑒𝑚 , 𝑡 ∈ 𝑇𝑚 :

𝑒𝑦𝑣𝑐𝛿
up
𝑦𝑣𝑐𝑡 =

∑︁
𝑡𝑡∈[𝑡−𝑦𝑦𝑣𝑐,𝑡+𝑦𝑦𝑣𝑐]

𝛿down
𝑦𝑣𝑐𝑡(𝑡𝑡),

where 𝑒𝑦𝑣𝑐 is the DSM efficiency. Note here, that the summation is over the timesteps where the down-
shifts are occurring as opposed to the vertex rule above, where the summation is over the timesteps of
the corresponding upshifts.

DSM shift limitations

DSM shifts are limited in size in both directions. This is modeled by

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶DSM
dem , 𝑡 ∈ 𝑇𝑚 :

𝛿
up
𝑦𝑣𝑐𝑡 ≤ 𝐾

up
𝑦𝑣𝑐

∑︁
𝑡𝑡∈[𝑡−𝑦𝑦𝑣𝑐,𝑡+𝑦𝑦𝑣𝑐]

𝛿down
𝑦𝑣𝑐(𝑡𝑡)𝑡 ≤ 𝐾

down
𝑦𝑣𝑐 ,

where again the downshifts are summed over the corresponding upshifts, making sure that at no time
there is a total downshift sum larger than the set maximum value.

1.2. Mathematical documentation 41



urbs Documentation, Release 1.0.0

In addition to these limitations on the single shift directions, the total sum of shifts is also limited in an
urbs model via:

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶DSM
dem , 𝑡 ∈ 𝑇𝑚 :

𝛿
up
𝑦𝑣𝑐𝑡 +

∑︁
𝑡𝑡∈[𝑡−𝑦𝑦𝑣𝑐,𝑡+𝑦𝑦𝑣𝑐]

𝛿down
𝑦𝑣𝑐(𝑡𝑡)𝑡 ≤ max{𝐾up

𝑦𝑣𝑐,𝐾
down
𝑦𝑣𝑐 }.

DSM recovery

Assuming that DSM is linked to some real physical devices, it is necessary to allow these devices to
have some minimal time between DSM events, where, e.g., the ability to perform DSM is recovered.
This is modeled in the following way:

∀𝑦 ∈ 𝑌, 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶DSM
dem , 𝑡 ∈ 𝑇𝑚 :

𝑜𝑦𝑣𝑐/Δ𝑡−1∑︁
𝑡𝑡=𝑡

𝛿
up
𝑦𝑣𝑐(𝑡𝑡) ≤ 𝐾

up
𝑦𝑣𝑐 · 𝑦𝑦𝑣𝑐,

where 𝑜𝑦𝑣𝑐 is the recovery time in hours. This constraint limits the total amount of upshifted energy
within the recovery period (lhs) to the maximum allowed energy shift retained for the maximum amount
of allowed shifting time for one shifting event. This means that only one full shifting event can occur
within the recovery period.

This concludes the demand side management constraints.

Advanced Processes

Several processes have a complicated, non-linear behavior. Those that can be modelled in urbs are
explained here. These are: Time Variable Efficiency, Minimum Load and Part Load Behaviors and
On/Off Behavior.

Time Variable Efficiency

It is possible to exogenously manipulate the output of a process by introducing a time series, which
changes the output ratios and thus the efficiency of a given process in each given timestep. This intro-
duces an additional set of constraints in the form:

∀𝑝 ∈ 𝑃 TimeVarEff, 𝑐 ∈ 𝐶 − 𝐶env, 𝑡 ∈ 𝑇𝑚 :

𝜖out
𝑦𝑝𝑐𝑡 = 𝑟out

𝑦𝑝𝑐𝑓
out
𝑦𝑝𝑡𝜏𝑦𝑝𝑐𝑡.

Here, 𝑓out
𝑝𝑡 represents the normalized time series of the varying output ratio. This feature can be helpful

when modeling, e.g., temperature dependent effects or maintenance intervals. Environmental commodi-
ties are intentionally excluded from the output manipulation. The reason for this is that they are typically
directly linked to inputs as, e.g., CO2 emissions are linked to the fossil inputs. A manipulation of the
output for environmental commodities would thus violate the mass balance of carbon in this case (e.g.
coal).
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When the process in question is a process with part load behavior the equation for the time variable
efficiency case takes the following form:

∀𝑝 ∈ 𝑃 part load and 𝑝 ∈ 𝑃 TimeVarEff, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖out
𝑦𝑝𝑐𝑡 = ∆𝑡 · 𝑓out

𝑦𝑝𝑡 ·
(︂
𝑟out
𝑦𝑝𝑐 − 𝑟out

𝑦𝑝𝑐

1 − 𝑃 𝑦𝑝

· 𝑃 𝑦𝑝 · 𝜅𝑦𝑝 +
𝑟out
𝑦𝑝𝑐 − 𝑃 𝑝𝑟

out
𝑦𝑝𝑐

1 − 𝑃 𝑦𝑝

· 𝜏𝑦𝑝𝑡
)︂
.

Minimum Load and Part Load Behaviors

There are some processes which theoretically can be turned on and off, while others tipically operate
as must-run units (e.g. nuclear power plants, heat-producing plants during the cold season etc.). These
processes can either have a constant and load independent efficiency or a part-load behavior.

In the case of a minimum load behavior with a constant, load independent efficiency, the values of the
input and of the output of a process remain unchanged when compared except for the fact that their
values, together with the value of the throughput, stay between the following boundaries:

∀𝑝 ∈ 𝑃minimum load, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝑃 𝑝 · 𝜅𝑝 · 𝑟in,out ≤ 𝜖in,out
𝑝𝑐𝑡 ≤ 𝜅𝑝 · 𝑟in,out,

∀𝑝 ∈ 𝑃 part load, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝑃 𝑝 · 𝜅𝑝 · 𝑟in,out ≤ 𝜖in,out
𝑝𝑐𝑡 ≤ 𝜅𝑝 · 𝑟in,out,

where 𝑃 𝑝 is the minimum load fraction, 𝜅𝑝 the installed capacity, 𝑟in,out the input/output ratios and 𝑟in,out

the minimum input/output ratios.

Many processes show a non-trivial part-load behavior. In particular, often a nonlinear reaction of the
efficiency on the operational state is given. Although urbs itself is a linear program this can with some
caveats be captured in many cases. The reason for this is, that the efficiency of a process is itself not
given as a parameter, but is merely the ratio between input and output multipliers. It is thus possible to
use purely linear functions to get a nonlinear behavior of the efficiency of the form:

𝜂 =
𝑎+ 𝑏𝜏𝑝𝑡
𝑐+ 𝑑𝜏𝑝𝑡

,

where a,b,c and d are some constants. Specifically, the input and output ratios can be set to vary linearly
between their respective values at full load 𝑟in,out

𝑝𝑐 and their values at the minimal allowed operational
state 𝑃 𝑝𝜅𝑝, which are given by 𝑟in,out

𝑝𝑐 . This is achieved with the following equations and exemplified
with the following graphic:

∀𝑝 ∈ 𝑃 part load, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖in,out
𝑝𝑐𝑡 = ∆𝑡 ·

(︃
𝑟in,out
𝑝𝑐 − 𝑟in,out

𝑝𝑐

1 − 𝑃 𝑝

· 𝑃 𝑝 · 𝜅𝑝 +
𝑟in,out
𝑝𝑐 − 𝑃 𝑝𝑟

in,out
𝑝𝑐

1 − 𝑃 𝑝

· 𝜏𝑝𝑡

)︃
.
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A few restrictions have to be kept in mind when using this feature:

• 𝑃 𝑝 has to be set larger than 0 otherwise the feature will work but not have any effect.

• Environmental output commodities have to mimic the behavior of the inputs by which they are
generated. Otherwise the emissions per unit of input would change together with the efficiency,
which is typically not the desired behavior.

On/off Behavior

Some processes are characterised by a minimum or part-load behavior but still retain the practical ne-
cessity of being turned on and off if this is optimal. This feature transforms urbs from a linear problem
to a quadratic integer problem, or piecewise linear. The following graphic illustrates a process with the
on/off feature and constant efficiency:
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The following graphic illustrates a process with the on/off feature and part load behavior:

Coupling the throughput ant the on/off marker: The following equation introduces a coupling be-
tween 𝑝𝑡, the boolean on/off marker of a process and its throughput 𝜏𝑝𝑡, so that 𝑝𝑡 assumes the value 1
when the process has a non-zero output and 0 otherwise.

∀𝑝 ∈ 𝑃 on/off, 𝑡 ∈ 𝑇𝑚 :

𝑃 𝑝 · 𝜅𝑝·𝑝𝑡 ≤ 𝜏𝑝𝑡 ≤ 𝜅𝑝 ·𝑝𝑡 +𝑃 𝑝 · 𝜅𝑝 · (1−𝑝𝑡)

Input: The following equation describes the alteration of the input equation of a process with on/off and
part-load behaviors due to the necessity of having a continuous, linear function defined on two intervals.
The first interval represents the starting input of a process, while the second one represents the consumed
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input while also producing.

∀𝑝 ∈ 𝑃 on/off with part load, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑖𝑛𝑝𝑐𝑡 = 𝜏𝑝𝑡 · 𝑟in
𝑝𝑐 · (1−𝑝𝑡) + ∆𝑡 ·

(︃
𝑟in
𝑝𝑐 − 𝑟in

𝑝𝑐

1 − 𝑃 𝑝

· 𝑃 𝑝 · 𝜅𝑝 +
𝑟in
𝑝𝑐 − 𝑃 𝑝𝑟

in
𝑝𝑐

1 − 𝑃 𝑝

· 𝜏𝑝𝑡

)︃
·𝑝𝑡 .

In order to ensure the continuity property of the function, the input ratio used for the starting interval has
to be one corresponding to the minimum partial load, using 𝑟in

𝑝𝑐. This is a realistic value, since processes
normally use, percentagewise, more fuel in relationship to the throughput when starting than at higher
throughput values.

Output differentiation: The following equations differentiate whether an output commodity needs to
be produced when a process is starting (e.g. environmental commodities) or not (e.g. electricity):

∀𝑝 ∈ 𝑃 on/off, 𝑐 ∈ 𝐶environmental, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 = 𝜏𝑝𝑡 · 𝑟out
𝑝𝑐

∀𝑝 ∈ 𝑃 on/off, 𝑐 ∈ 𝐶non-environmental, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 = 𝜏𝑝𝑡 · 𝑟out
𝑝𝑐 ·𝑝𝑡 .

If the process also shows part-load behavior, the previous two equations change to a similarly adapted
version of the part-load output equation:

∀𝑝 ∈ 𝑃 on/off with part load, 𝑐 ∈ 𝐶environmental, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 = 𝜏𝑝𝑡 · 𝑟out
𝑝𝑐 · (1−𝑝𝑡) + ∆𝑡 ·

(︂
𝑟out
𝑝𝑐 − 𝑟out

𝑝𝑐

1 − 𝑃 𝑝

· 𝑃 𝑝 · 𝜅𝑝 +
𝑟out
𝑝𝑐 − 𝑃 𝑝𝑟

out
𝑝𝑐

1 − 𝑃 𝑝

· 𝜏𝑝𝑡
)︂
·𝑝𝑡

∀𝑝 ∈ 𝑃 on/off, 𝑐 ∈ 𝐶non-environmental, 𝑡 ∈ 𝑇𝑚 :

𝜖out
𝑝𝑐𝑡 = ∆𝑡 ·

(︂
𝑟out
𝑝𝑐 − 𝑟out

𝑝𝑐

1 − 𝑃 𝑝

· 𝑃 𝑝 · 𝜅𝑝 +
𝑟out
𝑝𝑐 − 𝑃 𝑝𝑟

out
𝑝𝑐

1 − 𝑃 𝑝

· 𝜏𝑝𝑡
)︂
·𝑝𝑡 .

Here, it is important to notice that the output of the environmental commodities becomes a continuous,
piecewise linear function defined on two intervals. In order to ensure the continuity property of the func-
tion, the output ratio used for the starting interval has to be the partial one, 𝑟in

𝑝𝑐. This is a realistic value,
since processes normaly produce, percentagewise, more CO2 and/or other environmental commodities
in relationship to the throughput when starting then at higher throughput values.

Output ramping-up limit: While ramping up a process which can be turned on and off with a defined
ramping up gradient, the following unrealistic situation might occur: Due to the fact that in the minimum
working point the process on/off marker 𝑝𝑡 can be both 0 and 1, the output of a process might have
unrealistic jumps after the starting process is completed. There are 3 possible cases, each solved with its
own output ramping equation, as follows:

Case I: When

𝑃 𝑝 ≥ 𝑃𝐺
up
𝑝

𝑃 𝑝 is a multiple of𝑃𝐺up
𝑝 .
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Here, in order to ensure that the process behaves realistically, it is needed to ensure that the process
starts producing in the minimum working point, 𝑃 𝑝𝜅𝑝 𝑟

out
𝑝𝑐 , and not at a higher value. This is done by

the following equation:

∀𝑝 ∈ 𝑃 on/off, case I, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 − 𝜖𝑜𝑢𝑡𝑝𝑐(𝑡−1) ≤ ∆𝑡𝑃 𝑝𝜅𝑝𝑟
out
𝑝𝑐 .

If the process shows a part load behavior, the equation changes to:

∀𝑝 ∈ 𝑃 on/off with part load, case I, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 − 𝜖𝑜𝑢𝑡𝑝𝑐(𝑡−1) ≤ ∆𝑡𝑃 𝑝𝜅𝑝𝑟
out
𝑝𝑐 .

If the process has a time variable efficiency, the equation changes to:

∀𝑝 ∈ 𝑃 on/off with TimeVarEff, case I, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 − 𝜖𝑜𝑢𝑡𝑝𝑐(𝑡−1) ≤ ∆𝑡𝑃 𝑝𝜅𝑝𝑟
out
𝑝𝑐 𝑓

out
𝑝𝑡 .

If the process has both a part load behavior and a time variable efficiency, the equation changes to:

∀𝑝 ∈ 𝑃 on/off with TimeVarEff, case I, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 − 𝜖𝑜𝑢𝑡𝑝𝑐(𝑡−1) ≤ ∆𝑡𝑃 𝑝𝜅𝑝𝑟
out
𝑝𝑐 𝑓

out
𝑝𝑡 .

Case II: When

𝑃 𝑝 > 𝑃𝐺
up
𝑝

𝑃 𝑝 is not a multiple of𝑃𝐺up
𝑝 .

Here, in order to ensure that the process behaves realistically, it is needed to ensure that the process starts
somewhere in the interval between the minimum working point 𝑃 𝑝𝜅𝑝 and the point of the first multiple

of 𝑃𝐺up
𝑝 greater than 𝑃 𝑝𝜅𝑝, which is (

𝑃 𝑝

𝑃𝐺
up
𝑝

+ 1) · 𝑃𝐺𝑝, where is the rounded down number. This is

done by the following equation:

∀𝑝 ∈ 𝑃 on/off, case II, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 − 𝜖𝑜𝑢𝑡𝑝𝑐(𝑡−1) ≤ ∆𝑡(
𝑃 𝑝

𝑃𝐺
up
𝑝

+ 1)𝑃𝐺𝑝𝜅𝑝𝑟
out
𝑝𝑐 .

If the process shows a part load behavior, the equation changes to:

∀𝑝 ∈ 𝑃 on/off, case II, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 − 𝜖𝑜𝑢𝑡𝑝𝑐(𝑡−1) ≤ ∆𝑡(
𝑃 𝑝

𝑃𝐺
up
𝑝

+ 1)𝑃𝐺𝑝𝜅𝑝𝑟
out
𝑝𝑐 .

If the process has a time variable efficiency, the equation changes to:

∀𝑝 ∈ 𝑃 on/off with TimeVarEff, case II, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 − 𝜖𝑜𝑢𝑡𝑝𝑐(𝑡−1) ≤ ∆𝑡(
𝑃 𝑝

𝑃𝐺
up
𝑝

+ 1)𝑃𝐺𝑝𝜅𝑝𝑟
out
𝑝𝑐 𝑓

out
𝑝𝑡 .
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If the process has both a part load behavior and a time variable efficiency, the equation changes to:

∀𝑝 ∈ 𝑃 on/off with part load and TimeVarEff, case II, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 − 𝜖𝑜𝑢𝑡𝑝𝑐(𝑡−1) ≤ ∆𝑡(
𝑃 𝑝

𝑃𝐺
up
𝑝

+ 1)𝑃𝐺𝑝𝜅𝑝𝑟
out
𝑝𝑐 𝑓

out
𝑝𝑡 .

Case III: When

𝑃 𝑝 < 𝑃𝐺
up
𝑝 .

Here, in order to ensure that the process behaves realistically, it is needed to ensure that the process
starts somewhere in the interval between the minimum working point 𝑃 𝑝𝜅𝑝 and the first ramping up
point greater than 0, 𝑃𝐺up

𝑝 𝜅𝑝. This is done by the following equation:

∀𝑝 ∈ 𝑃 on/off, case III, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 − 𝜖𝑜𝑢𝑡𝑝𝑐(𝑡−1) ≤ ∆𝑡𝑃𝐺
up
𝑝 𝜅𝑝𝑟

out
𝑝𝑐 .

If the process shows a part load behavior, the equation changes to:

∀𝑝 ∈ 𝑃 on/off, case III, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 − 𝜖𝑜𝑢𝑡𝑝𝑐(𝑡−1) ≤ ∆𝑡𝑃𝐺
up
𝑝 𝜅𝑝𝑟

out
𝑝𝑐 .

If the process has a time variable efficiency, the equation changes to:

∀𝑝 ∈ 𝑃 on/off with TimeVarEff, case III, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 − 𝜖𝑜𝑢𝑡𝑝𝑐(𝑡−1) ≤ ∆𝑡𝑃𝐺
up
𝑝 𝜅𝑝𝑟

out
𝑝𝑐 𝑓

out
𝑝𝑡 .

If the process has both a part load behavior and a time variable efficiency, the equation changes to:

∀𝑝 ∈ 𝑃 on/off with part load and TimeVarEff, case III, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇𝑚 :

𝜖𝑜𝑢𝑡𝑝𝑐𝑡 − 𝜖𝑜𝑢𝑡𝑝𝑐(𝑡−1) ≤ ∆𝑡𝑃𝐺
up
𝑝 𝜅𝑝𝑟

out
𝑝𝑐 𝑓

out
𝑝𝑡 .

Starting ramp-up: There are some processes which have a different ramping up gradient while starting
than while producing. This is usually defined with the help of a so called starting time. The following
equations transform the starting time into a starting ramp and implement the starting ramp only during
start, either as the only ramping constraint when no ramp up gradient is defined or by replacing during
start the rampiong up constraint which uses the ramping up gradient:

∀𝑝 ∈ 𝑃 on/off with start time, 𝑡 ∈ 𝑇𝑚 :

𝑆𝑅𝑝 =
𝑃 𝑝

𝑆𝑇𝑝

𝜏𝑝𝑡 − 𝜏𝑝(𝑡−1) ≤ ∆𝑡𝑃𝐺
up
𝑝 𝜅𝑝𝑝(𝑡−1) + ∆𝑡 𝑆𝑅𝑝𝜅𝑝(1−𝑝(𝑡−1)).

Start-up costs: For those processes which have a fix start-up cost, it is necessary to identify whether
a process has completed its starting phase and begins to produce or not. The following equation does
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this by turning the boolean variable process start-up marker 𝜎𝑝𝑡 to 1 when the process on/off marker
switches from 0 to 1:

∀𝑝 ∈ 𝑃 on/off with start cost, 𝑡 ∈ 𝑇𝑚 :

𝜎𝑝𝑡 ≥𝑝𝑡 −𝑝(𝑡−1).

The following table shows the possible values of 𝜎𝑝𝑡: .. table:: Table: Process Start-up Marker Values

𝑝𝑡 𝑝(𝑡−1) 𝜎𝑝𝑡
0 0 0 or 1 (0 is optimal)
0 1 0
1 0 1
1 1 0

Costs

The cost function is ammended with one cost type, the start-up cost:

𝜁 = 𝜁inv + 𝜁fix + 𝜁var + 𝜁fuel + 𝜁startup + 𝜁env.

Turning on a process requires sometime an additional fix cost besides the fuel used for the starting. As
the variable costs, these costs occur when processes are used:

𝜁startup = 𝑤∆𝑡
∑︁
𝑡∈𝑇𝑚

𝑝 ∈ 𝑃on/off𝑃
start
𝑝 𝜎𝑝𝑡,

where 𝑃 start
𝑝 is the fix start-up cost and 𝜎𝑝𝑡 is the process start-up marker. This cost type can also be

merged into the same class of costs as the variable and fuel costs.

1.3 Technical documentation

Continue here if you want to understand in detail the model generator implementation.

1.3.1 Model Implementation

In this Section the implementation of the theoretical concepts of the model is described. This includes
listing and describing all relevant sets, parameters, variables and constraints linking mathematical nota-
tion with the corresponding code fragment.

Sets

Since urbs is a linear optimization model with many objects (e.g variables, parameters), it is reasonable
to use sets to define the groups of objects. With the usage of sets, many facilities are provided, such as
understanding the main concepts of the model. Many objects are represented by various sets, therefore
sets can be easily used to check whether some object has a specific characteristic or not. Additionally sets
are useful to define a hierarchy of objects. Mathematical notation of sets are expressed with uppercase
letters, and their members are usually expressed with the same lowercase letters. Main sets, tuple sets
and subsets will be introduced in this respective order.
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Elementary sets

Table 3: Table: Model Sets
Set Description
𝑡 ∈ 𝑇 Timesteps
𝑡 ∈ 𝑇m Modelled Timesteps
𝑦 ∈ 𝑌 Support timeframes
𝑣 ∈ 𝑉 Sites
𝑐 ∈ 𝐶 Commodities
𝑞 ∈ 𝑄 Commodity Types
𝑝 ∈ 𝑃 Processes
𝑠 ∈ 𝑆 Storages
𝑓 ∈ 𝐹 Transmissions
𝑟 ∈ 𝑅 Cost Types

Time Steps

The model urbs is considered to observe a energy system model and calculate the optimal solution within
a limited span of time. This limited span of time is viewed as a discrete variable, which means values of
variables are viewed as occurring only at distinct timesteps. The set of time steps 𝑇 = {𝑡0, . . . , 𝑡𝑁} for
𝑁 in N represents Time. This set contains𝑁+1 sequential time steps with equal spaces. Each time step
represents another point in time. At the initialisation of the model this set is fixed by the user by setting
the variable timesteps in script runme.py. Duration of space between timesteps ∆𝑡 = 𝑡𝑥+1 − 𝑡𝑥,
length of simulation ∆𝑡 · 𝑁 and time interval [𝑡0, 𝑡𝑁 ] can be fixed to satisfy the needs of the user. In
code this set is defined by the set t and initialized by the section:

m.t = pyomo.Set(
initialize=m.timesteps,
ordered=True,
doc='Set of timesteps')

Where:

• Initialize: A function that receives the set indices and model to return the value of that set element,
initializes the set with data.

• Ordered: A boolean value that indicates whether the set is ordered.

• Doc: A string describing the set.

Modelled Timesteps

The Set, modelled timesteps, is a subset of the time steps set. The only difference between modelled
timesteps set and the timesteps set is that the initial timestep 𝑡0 is not included. All other features of the
set time steps also apply to the set of modelled timesteps. This set is the main time set used in the model.
The distinction with the set timesteps is only required to facilitate the definition of the storage state
equation. In script model.py this set is defined by the set tm and initialized by the code fragment:
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m.tm = pyomo.Set(
within=m.t,
initialize=m.timesteps[1:],
ordered=True,
doc='Set of modelled timesteps')

Where:

• Within: The option that supports the validation of a set array.

• m.timesteps[1:] represents the timesteps set starting from the second element, excluding
the first timestep 𝑡0

Support timeframes

Support timeframes are represented by the set 𝑌 . They represent the explicitly modeled support time-
frames, e.g., years, for intertemporal models. In script model.py the set is defined as:

m.stf = pyomo.Set(
initialize=(m.commodity.index.get_level_values('support_timeframe')

.unique()),
doc='Set of modeled support timeframes (e.g. years)')

Sites

Sites are represented by the set 𝑉 . A Site 𝑣 can be any distinct location, a place of settlement or activity
(e.g process, transmission, storage).A site is for example an individual building, region, country or even
continent. Sites can be imagined as nodes(vertices) on a graph of locations, connected by edges. Index
of this set are the descriptions of the Sites (e.g north, middle, south). In script model.py this set is
defined by sit and initialized by the code fragment:

m.sit = pyomo.Set(
initialize=m.commodity.index.get_level_values('Site').unique(),
doc='Set of sites')

Commodities

As explained in the Overview section, commodities are goods that can be generated, stored, transmitted
or consumed. The set of Commodities represents all goods that are relevant to the modelled energy
system, such as all energy carriers, inputs, outputs, intermediate substances. (e.g Coal, CO2, Electric,
Wind) By default, commodities are given by their energy content (MWh). Usage of some commodities
are limited by a maximum value or maximum value per timestep due to their availability or restric-
tions, also some commodities have a price that needs to be compensated..(e.g coal, wind, solar).In script
model.py this set is defined by com and initialized by the code fragment:

m.com = pyomo.Set(
initialize=m.commodity.index.get_level_values('Commodity').unique(),
doc='Set of commodities')
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Commodity Types

Commodities differ in their usage purposes, consequently commodity types are introduced to subdivide
commodities by their features. These Types are hard coded as SupIm, Stock, Demand, Env, Buy,
Sell. In script model.py this set is defined as com_type and initialized by the code fragment:

m.com_type = pyomo.Set(
initialize=m.commodity.index.get_level_values('Type').unique(),
doc='Set of commodity types')

Processes

One of the most important elements of an energy system is the process. A process 𝑝 can be defined
by the action of changing one or more forms of energy, i.e. commodities, to others. In our modelled
energy system, processes convert input commodities into output commodities. Process technologies
are represented by the set processes 𝑃 . Different processes technologies have fixed input and output
commodities. These input and output commodities can be either single or multiple regardless of each
other. Some example members of this set can be: Wind Turbine,‘Gas Plant‘, Photovoltaics. In script
model.py this set is defined as pro and initialized by the code fragment:

m.pro = pyomo.Set(
initialize=m.process.index.get_level_values('Process').unique(),
doc='Set of conversion processes')

Storages

Energy Storage is provided by technical facilities that store energy to generate a commodity at a later
time for the purpose of meeting the demand. Occasionally, on-hand commodities may not be able to
satisfy the required amount of energy to meet the demand, or the available amount of energy may be
much more than required.Storage technologies play a major role in such circumstances. The Set 𝑆
represents all storage technologies (e.g Pump storage). In script model.py this set is defined as sto
and initialized by the code fragment:

m.sto = pyomo.Set(
initialize=m.storage.index.get_level_values('Storage').unique(),
doc='Set of storage technologies')

Transmissions

Transmissions 𝑓 ∈ 𝐹 represent possible conveyances of commodities between sites. Transmission
process technologies can vary between different commodities, due to distinct physical attributes and
forms of commodities. Some examples for Transmission technologies are: hvac, hvdc, pipeline) In
script model.py this set is defined as tra and initialized by the code fragment:

m.tra = pyomo.Set(
initialize=m.transmission.index.get_level_values('Transmission').

→˓unique(),
doc='Set of transmission technologies')
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Cost Types

One of the major goals of the model is to calculate the costs of a simulated energy system. There are 6
different types of costs. Each one has different features and are defined for different instances. Set of
cost types is hardcoded, which means they are not considered to be fixed or changed by the user. The
Set 𝑅 defines the Cost Types, each member 𝑟 of this set 𝑅 represents a unique cost type name. The cost
types are hard coded as: Investment, Fix, Variable, Fuel, Revenue, Purchase, Startup.
In script model.py this set is defined as cost_type and initialized by the code fragment:

m.cost_type = pyomo.Set(
initialize=['Inv', 'Fix', 'Var', 'Fuel','Revenue','Purchase','Startup

→˓'],
doc='Set of cost types (hard-coded)')

Tuple Sets

A tuple is finite, ordered collection of elements. For example, the tuple (hat,red,large) consists
of 3 ordered elements and defines another element itself. Tuples are needed in this model to define the
combinations of elements from different sets. Defining a tuple lets us assemble related elements and
use them as a single element. These tuples are then collected into tuple sets. These tuple sets are then
immensely useful for efficient indexing of model variables and parameters and for defining the constraint
rules.

Commodity Tuples

Commodity tuples represent combinations of defined commodities. These are represented by the set
𝐶𝑦𝑣𝑞. A member 𝑐𝑦𝑣𝑞 in set 𝐶𝑦𝑣𝑞 is a commodity 𝑐 of commodity type 𝑞 in support timeframe 𝑦 and
site 𝑣. For example, (2020, Mid, Elec, Demand) is interpreted as commodity Elec of commodity type
Demand in the year 2020 in site Mid. This set is defined as com_tuples and given by the code
fragment:

m.com_tuples = pyomo.Set(
within=m.stf*m.sit*m.com*m.com_type,
initialize=m.commodity.index,
doc='Combinations of defined commodities, e.g. (2020,Mid,Elec,Demand)')

Process Tuples

Process tuples represent possible placements of processes within the model. These are represented by
the set 𝑃𝑣. A member 𝑝𝑦𝑣 in set 𝑃𝑦𝑣 is a process 𝑝 in support timeframe 𝑦 and site 𝑣. For example,
(2020, North, Coal Plant) is interpreted as process Coal Plant in site North in the year 2020. This set is
defined as pro_tuples and given by the code fragment:

m.pro_tuples = pyomo.Set(
within=m.stf*m.sit*m.pro,
initialize=m.process.index,
doc='Combinations of possible processes, e.g. (2020,North,Coal plant)')
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There are several subsets defined for process tuples, which each activate a different set of modeling
constraints.

The first subset is formed in order to capture all processes that take up a certain area and are thus subject
to the area constraint at the given site. These processes are identified by the parameter area-per-cap
set in table Process, if at the same time a value for area is set in table Site. The tuple set is defined as:

m.pro_area_tuples = pyomo.Set(
within=m.stf*m.sit*m.pro,
initialize=m.proc_area.index,
doc='Processes and Sites with area Restriction')

The second subset is formed in order to capture all processes which have the parameter process new
capacity block cap-block 𝐾block

𝑦𝑣𝑝 set in the table Process, used for building new capacity in blocks.
The tuple set is defined as:

m.pro_cap_new_block_tuples = pyomo.Set(
within=m.stf * m.sit * m.pro,
initialize=[(stf, site, process)

for (stf, site, process) in m.pro_tuples
for (s, si, pro) in tuple(m.cap_block_dict.keys())
if process == pro and si == site and s == stf],
doc='Processes with new capacities built in blocks')

The third subset of the process tuples pro_minfraction_tuples 𝑃minfraction
𝑦𝑣 is formed in order to

identify processes that have a minimum fraction defined without having partial operation properties and
cannot be turned off. Programatically, they are identified by those processes which have the parameter
min-fraction set and the parameter on-off set to 0 in the table Process. The tuple set is defined
in AdvancedProcesses.py as:

m.pro_minfraction_tuples = pyomo.Set(
within=m.stf * m.sit * m.pro,
initialize=[(stf, site, process)

for (stf, site, process) in m.pro_tuples
for (st, sit, pro) in tuple(m.min_fraction_dict.keys())
if stf == st and sit == site and process ==pro and
m.process_dict['on-off'][stf, site, process] != 1],

doc='Processes with constant efficiency and minimum working load which'
'cannot be turned off')

The fourth subset of the process tuples pro_partial_tuples 𝑃 partial
𝑦𝑣 is formed in order to identify

processes that have partial operation properties and cannot be turned off. Programmatically, they are
identified by those processes, which have the parameter ratio-min set for one of their input and/or
outputcommodities in table Process-Commodity and the parameter on-off in the table Process set to
0. The tuple set is defined in AdvancedProcesses.py as:

m.pro_partial_tuples = pyomo.Set(
within=m.stf * m.sit * m.pro,
initialize=[(stf, site, process)

for (stf, site, process) in m.pro_tuples
for (s, pro, _) in tuple(m.r_in_min_fraction_dict.keys() or

m.r_out_min_fraction_dict.keys())
if process == pro and s == stf and
m.process_dict['on-off'][stf, site, process] != 1],

doc='Processes with partial input/output which cannot be turned off')
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The fifth subset of the process tuples pro_on_off_tuples 𝑃 on/off
𝑦𝑣 is formed in order to iden-

tify processes that have a minimum fraction defined without having partial operation properties and
can be turned off. Programatically, they are identified by those processes which have the parameter
min-fraction set and the parameter on-off set to 1 in the table Process. The tuple set is defined
in AdvancedProcesses.py as:

m.pro_on_off_tuples = pyomo.Set(
within=m.stf * m.sit * m.pro,
initialize=[(stf, site, process)

for (stf, site, process) in
tuple(m.min_fraction_dict.keys())

for (st, sit, pro) in tuple(m.onoff_dict.keys())
if stf == st and site == sit and process == pro],

doc='Processes with minimal fraction which can be turned off')

The sixth subset of the process tuples pro_on_off_partial_tuples 𝑃 partial on/off
𝑦𝑣 is formed in or-

der to identify processes that have a minimum fraction defined, partial operation properties and can
be turned off. Programmatically, they are identified by those processes, which have the parameter
ratio-min set for one of their input and/or outputcommodities in table Process-Commodity and the
parameter on-off in the table Process set to 1. The tuple set is defined in AdvancedProcesses.py as:

m.pro_partial_on_off_tuples = pyomo.Set(
within=m.stf * m.sit * m.pro,
initialize=[(stf, site, process)

for (stf, site, process) in m.pro_tuples
for (st, pro, _) in tuple(m.r_in_min_fraction_dict.keys()

or m.r_out_min_fraction_dict)
if process == pro and stf == st and
m.process_dict['on-off'][stf, site, process] == 1],

doc='Processes with partial input/output which can be turned off')

Finally, processes that are subject to restrictions in the change of operational state are captured with
the pro_rampupgrad_tuples and pro_rampdowngrad_tuples. This subsets are defined in
AdvancedProcesses as:

m.pro_rampupgrad_tuples = pyomo.Set(
within=m.stf * m.sit * m.pro,
initialize=[(stf, sit, pro)

for (stf, sit, pro) in m.pro_tuples
if m.process_dict['ramp-up-grad'][stf, sit, pro] < 1.0 /

→˓dt],
doc='Processes with maximum ramp up gradient smaller than timestep

→˓length')

m.pro_rampdowngrad_tuples = pyomo.Set(
within=m.stf * m.sit * m.pro,
initialize=[(stf, sit, pro)

for (stf, sit, pro) in m.pro_tuples
if m.process_dict['ramp-down-grad'][stf, sit, pro] < 1.0 /

→˓dt],
doc='Processes with maximum ramp down gradient smaller than timestep

→˓length')

In the case of a a process which can be turned on and off and are subject to restrictions in the change of
operational state while starting are captured with the pro_rampup_start_tuples, subset which is
defined in advancedProcesses.py as:
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m.pro_rampup_start_tuples = pyomo.Set(
within=m.stf * m.sit *m.pro,
initialize=[(stf, sit, pro)

for (stf, sit, pro) in m.pro_on_off_tuples
if m.process_dict['start-time'][stf, sit, pro]

> 1.0 / m.dt],
doc='Processes with different starting ramp up gradient')

Transmission Tuples

Transmission tuples represent possible transmissions. These are represented by the set 𝐹𝑦𝑐𝑣out𝑣in . A
member 𝑓𝑦𝑐𝑣out𝑣in in set 𝐹𝑦𝑐𝑣out𝑣in is a transmission 𝑓 ,that is directed from an origin site 𝑣out to a destina-
tion site 𝑣𝑖𝑛 and carrying the commodity 𝑐 in support timeframe 𝑦. The term “directed from an origin
site 𝑣out to a destination site 𝑣in” can also be defined as an arc 𝑎 . For example, (2020, South, Mid,
hvac, Elec) is interpreted as transmission hvac that is directed from origin site South to destination site
Mid carrying commodity Elec in year 2020. This set is defined as tra_tuples and given by the code
fragment:

m.tra_tuples = pyomo.Set(
within=m.stf*m.sit*m.sit*m.tra*m.com,
initialize=m.transmission.index,
doc='Combinations of possible transmissions, e.g. '

'(2020,South,Mid,hvac,Elec)')

The set 𝐹 𝑏𝑙𝑜𝑐𝑘𝑠
𝑦𝑐𝑣out𝑣in

includes all transmission lines which have a defined capacity block for the building of
new transmission capacities.

m.tra_block_tuples = pyomo.Set(
within=m.stf * m.sit * m.sit * m.tra * m.com,
initialize=[(stf, sit, sit_, tra, com)

for (stf, sit, sit_, tra, com) in tuple(m.tra_block_dict.
→˓keys())],

doc='Transmission with new block capacities')

DCPF Transmission Tuples

If the DC Power Flow Model feature is activated in the model, three different transmission tuple sets are
defined in the model.

The set 𝐹𝑦𝑐𝑣out𝑣in𝑇𝑃 includes every transport model transmission lines and is defined as
tra_tuples_tp and given by the code fragment:

m.tra_tuples_tp = pyomo.Set(
within=m.stf * m.sit * m.sit * m.tra * m.com,
initialize=tuple(tra_tuples_tp),
doc='Combinations of possible transport transmissions,'

'e.g. (2020,South,Mid,hvac,Elec)')

The set 𝐹𝑦𝑐𝑣out𝑣in𝐷𝐶𝑃𝐹 includes every transmission line, which should be modelled with DCPF. If the
complementary arcs are included in the input for DCPF transmission lines, these will be excluded from
this set with remove_duplicate_transmission(). This set is defined as tra_tuples_dc
and given by the code fragment:
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m.tra_tuples_dc = pyomo.Set(
within=m.stf * m.sit * m.sit * m.tra * m.com,
initialize=tuple(tra_tuples_dc),
doc='Combinations of possible bidirectional dc'

'transmissions, e.g. (2020,South,Mid,hvac,Elec)')

If the DCPF is activated, the set 𝐹𝑦𝑐𝑣out𝑣in is defined by the unification of the sets 𝐹𝑦𝑐𝑣out𝑣in𝐷𝐶𝑃𝐹 and
𝐹𝑦𝑐𝑣out𝑣in𝑇𝑃 . This set is defined as tra_tuples in the same fashion as the default transmission model.

Storage Tuples

Storage tuples label storages. They are represented by the set 𝑆𝑦𝑣𝑐. A member 𝑠𝑦𝑣𝑐 in set 𝑆𝑦𝑣𝑐 is
a storage 𝑠 of commodity 𝑐 in site 𝑣 and support timeframe 𝑦 For example, (2020, Mid, Bat, Elec)
is interpreted as storage Bat for commodity Elec in site Mid in the year 2020. This set is defined as
sto_tuples and given by the code fragment:

m.sto_tuples = pyomo.Set(
within=m.stf*m.sit*m.sto*m.com,
initialize=m.storage.index,
doc='Combinations of possible storage by site,'

'e.g. (2020,Mid,Bat,Elec)')

There are four subsets of storage tuples.

In a first subset of the storage tuples are all storages that have a user defined fixed value for the initial
state are collected.

m.sto_init_bound_tuples = pyomo.Set(
within=m.stf*m.sit*m.sto*m.com,
initialize=m.stor_init_bound.index,
doc='storages with fixed initial state')

A second subset is defined for all storages that have a fixed ratio between charging/discharging power
and storage content.

m.sto_ep_ratio_tuples = pyomo.Set(
within=m.stf*m.sit*m.sto*m.com,
initialize=tuple(m.sto_ep_ratio_dict.keys()),
doc='storages with given energy to power ratio')

The third and fourth subsets are defined for all the storages that have a capacity or power expansion
block defined in the input.

m.sto_block_c_tuples = pyomo.Set(
within=m.stf * m.sit * m.sto * m.com,
initialize=tuple(m.sto_block_c_dict.keys()),
doc='storages with new energy block capacities')

m.sto_block_p_tuples = pyomo.Set(
within=m.stf * m.sit * m.sto * m.com,
initialize=tuple(m.sto_block_p_dict.keys()),
doc='storages with new power block capacities')
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Process Input Tuples

Process input tuples represent commodities consumed by processes. These are represented by the set
𝐶 in
𝑦𝑣𝑝. A member 𝑐in

𝑦𝑣𝑝 in set 𝐶 in
𝑣𝑝 is a commodity 𝑐 consumed by the process 𝑝 in site 𝑣 in support

timeframe 𝑦. For example, (2020, Mid, PV, Solar) is interpreted as commodity Solar consumed by the
process PV in the site Mid in the year 2020. This set is defined as pro_input_tuples and given by
the code fragment:

m.pro_input_tuples = pyomo.Set(
within=m.stf*m.sit*m.pro*m.com,
initialize=[(stf, site, process, commodity)

for (stf, site, process) in m.pro_tuples
for (s, pro, commodity) in m.r_in.index
if process == pro and s == stf],

doc='Commodities consumed by process by site,'
'e.g. (2020,Mid,PV,Solar)')

Where: r_in represents the process input ratio as set in the input.

For processes in the tuple set pro_partial_tuples, the following tuple set
pro_partial_input_tuples enumerates their input commodities. It is used to index the
constraints that modifies a process’ input commodity flow with respect to the standard case without
partial operation. It is defined by the following code fragment:

m.pro_partial_input_tuples = pyomo.Set(
within=m.stf*m.sit*m.pro*m.com,
initialize=[(stf, site, process, commodity)

for (stf, site, process) in m.pro_partial_tuples
for (s, pro, commodity) in m.r_in_min_fraction.index
if process == pro and s == stf],

doc='Commodities with partial input ratio,'
'e.g. (2020,Mid,Coal PP,Coal)')

Where: r_in_min_fraction represents the process input ratio as set in the input for the minimum
load of the process.

For processes in the tuple set pro_on_off_tuples, the following tuple set
pro_on_off_input_tuples enumerates their input commodities. It is used to index the
constraints that modifies a process’ input commodity flow with respect to the standard case without the
on/off feature. It is defined by the following code fragment in AdvancedProcesses.py:

m.pro_on_off_input_tuples = pyomo.Set(
within=m.stf * m.sit * m.pro * m.com,
initialize=[(stf, site, process, commodity)

for (stf, site, process) in m.pro_on_off_tuples
for (s, pro, commodity) in tuple(m.r_in_dict.keys())
if process == pro and stf == s],

doc='Commodities for on/off input')

For processes in the tuple set pro_partial_on_off_tuples, the following tuple set
pro_partial_on_off_input_tuples enumerates their input commodities. It is used to index
the constraints that modifies a process’ input commodity flow with respect to the standard case without
the on/off feature and partial operation. It is defined by the following code fragment in AdvancedPro-
cesses.py:
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m.pro_partial_on_off_input_tuples = pyomo.Set(
within=m.stf * m.sit * m.pro * m.com,
initialize=[(stf, site, process, commodity)

for (stf, site, process) in m.pro_partial_on_off_tuples
for (s, pro, commodity) in tuple(m.r_in_min_fraction_dict

.keys())
if process == pro and s == stf],

doc='Commodities with partial input ratio which can be turned off,'
'e.g. (2020,Mid,Coal PP,Coal)')

Process Output Tuples

Process output tuples represent commodities generated by processes. These are represented by the set
𝐶out
𝑦𝑣𝑝. A member 𝑐out

𝑦𝑣𝑝 in set 𝐶out
𝑦𝑣𝑝 is a commodity 𝑐 generated by the process 𝑝 in site 𝑣 and support

timeframe 𝑦. For example, (2020, Mid,PV,Elec) is interpreted as the commodity Elec is generated by the
process PV in the site Mid in the year 2020. This set is defined as pro_output_tuples and given
by the code fragment:

m.pro_output_tuples = pyomo.Set(
within=m.stf*m.sit*m.pro*m.com,
initialize=[(stf, site, process, commodity)

for (stf, site, process) in m.pro_tuples
for (s, pro, commodity) in m.r_out.index
if process == pro and s == stf],

doc='Commodities produced by process by site, e.g. (2020,Mid,PV,Elec)')

Where: r_out represents the process output ratio as set in the input.

There are several alternative tuple sets that are active whenever their respective features are set in the
input.

First, for processes in the tuple set pro_partial_tuples, the tuple set
pro_partial_output_tuples enumerates their output commodities. It is used to index
the constraints that modifies a process’ output commodity flow with respect to the standard case without
partial operation. It is defined by the following code fragment:

m.pro_partial_output_tuples = pyomo.Set(
within=m.stf*m.sit*m.pro*m.com,
initialize=[(stf, site, process, commodity)

for (stf, site, process) in m.pro_partial_tuples
for (s, pro, commodity) in m.r_out_min_fraction.index
if process == pro and s == stf],

doc='Commodities with partial input ratio, e.g. (Mid,Coal PP,CO2)')

Second, for processes in the tuple set pro_on_off_tuples, the tuple set
pro_on_off_output_tuples enumerates their output commodities. It is used to index the
constraints that modifies a process’ output commodity flow with respect to the standard case without
the on/off feature. It is defined by the following code fragment in AdvancedProcesses.py:

m.pro_on_off_output_tuples = pyomo.Set(
within=m.stf * m.sit * m.pro * m.com,
initialize=[(stf, site, process, commodity)

for (stf, site, process) in m.pro_on_off_tuples

(continues on next page)
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for (s, pro, commodity) in tuple(m.r_out_dict.keys())
if process == pro and stf == s],

doc='Commodities for on/off output')

Third, for processes in the tuple set pro_partial_on_off_tuples, the tuple set
pro_partial_on_off_output_tuples enumerates their output commodities. It is used to in-
dex the constraints that modifies a process’ output commodity flow with respect to the standard case
without the on/off feature and partial operation. It is defined by the following code fragment in Ad-
vancedProcesses.py:

m.pro_partial_on_off_output_tuples = pyomo.Set(
within=m.stf * m.sit * m.pro * m.com,
initialize=[(stf, site, process, commodity)

for (stf, site, process) in m.pro_partial_on_off_tuples
for (s, pro, commodity) in tuple(m.r_out_min_fraction_

→˓dict
.keys())

if process == pro and s == stf],
doc='Commodities for on/off output with partial behaviour')

Fourth, the processes in the tuple sets pro_on_off_tuples and
pro_partial_on_off_tuples require another constraint to limit the excessive growth of
the output of a process. This is required due to the fact that in the point of minimum load, without these
limiting constraints, the process on/off marker 𝑦𝑣𝑝𝑡 can be both on and off. There are three cases to be
considered:

The first case is represented by the tuple set pro_rampup_divides_minfraction_output_tuples,
which covers the outputs of the processes for which the defined ramp up gradient and is smaller than
the minimum load fraction and is a divisor of it. It is defined by the following code fragment in
AdvancedProcesses.py:

m.pro_rampup_divides_minfraction_output_tuples = pyomo.Set(
within=m.stf * m.sit * m.pro * m.com,
initialize=[(stf, sit, pro, com)

for (stf, sit, pro, com) in m.pro_on_off_output_tuples
if m.process_dict['ramp-up-grad'][stf, sit, pro] < 1.0 / m.

→˓dt and
m.process_dict['ramp-up-grad'][stf, sit, pro] <=
m.min_fraction_dict[stf, sit, pro] and
m.min_fraction_dict[stf, sit, pro] %
m.process_dict['ramp-up-grad'][stf, sit, pro] == 0 and
com not in m.com_env],

doc='Output commodities of processes with ramp-up-grad smaller than'
'timestep length and smaller equal than min-fraction and is a '
'divisor of min-fraction')

The second case is represented by the tuple set pro_rampup_not_divides_minfraction_output_tuples,
which covers the outputs of the processes for which the defined ramp up gradient and is smaller than
the minimum load fraction and is not a divisor of it. It is defined by the following code fragment in
AdvancedProcesses.py:

m.pro_rampup_not_divides_minfraction_output_tuples = pyomo.Set(
within=m.stf * m.sit * m.pro * m.com,
initialize=[(stf, sit, pro, com)

(continues on next page)
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for (stf, sit, pro, com) in m.pro_on_off_output_tuples
if m.process_dict['ramp-up-grad'][stf, sit, pro] < 1.0 / m.

→˓dt and
m.process_dict['ramp-up-grad'][stf, sit, pro] <
m.min_fraction_dict[stf, sit, pro] and
m.min_fraction_dict[stf, sit, pro] %
m.process_dict['ramp-up-grad'][stf, sit, pro] != 0 and
com not in m.com_env],

doc='Output commodities of processes with ramp-up-grad smaller than'
'timestep length and smaller than min-fraction and is NOT a '
'divisor of min-fraction')

The third and last case is represented by the tuple set pro_rampup_bigger_minfraction_output_tuples,
which covers the outputs of the processes for which the defined ramp up gradient and is greater than the
minimum load fraction. It is defined by the following code fragment in AdvancedProcesses.py:

m.pro_rampup_bigger_minfraction_output_tuples = pyomo.Set(
within=m.stf * m.sit * m.pro * m.com,
initialize=[(stf, sit, pro, com)

for (stf, sit, pro, com) in m.pro_on_off_output_tuples
if m.process_dict['ramp-up-grad'][stf, sit, pro] < 1.0 / m.

→˓dt and
m.process_dict['ramp-up-grad'][stf, sit, pro] >
m.min_fraction_dict[stf, sit, pro] and
com not in m.com_env],

doc='Output commodities of processes with ramp up gradient smaller'
'than timestep length and greater than min-fraction')

Last, the output of all processes that have a time dependent efficiency are collected in an additional tuple
set. The set contains all outputs corresponding to processes that are specified as column indices in the
input file worksheet TimeVarEff.

m.pro_timevar_output_tuples = pyomo.Set(
within=m.sit*m.pro*m.com,
initialize=[(site, process, commodity)

for (site, process) in m.eff_factor.columns.values
for (pro, commodity) in m.r_out.index
if process == pro],

doc='Outputs of processes with time dependent efficiency')

Demand Side Management Tuples

There are two kinds of demand side management (DSM) tuples in the model: DSM site tuples 𝐷𝑦𝑣𝑐

and DSM down tuples 𝐷down
𝑦𝑣𝑐𝑡,𝑡𝑡. The first kind 𝐷𝑦𝑣𝑐 represents all possible combinations of support

timeframe 𝑦, site 𝑣 and commodity 𝑐 of the DSM sheet. It is given by the code fragment:

m.dsm_site_tuples = pyomo.Set(
within=m.stf*m.sit*m.com,
initialize=m.dsm.index,
doc='Combinations of possible dsm by site, e.g. (2020, Mid, Elec)')

The second kind 𝐷down
𝑡,𝑡𝑡,𝑦𝑣𝑐 refers to all possible DSM downshift possibilities. It is defined to overcome

the difficulty caused by the two time indices of the DSM downshift variable. Dependend on support
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timeframe 𝑦, site 𝑣 and commodity 𝑐 the tuples contain two time indices. For example (5001, 5003,
2020, Mid, Elec) is intepreted as the downshift in timestep 5003, which was caused by the upshift of
timestep 5001 in year 2020 and ‘site ‘Mid for commodity Elec. The tuples are given by the following
code fragment:

m.dsm_down_tuples = pyomo.Set(
within=m.tm*m.tm*m.stf*m.sit*m.com,
initialize=[(t, tt, stf, site, commodity)

for (t, tt, stf, site, commodity)
in dsm_down_time_tuples(m.timesteps[1:],

m.dsm_site_tuples,
m)],

doc='Combinations of possible dsm_down combinations, e.g. '
'(5001,5003,2020,Mid,Elec)')

where the following function is utilized:

def dsm_down_time_tuples(time, sit_com_tuple, m):
""" Dictionary for the two time instances of DSM_down
Args:

time: list with time indices
sit_com_tuple: a list of (site, commodity) tuples
m: model instance

Returns:
A list of possible time tuples depending on site and commodity

"""

delay = m.dsm_dict['delay']
ub = max(time)
lb = min(time)
time_list = []

for (stf, site, commodity) in sit_com_tuple:
for step1 in time:

for step2 in range(step1 -
max(int(delay[stf, site, commodity] /

m.dt.value), 1),
step1 +
max(int(delay[stf, site, commodity] /

m.dt.value), 1) + 1):
if lb <= step2 <= ub:

time_list.append((step1, step2, stf, site, commodity))

return time_list

Commodity Type Subsets

Commodity Type Subsets represent the commodity tuples only from a given commodity type. Com-
modity Type Subsets are subsets of the sets commodity tuples These subsets can be obtained by fixing
the commodity type 𝑞 to a desired commodity type (e.g SupIm, Stock) in the set commodity tuples 𝐶𝑣𝑞.
Since there are 6 types of commodity types, there are also 6 commodity type subsets. Commodity type
subsets are;

Supply Intermittent Commodities (SupIm): The set 𝐶sup represents all commodities 𝑐 of commodity
type SupIm. Commodities of this type have intermittent timeseries, in other words, availability of these
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commodities are not constant. These commodities might have various energy content for every timestep
𝑡. For example solar radiation is contingent on many factors such as sun position, weather and varies
permanently.

Stock Commodities (Stock): The set 𝐶st represents all commodities 𝑐 of commodity type Stock.
Commodities of this type can be purchased at any time for a given price( 𝑘fuel

𝑣𝑐 ).

Sell Commodities (Sell): The set 𝐶sell represents all commodities 𝑐 of commodity type Sell. Com-
modities that can be sold. These Commodities have a sell price ( 𝑘bs

𝑣𝑐𝑡 ) that may vary with the given
timestep 𝑡.

Buy Commodities (Buy): The set 𝐶buy represents all commodities 𝑐 of commodity type Buy. Com-
modities that can be purchased. These Commodities have a buy price ( 𝑘bs

𝑣𝑐 ) that may vary with the
given timestep 𝑡.

Demand Commodities (Demand): The set 𝐶dem represents all commodities 𝑐 of commodity type
Demand. Commodities of this type are the requested commodities of the energy system. They are
usually the end product of the model (e.g Electricity:Elec).

Environmental Commodities (Env): The set 𝐶env represents all commodities 𝑐 of commodity type
Env. Commodities of this type are usually the undesired byproducts of processes that might be harm-
ful for environment, optional maximum creation limits can be set to control the generation of these
commodities (e.g Greenhouse Gas Emissions: CO2).

Commodity Type Subsets are given by the code fragment:

m.com_supim = pyomo.Set(
within=m.com,
initialize=commodity_subset(m.com_tuples, 'SupIm'),
doc='Commodities that have intermittent (timeseries) input')

m.com_stock = pyomo.Set(
within=m.com,
initialize=commodity_subset(m.com_tuples, 'Stock'),
doc='Commodities that can be purchased at some site(s)')

m.com_sell = pyomo.Set(
within=m.com,
initialize=commodity_subset(m.com_tuples, 'Sell'),
doc='Commodities that can be sold')

m.com_buy = pyomo.Set(
within=m.com,
initialize=commodity_subset(m.com_tuples, 'Buy'),
doc='Commodities that can be purchased')

m.com_demand = pyomo.Set(
within=m.com,
initialize=commodity_subset(m.com_tuples, 'Demand'),
doc='Commodities that have a demand (implies timeseries)')

m.com_env = pyomo.Set(
within=m.com,
initialize=commodity_subset(m.com_tuples, 'Env'),
doc='Commodities that (might) have a maximum creation limit')

Where:

urbs.commodity_subset(com_tuples, type_name)
Returns the commodity names(𝑐) of the given commodity type(𝑞).

Parameters

• com_tuples – A list of tuples (site, commodity, commodity type)
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• type_name – A commodity type or a list of commodity types

Returns The set (unique elements/list) of commodity names of the desired commodity
type.

Operational state tuples

For intertemporal optimization the operational state of units in a support timeframe y has to be cal-
culated from both the initially installed units and their remaining lifetime and the units installed in a
previous support timeframe which are still operational in y. This is achieved via 6 tuple sets two each
for processes, transmissions and storages.

Intially installed units

Processes which are already installed at the beginning of the modeled time horizon and still operational
in support timeframe stf are collected in the following tuple set:

m.inst_pro_tuples = pyomo.Set(
within=m.sit*m.pro*m.stf,
initialize=[(sit, pro, stf)

for (sit, pro, stf)
in inst_pro_tuples(m)],

doc=' Installed processes that are still operational through stf')

where the following function is utilized:

def inst_pro_tuples(m):
""" Tuples for operational status of already installed units
(processes, transmissions, storages) for intertemporal planning.
Only such tuples where the unit is still operational until the next
support time frame are valid.
"""
inst_pro = []
sorted_stf = sorted(list(m.stf))

for (stf, sit, pro) in m.inst_pro.index:
for stf_later in sorted_stf:

index_helper = sorted_stf.index(stf_later)
if stf_later == max(m.stf):

if (stf_later +
m.global_prop.loc[(max(sorted_stf), 'Weight'), 'value']

→˓-
1 < min(m.stf) + m.process_dict['lifetime'][

(stf, sit, pro)]):
inst_pro.append((sit, pro, stf_later))

elif (stf_later + sorted_stf[index_helper + 1]) / 2 <= (min(m.
→˓stf)

+ m.
→˓process_dict['lifetime'][(stf, sit, pro)]):

inst_pro.append((sit, pro, stf_later))

return inst_pro
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Transmissions which are already installed at the beginning of the modeled time horizon and still opera-
tional in support timeframe stf are collected in the following tuple set:

m.inst_tra_tuples = pyomo.Set(
within=m.sit*m.sit*m.tra*m.com*m.stf,
initialize=[(sit, sit_, tra, com, stf)

for (sit, sit_, tra, com, stf)
in inst_tra_tuples(m)],

doc='Installed transmissions that are still operational through stf')

where the following function is utilized:

def inst_tra_tuples(m):
""" s.a. inst_pro_tuples
"""
inst_tra = []
sorted_stf = sorted(list(m.stf))

for (stf, sit1, sit2, tra, com) in m.inst_tra.index:
for stf_later in sorted_stf:

index_helper = sorted_stf.index(stf_later)
if stf_later == max(m.stf):

if (stf_later +
m.global_prop_dict['value'][(max(sorted_stf), 'Weight

→˓')] -
1 < min(m.stf) + m.transmission_dict['lifetime'][

(stf, sit1, sit2, tra, com)]):
inst_tra.append((sit1, sit2, tra, com, stf_later))

elif (sorted_stf[index_helper + 1] <= min(m.stf) +
m.transmission_dict['lifetime'][

(stf, sit1, sit2, tra, com)]):
inst_tra.append((sit1, sit2, tra, com, stf_later))

return inst_tra

Storages which are already installed at the beginning of the modeled time horizon and still operational
in support timeframe stf are collected in the following tuple set:

m.inst_sto_tuples = pyomo.Set(
within=m.sit*m.sto*m.com*m.stf,
initialize=[(sit, sto, com, stf)

for (sit, sto, com, stf)
in inst_sto_tuples(m)],

doc='Installed storages that are still operational through stf')

where the following function is utilized:

def inst_sto_tuples(m):
""" s.a. inst_pro_tuples
"""
inst_sto = []
sorted_stf = sorted(list(m.stf))

for (stf, sit, sto, com) in m.inst_sto.index:
for stf_later in sorted_stf:

index_helper = sorted_stf.index(stf_later)
if stf_later == max(m.stf):

(continues on next page)
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if (stf_later +
m.global_prop_dict['value'][(max(sorted_stf), 'Weight

→˓')] -
1 < min(m.stf) +

m.storage_dict['lifetime'][(stf, sit, sto, com)]):
inst_sto.append((sit, sto, com, stf_later))

elif (sorted_stf[index_helper + 1] <=
min(m.stf) + m.storage_dict['lifetime'][

(stf, sit, sto, com)]):
inst_sto.append((sit, sto, com, stf_later))

return inst_sto

Installation in earlier support timeframe

Processes installed in an earlier support timeframe stf and still usable in support timeframe stf_later are
collected in the following tuple set:

m.operational_pro_tuples = pyomo.Set(
within=m.sit*m.pro*m.stf*m.stf,
initialize=[(sit, pro, stf, stf_later)

for (sit, pro, stf, stf_later)
in op_pro_tuples(m.pro_tuples, m)],

doc='Processes that are still operational through stf_later'
'(and the relevant years following), if built in stf'
'in stf.')

where the following function is utilized:

def op_pro_tuples(pro_tuple, m):
""" Tuples for operational status of units (processes, transmissions,
storages) for intertemporal planning.
Only such tuples where the unit is still operational until the next
support time frame are valid.
"""
op_pro = []
sorted_stf = sorted(list(m.stf))

for (stf, sit, pro) in pro_tuple:
for stf_later in sorted_stf:

index_helper = sorted_stf.index(stf_later)
if stf_later == max(sorted_stf):

if (stf_later +
m.global_prop.loc[(max(sorted_stf), 'Weight'), 'value

→˓'] -
1 <= stf + m.process_dict['depreciation'][

(stf, sit, pro)]):
op_pro.append((sit, pro, stf, stf_later))

elif ((stf_later + sorted_stf[index_helper+1]) / 2 <= stf + m.
→˓process_dict['depreciation'][(stf, sit, pro)]

and stf <= stf_later):
op_pro.append((sit, pro, stf, stf_later))

else:
pass

(continues on next page)
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return op_pro

Transmissions installed in an earlier support timeframe stf and still usable in support timeframe stf_later
are collected in the following tuple set:

m.operational_tra_tuples = pyomo.Set(
within=m.sit*m.sit*m.tra*m.com*m.stf*m.stf,
initialize=[(sit, sit_, tra, com, stf, stf_later)

for (sit, sit_, tra, com, stf, stf_later)
in op_tra_tuples(m.tra_tuples, m)],

doc='Transmissions that are still operational through stf_later'
'(and the relevant years following), if built in stf'

'in stf.')

where the following function is utilized:

def op_tra_tuples(tra_tuple, m):
""" s.a. op_pro_tuples
"""
op_tra = []
sorted_stf = sorted(list(m.stf))

for (stf, sit1, sit2, tra, com) in tra_tuple:
for stf_later in sorted_stf:

index_helper = sorted_stf.index(stf_later)
if stf_later == max(sorted_stf):

if (stf_later +
m.global_prop_dict['value'][(max(sorted_stf), 'Weight

→˓')] -
1 <= stf + m.transmission_dict['depreciation'][

(stf, sit1, sit2, tra, com)]):
op_tra.append((sit1, sit2, tra, com, stf, stf_later))

elif (sorted_stf[index_helper + 1] <=
stf + m.transmission_dict['depreciation'][

(stf, sit1, sit2, tra, com)] and stf <= stf_later):
op_tra.append((sit1, sit2, tra, com, stf, stf_later))

else:
pass

return op_tra

Storages installed in an earlier support timeframe stf and still usable in support timeframe stf_later are
collected in the following tuple set:

m.operational_sto_tuples = pyomo.Set(
within=m.sit*m.sto*m.com*m.stf*m.stf,
initialize=[(sit, sto, com, stf, stf_later)

for (sit, sto, com, stf, stf_later)
in op_sto_tuples(m.sto_tuples, m)],

doc='Processes that are still operational through stf_later'
'(and the relevant years following), if built in stf'

'in stf.')

where the following function is utilized:
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def op_sto_tuples(sto_tuple, m):
""" s.a. op_pro_tuples
"""
op_sto = []
sorted_stf = sorted(list(m.stf))

for (stf, sit, sto, com) in sto_tuple:
for stf_later in sorted_stf:

index_helper = sorted_stf.index(stf_later)
if stf_later == max(sorted_stf):

if (stf_later +
m.global_prop_dict['value'][(max(sorted_stf), 'Weight

→˓')] -
1 <= stf +

m.storage_dict['depreciation'][(stf, sit, sto,
→˓com)]):

op_sto.append((sit, sto, com, stf, stf_later))
elif (sorted_stf[index_helper + 1] <=

stf +
m.storage_dict['depreciation'][(stf, sit, sto, com)] and
stf <= stf_later):

op_sto.append((sit, sto, com, stf, stf_later))
else:

pass

return op_sto

Variables

All the variables that the optimization model requires to calculate an optimal solution will be listed and
defined in this section. A variable is a numerical value that is determined during optimization. Variables
can denote a single, independent value, or an array of values. Variables define the search space for
optimization. Variables of this optimization model can be separated into sections by their area of use.
These Sections are Cost, Commodity, Process, Transmission, Storage and demand side management.

Table 4: Table: Model Variables

Variable Unit Description
Cost Variables
𝜁 C Total System Cost
𝜁inv C Investment Costs
𝜁fix C Fix Costs
𝜁var C Variable Costs
𝜁fuel C Fuel Costs
𝜁rev C Revenue Costs
𝜁pur C Purchase Costs
𝜁start C Start Costs
Commodity Variables
𝜌𝑦𝑣𝑐𝑡 MWh Stock Commodity Source Term
𝜚𝑦𝑣𝑐𝑡 MWh Sell Commodity Source Term
𝜓𝑦𝑣𝑐𝑡 MWh Buy Commodity Source Term
Process Variables

Continued on next page
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Table 4 – continued from previous page
Variable Unit Description
𝜅𝑦𝑣𝑝 MW Total Process Capacity
�̂�𝑦𝑣𝑝 MW New Process Capacity
𝛽𝑦𝑣𝑝

•
New Process Capacity Units

𝜏𝑦𝑣𝑝𝑡 MWh Process Throughput
𝜖in
𝑦𝑣𝑐𝑝𝑡 MWh Process Input Commodity Flow
𝜖out
𝑦𝑣𝑐𝑝𝑡 MWh Process Output Commodity

Flow
𝑦𝑣𝑝𝑡

•
Process On/Off Marker

𝜎𝑦𝑣𝑝𝑡
•

Process Start-up Marker

Transmission Variables
𝜅𝑦𝑎𝑓 MW Total transmission Capacity
�̂�𝑦𝑎𝑓 MW New Transmission Capacity
𝛽𝑦𝑎𝑓

•
New Transmission Capacity
Units

𝜋in
𝑦𝑎𝑓𝑡 MWh Transmission Input Commodity

Flow
𝜋out
𝑦𝑎𝑓𝑡 MWh Transmission Output Commod-

ity Flow
DCPF Transmission Variables
𝜃𝑦𝑣𝑡 deg. Voltage Angle
𝜋in
𝑦𝑎𝑓𝑡

′ MW Absolute Transmission Flow
Storage Variables
𝜅c
𝑦𝑣𝑠 MWh Total Storage Size
�̂�c
𝑦𝑣𝑠 MWh New Storage Size
𝛽c
𝑦𝑣𝑠

•
New Storage Size Units

𝜅
p
𝑦𝑣𝑠 MW Total Storage Power
�̂�

p
𝑦𝑣𝑠 MW New Storage Power
𝛽c
𝑦𝑣𝑠

•
New Storage Power Units

𝜖in
𝑦𝑣𝑠𝑡 MWh Storage Input Commodity Flow
𝜖out
𝑦𝑣𝑠𝑡 MWh Storage Output Commodity

Flow
𝜖con
𝑦𝑣𝑠𝑡 MWh Storage Energy Content

Demand Side Management Variables
𝛿

up
𝑦𝑣𝑐𝑡 MWh DSM Upshift
𝛿down
𝑡,𝑡𝑡,𝑦𝑣𝑐 MWh DSM Downshift
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Cost Variables

Total System Cost, 𝜁 : the variable 𝜁 represents the total expense incurred in reaching the satisfaction
of the given energy demand in the entire modeling horizon. If only a fraction of a year is modeled in
each support timeframe, the costs are scaled to the annual expenditures. The total cost is calculated by
the sum total of all costs by type(𝜁𝑟, ∀𝑟 ∈ 𝑅) and defined as costs by the following code fragment:

m.costs = pyomo.Var(
m.cost_type,
within=pyomo.Reals,
doc='Costs by type (EUR/a)')

System costs are divided into the 7 cost types invest, fix, variable, fuel, purchase, sell and environmental.
The separation of costs by type, facilitates business planning and provides calculation accuracy. These
cost types are hardcoded, which means they are not considered to be fixed or changed by the user.

For more information on the definition of these variables see section Minimal optimization model and
for their implementation see section Objective function.

Commodity Variables

Stock Commodity Source Term, 𝜌𝑦𝑣𝑐𝑡, e_co_stock, MWh : The variable 𝜌𝑦𝑣𝑐𝑡 represents the energy
amount in [MWh] that is being used by the system of commodity 𝑐 from type stock (∀𝑐 ∈ 𝐶stock) in
support timeframe 𝑦 (∀𝑦 ∈ 𝑌 ) in a site 𝑣 (∀𝑣 ∈ 𝑉 ) at timestep 𝑡 (∀𝑡 ∈ 𝑇m). In script model.py this
variable is defined by the variable e_co_stock and initialized by the following code fragment:

m.e_co_stock = pyomo.Var(
m.tm, m.com_tuples,
within=pyomo.NonNegativeReals,
doc='Use of stock commodity source (MWh) at a given timestep')

Sell Commodity Source Term, 𝜚𝑦𝑣𝑐𝑡, e_co_sell, MWh : The variable 𝜚𝑦𝑣𝑐𝑡 represents the energy
amount in [MWh] that is being used by the system of commodity 𝑐 from type sell (∀𝑐 ∈ 𝐶sell) in support
timeframe 𝑦 (∀𝑦 ∈ 𝑌 ) in a site 𝑣 (∀𝑣 ∈ 𝑉 ) at timestep 𝑡 (∀𝑡 ∈ 𝑇m). In script model.py this variable is
defined by the variable e_co_sell and initialized by the following code fragment:

m.e_co_sell = pyomo.Var(
m.tm, m.com_tuples,
within=pyomo.NonNegativeReals,
doc='Use of sell commodity source (MWh) at a given timestep')

Buy Commodity Source Term, 𝜓𝑦𝑣𝑐𝑡, e_co_buy, MWh : The variable 𝜓𝑦𝑣𝑐𝑡 represents the energy
amount in [MWh] that is being used by the system of commodity 𝑐 from type buy (∀𝑐 ∈ 𝐶buy) in support
timeframe 𝑦 (∀𝑦 ∈ 𝑌 ) in a site 𝑣 (∀𝑣 ∈ 𝑉 ) at timestep 𝑡 (∀𝑡 ∈ 𝑇m). In script model.py this variable is
defined by the variable e_co_buy and initialized by the following code fragment:

m.e_co_buy = pyomo.Var(
m.tm, m.com_tuples,
within=pyomo.NonNegativeReals,
doc='Use of buy commodity source (MWh) at a given timestep')
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Process Variables

Total Process Capacity, 𝜅𝑦𝑣𝑝, cap_pro: The variable 𝜅𝑦𝑣𝑝 represents the total potential throughput
(capacity) of a process tuple 𝑝𝑦𝑣 (∀𝑝 ∈ 𝑃,∀𝑣 ∈ 𝑉 , forall y in Y‘), that is required in the energy system.
The total process capacity includes both the already installed process capacity and the additional new
process capacity that needs to be installed. Since the costs of the process technologies are mostly directly
proportional to the maximum possible output (and correspondingly to the capacity) of processes, this
variable acts as a scale factor of process technologies. For further information see Process Capacity
Rule. This variable is expressed in the unit (MW). In script model.py this variable is defined by the
model variable cap_pro and initialized by the following code fragment:

m.cap_pro = pyomo.Var(
m.pro_tuples,
within=pyomo.NonNegativeReals,
doc='Total process capacity (MW)')

New Process Capacity, �̂�𝑦𝑣𝑝, cap_pro_new: The variable �̂�𝑦𝑣𝑝 represents the capacity of a process
tuple 𝑝𝑦𝑣 (∀𝑝 ∈ 𝑃,∀𝑣 ∈ 𝑉 ) that needs to be installed additionally to the energy system in support
timeframe 𝑦 in site 𝑣 in order to provide the optimal solution. This variable is expressed in the unit MW.
In script model.py this variable is defined by the model variable cap_pro_new and initialized by
the following code fragment:

m.cap_pro_new = pyomo.Var(
m.pro_tuples,
within=pyomo.NonNegativeReals,
doc='New process capacity (MW)')

New Process Capacity Units, 𝛽𝑦𝑣𝑝, pro_cap_unit: The variable 𝛽𝑦𝑣𝑝 represents the number of
capacity blocks of a process tuple 𝑝𝑦𝑣 (∀𝑝 ∈ 𝑃,∀𝑣 ∈ 𝑉 ) that needs to be installed additionally to the
energy system in support timeframe 𝑦 in site 𝑣 in order to provide the optimal solution. In script model.
py this variable is defined by the model variable cap_pro_new and initialized by the following code
fragment:

m.pro_cap_unit = pyomo.Var(
m.pro_tuples,
within=pyomo.NonNegativeIntegers,
doc='Number of newly installed capacity units')

Process Throughput, 𝜏𝑦𝑣𝑝𝑡, tau_pro : The variable 𝜏𝑦𝑣𝑝𝑡 represents the measure of (energetic) activ-
ity of a process tuple 𝑝𝑦𝑣 (∀𝑝 ∈ 𝑃,∀𝑣 ∈ 𝑉,∀𝑦 ∈ 𝑌 ) at a timestep 𝑡 (∀𝑡 ∈ 𝑇𝑚). Based on the process
throughput amount in a given timestep of a process, flow amounts of the process’ input and output com-
modities at that timestep can be calculated by scaling the process throughput with corresponding process
input and output ratios. For further information see Process Input Ratio and Process Output Ratio.
The process throughput variable is expressed in the unit MWh. In script model.py this variable is
defined by the model variable tau_pro and initialized by the following code fragment:

m.tau_pro = pyomo.Var(
m.tm, m.pro_tuples,
within=pyomo.NonNegativeReals,
doc='Activity (MWh) through process')

Process Input Commodity Flow, 𝜖in
𝑦𝑣𝑐𝑝𝑡, e_pro_in: The variable 𝜖in

𝑦𝑣𝑐𝑝𝑡 represents the commodity
input flow into a process tuple 𝑝𝑦𝑣 (∀𝑝 ∈ 𝑃,∀𝑣 ∈ 𝑉,∀𝑦 ∈ 𝑌 ) caused by an input commodity 𝑐 (∀𝑐 ∈ 𝐶)
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at a timestep 𝑡 (∀𝑡 ∈ 𝑇𝑚). This variable is generally expressed in the unit MWh. In script model.py
this variable is defined by the model variable e_pro_in and initialized by the following code fragment:

m.e_pro_in = pyomo.Var(
m.tm, m.pro_tuples, m.com,
within=pyomo.NonNegativeReals,
doc='Flow of commodity into process at a given timestep')

Process Output Commodity Flow, 𝜖out
𝑦𝑣𝑐𝑝𝑡, e_pro_out: The variable 𝜖out

𝑣𝑐𝑝𝑡 represents the commodity
flow output out of a process tuple 𝑝𝑦𝑣 (∀𝑝 ∈ 𝑃,∀𝑣 ∈ 𝑉,∀𝑦 ∈ 𝑌 ) caused by an output commodity 𝑐
(∀𝑐 ∈ 𝐶) at a timestep 𝑡 (∀𝑡 ∈ 𝑇𝑚). This variable is generally expressed in the unit MWh (or tonnes e.g.
for the environmental commodity ‘CO2’). In script model.py this variable is defined by the model
variable e_pro_out and initialized by the following code fragment:

m.e_pro_out = pyomo.Var(
m.tm, m.pro_tuples, m.com,
within=pyomo.NonNegativeReals,
doc='Flow of commodity out of process at a given timestep')

Process On/Off Marker, 𝑦𝑣𝑝𝑡, on_off: The boolean variable 𝑦𝑣𝑝𝑡 marks whether process tuple 𝑝𝑦𝑣
(∀𝑝 ∈ 𝑃 on/off, ∀𝑣 ∈ 𝑉,∀𝑦 ∈ 𝑌 ) is on and producing (𝑦𝑣𝑝𝑡 is 1) or it is not producing (𝑦𝑣𝑝𝑡 is 0) at
a timestep 𝑡. While not producing, the process is either turned off or it started, without reaching the
minimum fraction 𝑃 𝑦𝑣𝑝. In the script AdvancedProcesses.py, this variable is defined by the
model variable on_off and initialized by the following code fragment:

m.on_off = pyomo.Var(
m.t, m.pro_on_off_tuples,
within=pyomo.Boolean,
doc='Turn on/off a process with minimum working load')

Process Start-up Marker, 𝜎𝑦𝑣𝑝𝑡, start_ups: The boolean variable 𝜎𝑦𝑣𝑝𝑡 marks whether process
tuple 𝑝𝑦𝑣 (∀𝑝 ∈ 𝑃 on/off,∀𝑣 ∈ 𝑉,∀𝑦 ∈ 𝑌 ) is starting (𝜎𝑦𝑣𝑝𝑡 becomes 1) or not (𝜎𝑦𝑣𝑝𝑡 is 0) at a timestep
𝑡. The process is considered to start when its output e_pro_out becomes greater than 0. In the
script AdvancedProcesses.py, this variable is defined by the model variable start_ups and
initialized by the following code fragment:

m.start_up = pyomo.Var(
m.tm, m.pro_start_up_tuples,
within=pyomo.Boolean,
doc='Start-up marker')

Transmission Variables

Total Transmission Capacity, 𝜅𝑦𝑎𝑓 , cap_tra: The variable 𝜅𝑦𝑎𝑓 represents the total potential transfer
power of a transmission tuple 𝑓𝑦𝑐𝑎, where 𝑎 represents the arc from an origin site 𝑣out to a destination
site 𝑣in. The total transmission capacity includes both the already installed transmission capacity and
the additional new transmission capacity that needs to be installed. This variable is expressed in the
unit MW. In script transmission.py this variable is defined by the model variable cap_tra and
initialized by the following code fragment:

m.cap_tra = pyomo.Var(
m.tra_tuples,

(continues on next page)
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(continued from previous page)

within=pyomo.NonNegativeReals,
doc='Total transmission capacity (MW)')

New Transmission Capacity, �̂�𝑦𝑎𝑓 , cap_tra_new: The variable �̂�𝑦𝑎𝑓 represents the additional ca-
pacity, that needs to be installed, of a transmission tuple 𝑓𝑦𝑐𝑎, where 𝑎 represents the arc from an origin
site 𝑣out to a destination site 𝑣in. This variable is expressed in the unit MW. In script transmission.
py this variable is defined by the model variable cap_tra_new and initialized by the following code
fragment:

m.cap_tra_new = pyomo.Var(
m.tra_tuples,
within=pyomo.NonNegativeReals,
doc='New transmission capacity (MW)')

New Transmission Capacity Units, 𝛽𝑦𝑎𝑓 , tra_cap_unit: The variable 𝛽𝑦𝑎𝑓 represents the number
of additional capacity blocks of a transmission tuple 𝑓𝑦𝑐𝑎 that need to be installed , where 𝑎 represents
the arc from an origin site 𝑣out to a destination site 𝑣in. In script transmission.py this variable is
defined by the model variable cap_tra_new and initialized by the following code fragment:

m.tra_cap_unit =pyomo.Var(
m.tra_block_tuples,
within=pyomo.NonNegativeIntegers,
doc='New transmission capacity blocks')

Transmission Input Commodity Flow, 𝜋in
𝑦𝑎𝑓𝑡, e_tra_in: The variable 𝜋in

𝑦𝑎𝑓𝑡 represents the commod-
ity flow input into a transmission tuple 𝑓𝑦𝑐𝑎 at a timestep 𝑡, where 𝑎 represents the arc from an origin
site 𝑣out to a destination site 𝑣in. This variable is expressed in the unit MWh. In script urbs.py this
variable is defined by the model variable e_tra_in and initialized by the following code fragment:

m.e_tra_in = pyomo.Var(
m.tm, m.tra_tuples,
within=pyomo.NonNegativeReals,
doc='Commodity flow into transmission line (MWh) at a given timestep')

Transmission Output Commodity Flow, 𝜋out
𝑦𝑎𝑓𝑡, e_tra_out: The variable 𝜋out

𝑦𝑎𝑓𝑡 represents the com-
modity flow output out of a transmission tuple 𝑓𝑐𝑎 at a timestep 𝑡, where 𝑎 represents the arc from an
origin site 𝑣out to a destination site 𝑣in. This variable is expressed in the unit MWh. In script urbs.
py this variable is defined by the model variable e_tra_out and initialized by the following code
fragment:

m.e_tra_out = pyomo.Var(
m.tm, m.tra_tuples,
within=pyomo.NonNegativeReals,
doc='Power flow out of transmission line (MWh) at a given timestep')

DCPF Transmission Variables

If the DC Power Flow transmission modelling is activated, two new variables are introduced to the
model.

Voltage Angle, 𝜃𝑦𝑣𝑡, voltage_angle: The variable 𝜃𝑦𝑣𝑡 represents the voltage angle of a site 𝑣,
which has a DCPF transmission line connection, at a timestep 𝑡. This variable is expressed in the unit
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degrees. In script urbs.py this variable is defined by the model variable voltage_angle and
initialized by the following code fragment:

m.voltage_angle = pyomo.Var(
m.tm, m.stf, m.sit,
within=pyomo.Reals,
doc='Voltage angle of a site')

Absolute Value of Transmission Commodity Flow, 𝜋in
𝑦𝑎𝑓𝑡

′, e_tra_abs: The variable 𝜋in
𝑦𝑎𝑓𝑡

′ repre-
sents the absolute value of the transmission commodity flow on a DCPF transmission tuple 𝑓𝑦𝑐𝑎 at a
timestep 𝑡, where 𝑎 represents the arc from an origin site 𝑣out to a destination site 𝑣in. This variable is ex-
pressed in the unit MWh. In script urbs.py this variable is defined by the model variable e_tra_abs
and initialized by the following code fragment:

m.e_tra_abs = pyomo.Var(
m.tm, m.tra_tuples_dc,
within=pyomo.NonNegativeReals,
doc='Absolute power flow on transmission line (MW) per timestep')

Transmission Commodity Flow Domain Changes :DC Power Flow transmission lines are represented
by bidirectional single arcs instead of unidirectional symmetrical arcs as in the default transmission
model. Consequently the power flow is allowed to be both positive or negative for DCPF transmission
lines contrary to the transport transmission lines. For this reason, the domains of the variables trans-
mission input commodity flow 𝜋in

𝑦𝑎𝑓𝑡 and transmission output commodity flow 𝜋out
𝑦𝑎𝑓𝑡 are defined with

the e_tra_domain_rule() function depending on the corresponding transmission tuple set. These
variables are defined by the model variables e_tra_in and e_tra_out and intialized by the code
fragment:

m.e_tra_in = pyomo.Var(
m.tm, m.tra_tuples,
within=e_tra_domain_rule,
doc='Power flow into transmission line (MW) per timestep')

m.e_tra_out = pyomo.Var(
m.tm, m.tra_tuples,
within=e_tra_domain_rule,
doc='Power flow out of transmission line (MW) per timestep')

The function e_tra_domain_rule() is given by the code fragment:

def e_tra_domain_rule(m, tm, stf, sin, sout, tra, com):
# assigning e_tra_in and e_tra_out variable domains for transport and

→˓DCPF
if (stf, sin, sout, tra, com) in m.tra_tuples_dc:

return pyomo.Reals
elif (stf, sin, sout, tra, com) in m.tra_tuples_tp:

return pyomo.NonNegativeReals

Storage Variables

Total Storage Size, 𝜅c
𝑦𝑣𝑠, cap_sto_c: The variable 𝜅c

𝑦𝑣𝑠 represents the total load capacity of a storage
tuple 𝑠𝑦𝑣𝑐. The total storage load capacity includes both the already installed storage load capacity and
the additional new storage load capacity that needs to be installed. This variable is expressed in unit
MWh. In script model.py this variable is defined by the model variable cap_sto_c and initialized
by the following code fragment:
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m.cap_sto_c = pyomo.Var(
m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='Total storage size (MWh)')

New Storage Size, �̂�c
𝑦𝑣𝑠, cap_sto_c_new: The variable �̂�c

𝑦𝑣𝑠 represents the additional storage load
capacity of a storage tuple 𝑠𝑣𝑐 that needs to be installed to the energy system in order to provide the
optimal solution. This variable is expressed in the unit MWh. In script model.py this variable is
defined by the model variable cap_sto_c_new and initialized by the following code fragment:

m.cap_sto_c_new = pyomo.Var(
m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='New storage size (MWh)')

New Storage Size Units, 𝛽c
𝑦𝑣𝑠, sto_cap_c_unit: The variable �̂�c

𝑦𝑣𝑠 represents the number of addi-
tional storage load capacity blocks of a storage tuple 𝑠𝑣𝑐 that needs to be installed to the energy system
in order to provide the optimal solution. In script storage.py this variable is defined by the model
variable cap_sto_c_unit and initialized by the following code fragment:

m.sto_cap_c_unit = pyomo.Var(
m.sto_block_c_tuples,
within=pyomo.NonNegativeIntegers,
doc='New storage size units')

Total Storage Power, 𝜅p
𝑦𝑣𝑠, cap_sto_p: The variable 𝜅p

𝑦𝑣𝑠 represents the total potential discharge
power of a storage tuple 𝑠𝑣𝑐. The total storage power includes both the already installed storage power
and the additional new storage power that needs to be installed. This variable is expressed in the unit
MW. In script model.py this variable is defined by the model variable cap_sto_p and initialized by
the following code fragment:

m.cap_sto_p = pyomo.Var(
m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='Total storage power (MW)')

New Storage Power, �̂�p
𝑦𝑣𝑠, cap_sto_p_new: The variable �̂�p

𝑦𝑣𝑠 represents the additional potential
discharge power of a storage tuple 𝑠𝑣𝑐 that needs to be installed to the energy system in order to provide
the optimal solution. This variable is expressed in the unit MW. In script model.py this variable is
defined by the model variable cap_sto_p_new and initialized by the following code fragment:

m.cap_sto_p_new = pyomo.Var(
m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='New storage power (MW)')

New Storage Power Units, 𝛽c
𝑦𝑣𝑠, sto_cap_p_unit: The variable 𝛽c

𝑦𝑣𝑠 represents the number of
additional potential discharge power blocks of a storage tuple 𝑠𝑣𝑐 that needs to be installed to the energy
system in order to provide the optimal solution. In the script storage.py this variable is defined by
the model variable sto_cap_p_unit and initialized by the following code fragment:

m.sto_cap_p_unit = pyomo.Var(
m.sto_block_p_tuples,

(continues on next page)
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(continued from previous page)

within=pyomo.NonNegativeIntegers,
doc='New storage power units')

Storage Input Commodity Flow, 𝜖in
𝑦𝑣𝑠𝑡, e_sto_in: The variable 𝜖in

𝑦𝑣𝑠𝑡 represents the input commodity
flow into a storage tuple 𝑠𝑦𝑣𝑐 at a timestep 𝑡. Input commodity flow into a storage tuple can also be
defined as the charge of a storage tuple. This variable is expressed in the unit MWh. In script model.
py this variable is defined by the model variable e_sto_in and initialized by the following code
fragment:

m.e_sto_in = pyomo.Var(
m.tm, m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='Commodity flow into storage (MWh) at a given timestep')

Storage Output Commodity Flow, 𝜖out
𝑦𝑣𝑠𝑡, e_sto_out: The variable 𝜖out

𝑣𝑠𝑡 represents the output com-
modity flow out of a storage tuple 𝑠𝑦𝑣𝑐 at a timestep 𝑡. Output commodity flow out of a storage tuple can
also be defined as the discharge of a storage tuple. This variable is expressed in the unit MWh. In script
model.py this variable is defined by the model variable e_sto_out and initialized by the following
code fragment:

m.e_sto_out = pyomo.Var(
m.tm, m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='Commodity flow out of storage (MWh) at a given timestep')

Storage Energy Content, 𝜖con
𝑦𝑣𝑠𝑡, e_sto_con: The variable 𝜖con

𝑦𝑣𝑠𝑡 represents the energy amount that
is loaded in a storage tuple 𝑠𝑣𝑐 at a timestep 𝑡. This variable is expressed in the unit MWh. In script
urbs.py this variable is defined by the model variable e_sto_out and initialized by the following
code fragment:

m.e_sto_con = pyomo.Var(
m.t, m.sto_tuples,
within=pyomo.NonNegativeReals,
doc='Energy content of storage (MWh) at a given timestep')

Demand Side Management Variables

DSM Upshift, 𝛿up
𝑦𝑣𝑐𝑡, dsm_up, MWh: The variable 𝛿up

𝑦𝑣𝑐𝑡 represents the DSM upshift in time step 𝑡 in
support timeframe 𝑦 in site 𝑣 for commodity 𝑐. It is only defined for all dsm_site_tuples. The
following code fragment shows the definition of the variable:

m.dsm_up = pyomo.Var(
m.tm, m.dsm_site_tuples,
within=pyomo.NonNegativeReals,
doc='DSM upshift (MWh) of a demand commodity at a given timestap')

DSM Downshift, 𝛿down
𝑡,𝑡𝑡,𝑦𝑣𝑐, dsm_down, MWh: The variable 𝛿down

𝑡,𝑡𝑡,𝑦𝑣𝑐 represents the DSM downshift in
timestep 𝑡𝑡 caused by the upshift in time 𝑡 in support timeframe 𝑦 in site 𝑣 for commodity 𝑐. The special
combinations of timesteps 𝑡 and 𝑡𝑡 for each (support timeframe, site, commodity) combination is created
by the dsm_down_tuples. The definition of the variable is shown in the code fragment:

76 Chapter 1. Contents



urbs Documentation, Release 1.0.0

m.dsm_down = pyomo.Var(
m.dsm_down_tuples,
within=pyomo.NonNegativeReals,
doc='DSM downshift (MWh) of a demand commodity at a given timestep')

Parameters

All the parameters that the optimization model requires to calculate an optimal solution will be listed and
defined in this section. A parameter is a datapoint, that is provided by the user before the optimization
simulation starts. These parameters are the values that define the specifications of the modelled energy
system. Parameters of this optimization model can be separated into two main parts, these are Technical
and Economical Parameters.

Technical Parameters

Table 5: Table: Technical Model Parameters

Parameter Unit Description
General Technical Parameters
𝑤 _ Fraction of 1 year of modeled timesteps
∆𝑡 h Timestep Size
𝑊 a Weight of last support timeframe
Commodity Technical Parameters
𝑑𝑦𝑣𝑐𝑡 MWh Demand for Commodity
𝑠𝑦𝑣𝑐𝑡 _ Intermittent Supply Capacity Factor
𝑙𝑦𝑣𝑐 MW Maximum Stock Supply Limit Per Hour
𝐿𝑦𝑣𝑐 MWh Maximum Annual Stock Supply Limit Per Vertex
𝑚𝑦𝑣𝑐 t/h Maximum Environmental Output Per Hour
𝑀𝑦𝑣𝑐 t Maximum Annual Environmental Output
𝑔𝑦𝑣𝑐 MW Maximum Sell Limit Per Hour
𝐺𝑦𝑣𝑐 MWh Maximum Annual Sell Limit
𝑏𝑦𝑣𝑐 MW Maximum Buy Limit Per Hour
𝐵𝑦𝑣𝑐 MWh Maximum Annual Buy Limit
𝐿CO2,𝑦 t Maximum Global Annual CO2 Emission Limit
𝐿CO2 t CO2 Emission Budget for modeling horizon
Process Technical Parameters
𝐾𝑦𝑣𝑝 MW Process Capacity Lower Bound
𝐾𝑣𝑝 MW Process Capacity Installed
𝐾𝑦𝑣𝑝 MW Process Capacity Upper Bound
𝑇𝑣𝑝 MW Remaining lifetime of installed processes
𝑃𝐺

up
𝑦𝑣𝑝 1/h Process Maximal Power Ramp Up Gradient (relative)

𝑃𝐺
down
𝑦𝑣𝑝 1/h Process Maximal Power Ramp Down Gradient (relative)

𝑆𝑇 𝑦𝑣𝑝 h Process Starting Time
𝑆𝑅𝑦𝑣𝑝 1/h Process Starting Ramp
𝑃 𝑦𝑣𝑝 _ Process Minimum Part Load Fraction
𝑓out
𝑦𝑣𝑝𝑡 _ Process Output Ratio multiplyer
𝑟in
𝑦𝑝𝑐 _ Process Input Ratio

Continued on next page
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Table 5 – continued from previous page
Parameter Unit Description
𝑟in
𝑦𝑝𝑐 _ Process Partial Input Ratio
𝑟out
𝑦𝑝𝑐 _ Process Partial Output Ratio
𝑟out
𝑦𝑝𝑐 _ Process Output Ratio
𝐾block

𝑦𝑣𝑝 MW Process New Capacity Block
Storage Technical Parameters
𝐼𝑦𝑣𝑠 _ Initial and Final State of Charge
𝑒in
𝑦𝑣𝑠 _ Storage Efficiency During Charge
𝑒out
𝑦𝑣𝑠 _ Storage Efficiency During Discharge
𝑑𝑦𝑣𝑠 1/h Storage Self-discharge Per Hour
𝐾c

𝑦𝑣𝑠 MWh Storage Capacity Lower Bound
𝐾c

𝑦𝑣𝑠 MWh Storage Capacity Installed
𝐾

c
𝑦𝑣𝑠 MWh Storage Capacity Upper Bound

𝐾p
𝑦𝑣𝑠 MW Storage Power Lower Bound

𝐾
p
𝑦𝑣𝑠 MW Storage Power Installed

𝐾
p
𝑦𝑣𝑠 MW Storage Power Upper Bound

𝑇𝑣𝑠 MW Remaining lifetime of installed storages
𝑘E/P
𝑦𝑣𝑠 h Storage Energy to Power Ratio
𝐾c,block

𝑦𝑣𝑠 MWh Storage New Capacity Block
𝐾

p,block
𝑦𝑣𝑠 MW Storage New Power Block

Transmission Technical Parameters
𝑒𝑦𝑎𝑓 _ Transmission Efficiency
𝐾𝑦𝑎𝑓 MW Transmission Capacity Lower Bound
𝐾𝑦𝑎𝑓 MW Transmission Capacity Installed
𝐾𝑦𝑎𝑓 MW Transmission Capacity Upper Bound
𝑇𝑎𝑓 year Remaining lifetime of installed transmission
𝐾block

𝑦𝑎𝑓 MW Transmission New Capacity Block
DCPF Transmission Technical Parameters
𝑋𝑦𝑎𝑓 p.u Transmission Reactance
𝑑𝑙𝑦𝑎𝑓 deg. Voltage Angle Difference Limit
𝑉𝑦𝑎𝑓base kV Transmission Base Voltage
𝐾block

𝑦𝑎𝑓 _ Transmission New Capacity Block
Demand Side Management Parameters
𝑒𝑦𝑣𝑐 _ DSM Efficiency
𝑦𝑦𝑣𝑐 _ DSM Delay Time
𝑜𝑦𝑣𝑐 _ DSM Recovery Time
𝐾

up
𝑦𝑣𝑐 MW DSM Maximal Upshift Per Hour

𝐾
down
𝑦𝑣𝑐 MW DSM Maximal Downshift Per Hour

General Technical Parameters

Weight, 𝑤, weight: The parameter 𝑤 helps to scale variable costs and emissions from the length
of simulation, that the energy system model is being observed, to an annual result. This parameter
represents the fraction of a year (8760 hours) of the observed time span. The observed time span is
calculated by the product of number of time steps of the set 𝑇 and the time step duration. In script
model.py this parameter is defined by the model parameter weight and initialized by the following
code fragment:

78 Chapter 1. Contents



urbs Documentation, Release 1.0.0

m.weight = pyomo.Param(
initialize=float(8760) / (len(m.tm) * dt),
doc='Pre-factor for variable costs and emissions for an annual result')

Timestep Duration, ∆𝑡, dt: The parameter ∆𝑡 represents the duration between two sequential
timesteps 𝑡𝑥 and 𝑡𝑥+1. This is calculated by the subtraction of smaller one from the bigger of the
two sequential timesteps ∆𝑡 = 𝑡𝑥+1 − 𝑡𝑥. This parameter is the unit of time for the optimization model,
is expressed in the unit h and by default the value is set to 1. In script model.py this parameter is
defined by the model parameter dt and initialized by the following code fragment:

m.dt = pyomo.Param(
initialize=dt,
doc='Time step duration (in hours), default: 1')

The user can set the paramteter in script runme.py in the line:

dt = 1 # length of each time step (unit: hours)

Weight of last modeled support timeframe,𝑊 , m.global_prop.loc[(min(m.stf), 'Cost
budget'), 'value']: This parameter specifies how long the time interval represented by the last
support timeframe is. The unit of this parameter is years. By extension it also specifies the end of the
modeling horizon. The parameter is set in the spreadsheet corresponding to the last support timeframe
in worksheet “Global” in the line denoted “Weight” in the column titled “value”.

Commodity Technical Parameters

Demand for Commodity, 𝑑𝑦𝑣𝑐𝑡, m.demand_dict[(stf, sit, com)][tm]: The parameter
represents the energy amount of a demand commodity tuple 𝑐𝑦𝑣𝑞 required at a timestep 𝑡 (∀𝑦 ∈ 𝑌,∀𝑣 ∈
𝑉, 𝑞 = ”𝐷𝑒𝑚𝑎𝑛𝑑”, ∀𝑡 ∈ 𝑇𝑚). The unit of this parameter is MWh. This data is to be provided by the
user and to be entered in the spreadsheet corresponding to the specified support timeframe. The related
section for this parameter in the spreadsheet can be found in the “Demand” sheet. Here each row rep-
resents another timestep 𝑡 and each column represent a commodity tuple 𝑐𝑦𝑣𝑞. Rows are named after
the timestep number 𝑛 of timesteps 𝑡𝑛. Columns are named after the combination of site name 𝑣 and
commodity name 𝑐 respecting the order and seperated by a period(.). For example (Mid, Elec) represents
the commodity Elec in site Mid. Commodity Type 𝑞 is omitted in column declarations, because every
commodity of this parameter has to be from commodity type Demand in any case.

Intermittent Supply Capacity Factor, 𝑠𝑦𝑣𝑐𝑡, m.supim_dict[(stf, sit, coin)][tm]: The
parameter 𝑠𝑦𝑣𝑐𝑡 represents the normalized availability of a supply intermittent commodity 𝑐 (∀𝑐 ∈ 𝐶sup)
in a support timeframe 𝑦 and site 𝑣 at a timestep 𝑡. In other words this parameter gives the ratio of cur-
rent available energy amount to maximum potential energy amount of a supply intermittent commodity.
This data is to be provided by the user and to be entered in the spreadsheet corresponding to the support
timeframe. The related section for this parameter in the spreadsheet can be found under the “SupIm”
sheet. Here each row represents another timestep 𝑡 and each column represent a commodity tuple 𝑐𝑣𝑞.
Rows are named after the timestep number 𝑛 of timesteps 𝑡𝑛. Columns are named after the combination
of site name 𝑣 and commodity name 𝑐, in this respective order and separated by a period(.). For ex-
ample (Mid.Elec) represents the commodity Elec in site Mid. Commodity Type 𝑞 is omitted in column
declarations, because every commodity of this parameter has to be from commodity type SupIm in any
case.

Maximum Stock Supply Limit Per Hour, 𝑙𝑦𝑣𝑐, m.commodity_dict['maxperhour'][(stf,
sit, com, com_type)]: The parameter 𝑙𝑦𝑣𝑐 represents the maximum energy amount of a stock
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commodity tuple 𝑐𝑦𝑣𝑞 (∀𝑦 ∈ 𝑌, ∀𝑣 ∈ 𝑉, 𝑞 = ”𝑆𝑡𝑜𝑐𝑘”) that energy model is allowed to use per hour.
The unit of this parameter is MW. This parameter applies to every timestep and does not vary for each
timestep 𝑡. This parameter is to be provided by the user and to be entered in spreadsheet corresponding
to the support timeframe. The related section for this parameter in the spreadsheet can be found under
the Commodity sheet. Here each row represents another commodity tuple 𝑐𝑦𝑣𝑞 and the column with
the header label “maxperhour” represents the parameter 𝑙𝑦𝑣𝑐. If there is no desired restriction of a stock
commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Annual Stock Supply Limit Per Vertex, 𝐿𝑦𝑣𝑐, m.commodity_dict['max'][(stf,
sit, com, com_type)]: The parameter 𝐿𝑦𝑣𝑐 represents the maximum energy amount of a stock
commodity tuple 𝑐𝑦𝑣𝑞 (∀𝑦 ∈ 𝑌,∀𝑣 ∈ 𝑉, 𝑞 = ”𝑆𝑡𝑜𝑐𝑘”) that energy model is allowed to use annually.
The unit of this parameter is MWh. This parameter is to be provided by the user and to be entered
in spreadsheet corresponding to the support timeframe. The related section for this parameter in the
spreadsheet can be found under the Commodity sheet. Here each row represents another commodity
tuple 𝑐𝑦𝑣𝑞 and the column with the header label “max” represents the parameter 𝐿𝑦𝑣𝑐. If there is no
desired restriction of a stock commodity tuple usage per timestep, the corresponding cell can be set to
“inf” to ignore this parameter.

Maximum Environmental Output Per Hour,𝑚𝑦𝑣𝑐, m.commodity_dict['maxperhour'][(stf,
sit, com, com_type)]: The parameter 𝑚𝑦𝑣𝑐 represents the maximum energy amount of an
environmental commodity tuple 𝑐𝑦𝑣𝑞 (∀𝑦 ∈ 𝑌,∀𝑣 ∈ 𝑉, 𝑞 = ”𝐸𝑛𝑣”) that energy model is allowed to
produce and release to environment per time step. This parameter applies to every timestep and does not
vary for each timestep 𝑡/ℎ. This parameter is to be provided by the user and to be entered in spreadsheet
corresponding to the support timeframe. The related section for this parameter in the spreadsheet can
be found under the Commodity sheet. Here each row represents another commodity tuple 𝑐𝑦𝑣𝑞 and
the column with the header label “maxperhour” represents the parameter 𝑚𝑦𝑣𝑐. If there is no desired
restriction of an environmental commodity tuple usage per timestep, the corresponding cell can be set
to “inf” to ignore this parameter.

Maximum Annual Environmental Output,𝑀𝑦𝑣𝑐, m.commodity_dict['max'][(stf, sit,
com, com_type)]: The parameter 𝑀𝑣𝑐 represents the maximum energy amount of an environmen-
tal commodity tuple 𝑐𝑦𝑣𝑞 (∀𝑦 ∈ 𝑌, ∀𝑣 ∈ 𝑉, 𝑞 = ”𝐸𝑛𝑣”) that energy model is allowed to produce and
release to environment annually. This parameter is to be provided by the user and to be entered in spread-
sheet corresponding to the support timeframe. The related section for this parameter in the spreadsheet
can be found under the Commodity sheet. Here each row represents another commodity tuple 𝑐𝑦𝑣𝑞 and
the column with the header label “max” represents the parameter 𝑀𝑦𝑣𝑐. If there is no desired restriction
of a stock commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this
parameter.

Maximum Sell Limit Per Hour, 𝑔𝑦𝑣𝑐, m.commodity_dict['maxperhour'][(stf, sit,
com, com_type)]: The parameter 𝑔𝑦𝑣𝑐 represents the maximum energy amount of a sell commodity
tuple 𝑐𝑦𝑣𝑞 (∀𝑦 ∈ 𝑌,∀𝑣 ∈ 𝑉, 𝑞 = ”𝑆𝑒𝑙𝑙”) that energy model is allowed to sell per hour. The unit of
this parameter is MW. This parameter applies to every timestep and does not vary for each timestep
𝑡. This parameter is to be provided by the user and to be entered in spreadsheet. The related section
for this parameter in the spreadsheet corresponding to the support timeframe can be found under the
Commodity sheet. Here each row represents another commodity tuple 𝑐𝑦𝑣𝑞 and the column with the
header label “maxperhour” represents the parameter 𝑔𝑦𝑣𝑐. If there is no desired restriction of a sell
commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Annual Sell Limit, 𝐺𝑦𝑣𝑐, m.commodity_dict['max'][(stf, sit, com,
com_type)]: The parameter 𝐺𝑦𝑣𝑐 represents the maximum energy amount of a sell commodity tuple
𝑐𝑦𝑣𝑞 (∀𝑦 ∈ 𝑌,∀𝑣 ∈ 𝑉, 𝑞 = ”𝑆𝑒𝑙𝑙”) that energy model is allowed to sell annually. The unit of this param-
eter is MWh. This parameter is to be provided by the user and to be entered in spreadsheet corresponding
to the support timeframe. The related section for this parameter in the spreadsheet can be found under
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the Commodity sheet. Here each row represents another commodity tuple 𝑐𝑦𝑣𝑞 and the column of sell
with the header label “max” represents the parameter 𝐺𝑦𝑣𝑐. If there is no desired restriction of a sell
commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Buy Limit Per Hour, 𝑏𝑦𝑣𝑐, m.commodity_dict['maxperhour'][(stf, sit,
com, com_type)]: The parameter 𝑏𝑦𝑣𝑐 represents the maximum energy amount of a buy commodity
tuple 𝑐𝑦𝑣𝑞 (∀𝑦 ∈ 𝑌,∀𝑣 ∈ 𝑉, 𝑞 = ”𝐵𝑢𝑦”) that energy model is allowed to buy per hour. The unit of
this parameter is MW. This parameter applies to every timestep and does not vary for each timestep
𝑡. This parameter is to be provided by the user and to be entered in spreadsheet corresponding to the
support timeframe. The related section for this parameter in the spreadsheet can be found under the
Commodity sheet. Here each row represents another commodity tuple 𝑐𝑦𝑣𝑞 and the column with the
header label “maxperhour” represents the parameter 𝑏𝑦𝑣𝑐. If there is no desired restriction of a sell
commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this parameter.

Maximum Annual Buy Limit, 𝐵𝑦𝑣𝑐, m.commodity_dict['max'][(stf, sit, com,
com_type)]: The parameter 𝐵𝑦𝑣𝑐 represents the maximum energy amount of a buy commodity tuple
𝑐𝑦𝑣𝑞 (∀𝑦 ∈ 𝑌,∀𝑣 ∈ 𝑉, 𝑞 = ”𝐵𝑢𝑦”) that energy model is allowed to buy annually. The unit of this
parameter is MWh. This parameter is to be provided by the user and to be entered in spreadsheet cor-
responding to the support timeframe. The related section for this parameter in the spreadsheet can be
found under the Commodity sheet. Here each row represents another commodity tuple 𝑐𝑦𝑣𝑞 and the
column with the header label “max” represents the parameter 𝐵𝑦𝑣𝑐. If there is no desired restriction
of a buy commodity tuple usage per timestep, the corresponding cell can be set to “inf” to ignore this
parameter.

Maximum Global Annual CO2 Annual Emission Limit, 𝐿𝐶𝑂2,𝑦, m.global_prop.loc[stf,
'CO2 limit']['value']: The parameter 𝐿𝐶𝑂2,𝑦 represents the maximum total amount of CO2
the energy model is allowed to produce and release to the environment annually. If the user desires
to set a maximum annual limit to total 𝐶𝑂2 emission across all sites of the energy model in a given
support timeframe 𝑦, this can be done by entering the desired value to the spreadsheet corresponding to
the support timeframe. The related section for this parameter can be found under the sheet “Global”.
Here the the cell where the “CO2 limit” row and “value” column intersects stands for the parameter
𝐿𝐶𝑂2,𝑦. If the user wants to disable this parameter and restriction it provides, this cell can be set to “inf”
or simply be deleted.

CO2‘**𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑏𝑢𝑑𝑔𝑒𝑡**𝑇𝑜𝑡𝑎𝑙𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑏𝑢𝑑𝑔𝑒𝑡**, : 𝑚𝑎𝑡ℎ :overline{overline{L}}_{CO_2}‘, m.
global_prop.loc[min(m.stf), 'CO2 budget']['value']: The parameter 𝐿𝐶𝑂2 rep-
resents the maximum total amount of CO2 the energy model is allowed to produce and release to the
environment over the entire modeling horizon. If the user desires to set a limit to total 𝐶𝑂2 emission
across all sites and the entire modeling horizon of the energy model, this can be done by entering the
desired value to the spreadsheet of the first support timeframe. The related section for this parameter can
be found under the sheet “Global”. Here the the cell where the “CO2 budget” row and “value” column
intersects stands for the parameter 𝐿𝐶𝑂2 . If the user wants to disable this parameter and restriction it
provides, this cell can be set to “inf” or simply be deleted.

Process Technical Parameters

Process Capacity Lower Bound, 𝐾𝑦𝑣𝑝, m.process_dict['cap-lo'][stf, sit, pro]:
The parameter 𝐾𝑦𝑣𝑝 represents the minimum amount of power output capacity of a process 𝑝 at a
site 𝑣 in support timeframe 𝑦, that energy model is required to have. The unit of this parameter is MW.
The related section for this parameter in the spreadsheet corresponding to the support timeframe can be
found under the “Process” sheet. Here each row represents another process 𝑝 in a site 𝑣 and the column
with the header label “cap-lo” represents the parameters 𝐾𝑦𝑣𝑝 belonging to the corresponding process 𝑝
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and site 𝑣 combinations. If there is no desired minimum limit for the process capacities, this parameter
can be simply set to “0”.

Process Capacity Installed, 𝐾𝑣𝑝, m.process_dict['inst-cap'][min(m.stf), sit,
pro]: The parameter 𝐾𝑣𝑝 represents the amount of power output capacity of a process 𝑝 in a site
𝑣, that is already installed to the energy system at the beginning of the modeling period. The unit of this
parameter is MW. The related section for this parameter can be found in the spreadsheet corresponding
to the first support timeframe under the “Process” sheet. Here each row represents another process 𝑝 in
a site 𝑣 and the column with the header label “inst-cap” represents the parameters 𝐾𝑣𝑝 belonging to the
corresponding process 𝑝 and site 𝑣 combinations.

Process Capacity Upper Bound, 𝐾𝑦𝑣𝑝, m.process_dict['cap-up'][stf, sit, pro]:
The parameter 𝐾𝑦𝑣𝑝 represents the maximum amount of power output capacity of a process 𝑝 at a
site 𝑣 in support timeframe 𝑦, that energy model is allowed to have. The unit of this parameter is MW.
The related section for this parameter in the spreadsheet corresponding to the support timeframe can be
found under the “Process” sheet. Here each row represents another process 𝑝 in a site 𝑣 and the column
with the header label “cap-up” represents the parameters 𝐾𝑦𝑣𝑝 of the corresponding process 𝑝 and site 𝑣
combinations. Alternatively, 𝐾𝑦𝑣𝑝 is determined by the column with the label “area-per-cap”, whenever
the value in “cap-up” times the value “area-per-cap” is larger than the value in column “area” in sheet
“Site” for site 𝑣 in support timeframe 𝑦. If there is no desired maximum limit for the process capacities,
both input parameters can be simply set to “inf”.

Remaining lifetime of installed processes, 𝑇𝑣𝑝, m.process.loc[(min(m.stf), sit,
pro), 'lifetime']: The parameter 𝑇𝑣𝑝 represents the remaining lifetime of already installed
units. It is used to determine the set m.inst_pro_tuples, i.e. to identify for which support timeframes
the installed unit can still be used.

Process Maximal Power Ramp Up Gradient, 𝑃𝐺
up
𝑦𝑣𝑝, m.

process_dict['ramp-up-grad'][(stf, sit, pro)]: The parameter 𝑃𝐺up
𝑦𝑣𝑝 represents

the maximal power ramp up gradient of a process 𝑝 at a site 𝑣 in support timeframe 𝑦, that energy
model is allowed to have. The unit of this parameter is 1/h. The related section for this parameter in
the spreadsheet can be found under the “Process” sheet. Here each row represents another process 𝑝 in
a site 𝑣 and the column with the header label “ramp-up-grad” represents the parameters 𝑃𝐺up

𝑦𝑣𝑝 of the
corresponding process 𝑝 and site 𝑣 combinations. If there is no desired maximum limit for the process
power ramp up gradient, this parameter can be simply set to a value larger or equal to 1.

Process Maximal Power Ramp Down Gradient, 𝑃𝐺
down
𝑦𝑣𝑝 , m.

process_dict['ramp-down-grad'][(stf, sit, pro)]: The parameter 𝑃𝐺
down
𝑦𝑣𝑝

represents the maximal power ramp down gradient of a process 𝑝 at a site 𝑣 in support timeframe 𝑦,
that energy model is allowed to have. The unit of this parameter is 1/h. The related section for this
parameter in the spreadsheet can be found under the “Process” sheet. Here each row represents another
process 𝑝 in a site 𝑣 and the column with the header label “ramp-down-grad” represents the parameters
𝑃𝐺

up
𝑦𝑣𝑝 of the corresponding process 𝑝 and site 𝑣 combinations. If there is no desired maximum limit

for the process power ramp down gradient, this parameter can be simply set to a value larger or equal to
1.

Process Starting Time, 𝑆𝑇 𝑦𝑣𝑝, m.process_dict['start-time'][(stf, sit, pro)]:
The parameter 𝑆𝑇 𝑦𝑣𝑝 represents the time required by a process 𝑝 at a site 𝑣 in support timeframe 𝑦
to start. The unit of this parameter is h. The related section for this parameter in the spreadsheet can be
found under the “Process” sheet. Here each row represents another process 𝑝 in a site 𝑣 and the column
with the header label “start-time” represents the parameters 𝑆𝑇 𝑦𝑣𝑝 of the corresponding process 𝑝 and
site 𝑣 combinations.

Process Starting Ramp, 𝑆𝑅𝑦𝑣𝑝: The parameter 𝑆𝑅𝑦𝑣𝑝 represents the ramp of a process 𝑝 at a site 𝑣 in
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support timeframe 𝑦 while starting. The unit of this parameter is 1/h. This parameter is not declared di-
rectly in the input, being only a derived parameter, calculated as the ratio between the process minimum
part load fraction 𝑃 𝑦𝑣𝑝 and the process starting time 𝑆𝑇 𝑦𝑣𝑝.

Process Minimum Part Load Fraction, 𝑃 𝑦𝑣𝑝, m.process_dict['min-fraction'][(stf,
sit, pro)]: The parameter 𝑃 𝑦𝑣𝑝 represents the minimum allowable part load of a process 𝑝 at a site
𝑣 in support timeframe 𝑦 as a fraction of the total process capacity. The related section for this parameter
in the spreadsheet can be found under the “Process” sheet. Here each row represents another process 𝑝
in a site 𝑣 and the column with the header label “min-fraction” represents the parameters 𝑃 𝑦𝑣𝑝 of the
corresponding process 𝑝 and site 𝑣 combinations. The minimum part load fraction parameter constraints
is only relevant when the part load behavior for the process is active, i.e., when in the process commodity
sheet a value for “ratio-min” is set for at least one input commodity.

Process Output Ratio multiplyer, 𝑓out
𝑦𝑣𝑝𝑡, m.eff_factor_dict[(stf, sit, pro)]: The pa-

rameter time series 𝑓out
𝑦𝑣𝑝𝑡 allows for a time dependent modification of process outputs and by extension of

the efficiency of a process 𝑝 in site 𝑣 and support timeframe 𝑦. It can be used, e.g., to model temperature
dependent efficiencies of processes or to include scheduled maintenance intervals. In the spreadsheet
corresponding to the support timeframe this timeseries is set in worksheet “TimeVarEff”. Here each row
represents another timestep 𝑡 and each column represent a process tuple 𝑝𝑦𝑣. Rows are named after the
timestep number 𝑛 of timesteps 𝑡𝑛. Columns are named after the combination of site name 𝑣 and com-
modity name and process name 𝑝 respecting the order and seperated by a period(.). For example (Mid,
Lignite plant) represents the process Lignite plant in site Mid. Note that the output of environmental
commodity outputs are not manipulated by this factor as it is typically linked to an input commodity as
, e.g., CO2 output is linked to a fossil input.

Process Input Ratio, 𝑟in
𝑦𝑝𝑐, m.r_in_dict[(stf, pro, co)]: The parameter 𝑟in

𝑦𝑝𝑐 represents the
ratio of the input amount of a commodity 𝑐 in a process 𝑝 and support timeframe 𝑦, relative to the process
throughput at a given timestep. The related section for this parameter in the spreadsheet corresponding
to the support timeframe can be found under the “Process-Commodity” sheet. Here each row represents
another commodity 𝑐 that either goes in to or comes out of a process 𝑝. The column with the header
label “ratio” represents the parameters 𝑟in

𝑦𝑝𝑐 of the corresponding process 𝑝 and commodity 𝑐 if the latter
is an input commodity.

Process Partial Input Ratio, 𝑟in
𝑦𝑝𝑐, m.r_in_min_fraction[stf, pro, coin]: The parameter

𝑟in
𝑦𝑝𝑐 represents the ratio of the amount of input commodity 𝑐 a process 𝑝 and support timeframe 𝑦 con-

sumes if it is at its minimum allowable partial operation. More precisely, when its throughput 𝜏𝑦𝑣𝑝𝑡 has
the minimum value 𝜅𝑦𝑣𝑝𝑃 𝑦𝑣𝑝. The related section for this parameter in the spreadsheet corresponding
to the support timeframe can be found under the “Process-Commodity” sheet. Here each row represents
another commodity 𝑐 that either goes in to or comes out of a process 𝑝. The column with the header
label “ratio-min” represents the parameters 𝑟in,out

𝑦𝑝𝑐 of the corresponding process 𝑝 and commodity 𝑐 if the
latter is an input commodity.

Process Output Ratio, 𝑟out
𝑦𝑝𝑐, m.r_out_dict[(stf, pro, co)]: The parameter 𝑟out

𝑦𝑝𝑐 represents
the ratio of the output amount of a commodity 𝑐 in a process 𝑝 in support timeframe 𝑦, relative to
the process throughput at a given timestep. The related section for this parameter in the spreadsheet
corresponding to the support timeframe can be found under the “Process-Commodity” sheet. Here each
row represents another commodity 𝑐 that either goes in to or comes out of a process 𝑝. The column with
the header label “ratio” represents the parameters of the corresponding process 𝑝 and commodity 𝑐 if the
latter is an output commodity.

Process Partial Output Ratio, 𝑟out
𝑦𝑝𝑐, m.r_out_min_fraction[stf, pro, coo]: The param-

eter 𝑟out
𝑦𝑝𝑐 represents the ratio of the amount of output commodity 𝑐 a process 𝑝 and support timeframe 𝑦

emits if it is at its minimum allowable partial operation. More precisely, when its throughput 𝜏𝑦𝑣𝑝𝑡 has
the minimum value 𝜅𝑦𝑣𝑝𝑃 𝑦𝑣𝑝. The related section for this parameter in the spreadsheet corresponding
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to the support timeframe can be found under the “Process-Commodity” sheet. Here each row represents
another commodity 𝑐 that either goes in to or comes out of a process 𝑝. The column with the header
label “ratio-min” represents the parameters 𝑟in,out

𝑦𝑝𝑐 of the corresponding process 𝑝 and commodity 𝑐 if the
latter is an output commodity.

Process input and output ratios are, in general, used for unit conversion between the different commodi-
ties.

Since all costs and capacity constraints take the process throughput 𝜏𝑦𝑣𝑝𝑡 as the reference, it is reasonable
to assign an in- or output ratio of “1” to at least one commodity. The flow of this commodity then tracks
the throughput and can be used as a reference. All other values of in- and output ratios can then be
adjusted by scaling them by an appropriate factor to the reference commodity flow.

Process New Capacity Block, 𝐾block
𝑦𝑣𝑝 , m.process_dict['cap-block'][(stf, sit,

pro)]: The parameter 𝐾block
𝑦𝑣𝑝 represents the capacity of all newly installed units of a process 𝑝 at a

site 𝑣 in the support timeframe 𝑦. The unit of this parameter is MW. The related section for this parame-
ter in the spreadsheet can be found under the “Process” sheet. Here each row represents another process
𝑝 in a site 𝑣 and the column with the header label “cap-block” represents the parameters 𝐾block

𝑦𝑣𝑝 of the
corresponding process 𝑝 and site 𝑣 combinations.

Storage Technical Parameters

Initial and Final State of Charge (relative), 𝐼𝑦𝑣𝑠, m.storage_dict['init'][(stf, sit,
sto, com)]: The parameter 𝐼𝑦𝑣𝑠 represents the initial state of charge of a storage 𝑠 in a site 𝑣 and
support timeframe 𝑦. If this value is left unspecified, the initial state of charge is variable. The initial
and final value are set as identical in each modeled support timeframe to avoid windfall profits through
emptying of a storage. The value of this parameter is expressed as a normalized percentage, where
“1” represents a fully loaded storage and “0” represents an empty storage. The related section for this
parameter in the spreadsheet corresponding to the support timeframe can be found under the “Storage”
sheet. Here each row represents a storage technology 𝑠 in a site 𝑣 that stores a commodity 𝑐. The column
with the header label “init” represents the parameters for corresponding storage 𝑠, site 𝑣, commodity 𝑐
combinations. When no initial value is to be set this cell can be left empty.

Storage Efficiency During Charge, 𝑒in
𝑦𝑣𝑠, m.storage_dict['eff-in'][(stf, sit, sto,

com)]: The parameter 𝑒in
𝑦𝑣𝑠 represents the charging efficiency of a storage 𝑠 in a site 𝑣 and support

timeframe 𝑦 that stores a commodity 𝑐. The charging efficiency shows, how much of a desired energy
and accordingly power can be successfully stored into a storage. The value of this parameter is expressed
as a normalized percentage, where “1” represents a charging without energy losses. The related section
for this parameter in the spreadsheet corresponding to the support timeframe can be found under the
“Storage” sheet. Here each row represents a storage technology 𝑠 in a site 𝑣 that stores a commodity
𝑐. The column with the header label “eff-in” represents the parameters 𝑒in

𝑦𝑣𝑠 for corresponding storage
tuples.

Storage Efficiency During discharge, 𝑒out
𝑦𝑣𝑠, m.storage_dict['eff-out'][(stf, sit,

sto, com)]: The parameter 𝑒out
𝑦𝑣𝑠 represents the discharging efficiency of a storage 𝑠 in a site 𝑣

and support timeframe 𝑦 that stores a commodity 𝑐. The discharging efficiency shows, how much of
a desired energy and accordingly power can be successfully released from a storage. The value of this
parameter is expressed as a normalized percentage, where “1” represents a discharging without energy
losses. The related section for this parameter in the spreadsheet corresponding to the support timeframe
can be found under the “Storage” sheet. Here each row represents a storage technology 𝑠 in a site 𝑣 that
stores a commodity 𝑐. The column with the header label “eff-out” represents the parameters 𝑒out

𝑦𝑣𝑠 for
corresponding storage tuples.
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Storage Self-discharge Per Hour, 𝑑𝑦𝑣𝑠, m.storage_dict['discharge'][(stf, sit,
sto, com)]: The parameter 𝑑𝑣𝑠 represents the fraction of the energy content within a storage which
is lost due to self-discharge per hour. It introduces an exponential decay of a given storage state if no
charging/discharging takes place. The unit of this parameter is 1/h. The related section for this param-
eter in the spreadsheet corresponding to the support timeframe can be found under the “Storage” sheet.
Here each row represents a storage technology 𝑠 in a site 𝑣 that stores a commodity 𝑐. The column with
the header label “discharge” represents the parameters 𝑑𝑦𝑣𝑠 for corresponding storage tuples.

Storage Capacity Lower Bound, 𝐾c
𝑦𝑣𝑠, m.storage_dict['cap-lo-c'][(stf, sit,

sto, com)]: The parameter 𝐾c
𝑦𝑣𝑠 represents the minimum amount of energy content capacity re-

quired for a storage 𝑠 storing a commodity 𝑐 in a site 𝑣 in support timeframe 𝑦. The unit of this
parameter is MWh. The related section for this parameter in the spreadsheet can be found under the
“Storage” sheet. Here each row represents a storage technology 𝑠 in a site 𝑣 that stores a commodity 𝑐.
The column with the header label “cap-lo-c” represents the parameters 𝐾c

𝑦𝑣𝑠 for corresponding storage
tuples. If there is no desired minimum limit for the storage energy content capacities, this parameter can
be simply set to “0”.

Storage Capacity Installed, 𝐾c
𝑣𝑠, m.storage_dict['inst-cap-c'][(min(m.stf),

sit, sto, com)]]: The parameter 𝐾c
𝑣𝑠 represents the amount of energy content capacity of a

storage 𝑠 storing commodity 𝑐 in a site 𝑣 and support timeframe 𝑦, that is already installed to the energy
system at the beginning of the model horizon. The unit of this parameter is MWh. The related section
for this parameter in the spreadsheet corresponding to the first support timeframe can be found under the
“Storage” sheet. Here each row represents a storage technology 𝑠 in a site 𝑣 that stores a commodity 𝑐.
The column with the header label “inst-cap-c” represents the parameters 𝐾c

𝑣𝑠 for corresponding storage
tuples.

Storage Capacity Upper Bound, 𝐾
c
𝑦𝑣𝑠, m.storage_dict['cap-up-c'][(stf, sit,

sto, com)]: The parameter 𝐾c
𝑦𝑣𝑠 represents the maximum amount of energy content capacity al-

lowed of a storage 𝑠 storing a commodity 𝑐 in a site 𝑣 in support timeframe 𝑦. The unit of this parameter
is MWh. The related section for this parameter in the spreadsheet corresponding to the support time-
frame can be found under the “Storage” sheet. Here each row represents a storage technology 𝑠 in a site
𝑣 that stores a commodity 𝑐. The column with the header label “cap-up-c” represents the parameters
𝐾

c
𝑦𝑣𝑠 for corresponding storage tuples. If there is no desired maximum limit for the storage energy

content capacities, this parameter can be simply set to “”inf””.

Storage Power Lower Bound, 𝐾p
𝑦𝑣𝑠, m.storage_dict['cap-lo-p'][(stf, sit, sto,

com)]: The parameter 𝐾p
𝑦𝑣𝑠 represents the minimum amount of charging/discharging power required

for a storage 𝑠 storing a commodity 𝑐 in a site 𝑣 in support timeframe 𝑦. The unit of this parameter is
MW. The related section for this parameter in the spreadsheet can be found under the “Storage” sheet.
Here each row represents a storage technology 𝑠 in a site 𝑣 that stores a commodity 𝑐. The column with
the header label “cap-lo-p” represents the parameters 𝐾p

𝑦𝑣𝑠 for corresponding storage tuples. If there is
no desired minimum limit for the storage charging/discharging powers, this parameter can be simply set
to “0”.

Storage Power Installed, 𝐾p
𝑣𝑠, m.storage_dict['inst-cap-p'][(min(m.stf), sit,

sto, com)]]: The parameter 𝐾p
𝑣𝑠 represents the amount of charging/discharging power of a stor-

age 𝑠 storing commodity 𝑐 in a site 𝑣 and support timeframe 𝑦, that is already installed to the energy
system at the beginning of the model horizon. The unit of this parameter is MW. The related section for
this parameter in the spreadsheet corresponding to the first support timeframe can be found under the
“Storage” sheet. Here each row represents a storage technology 𝑠 in a site 𝑣 that stores a commodity 𝑐.
The column with the header label “inst-cap-p” represents the parameters 𝐾p

𝑣𝑠 for corresponding storage
tuples.

Storage Power Upper Bound, 𝐾p
𝑦𝑣𝑠, m.storage_dict['cap-up-p'][(stf, sit, sto,
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com)]: The parameter 𝐾c
𝑦𝑣𝑠 represents the maximum amount of charging/discharging power allowed

of a storage 𝑠 storing a commodity 𝑐 in a site 𝑣 in support timeframe 𝑦. The unit of this parameter is
MW. The related section for this parameter in the spreadsheet corresponding to the support timeframe
can be found under the “Storage” sheet. Here each row represents a storage technology 𝑠 in a site 𝑣 that
stores a commodity 𝑐. The column with the header label “cap-up-p” represents the parameters 𝐾p

𝑦𝑣𝑠

for corresponding storage tuples. If there is no desired maximum limit for the storage energy content
capacities, this parameter can be simply set to “”inf””.

Remaining lifetime of installed storages, 𝑇𝑣𝑠, m.storage.loc[(min(m.stf), sit, pro),
'lifetime']: The parameter 𝑇𝑣𝑠 represents the remaining lifetime of already installed units. It is
used to determine the set m.inst_sto_tuples, i.e. to identify for which support timeframes the installed
units can still be used.

Storage Energy to Power Ratio, 𝑘E/P
𝑦𝑣𝑠, m.storage_dict['ep-ratio'][(stf, sit, sto,

com)]: The parameter 𝑘E/P
𝑦𝑣𝑠 represents the linear ratio between the energy and power capacities of a

storage 𝑠 storing a commodity 𝑐 in a site 𝑣 in support timeframe 𝑦. The unit of this parameter is hours.
The related section for this parameter in the spreadsheet corresponding to the support timeframe can
be found under the “Storage” sheet. Here each row represents a storage technology 𝑠 in a site 𝑣 that
stores a commodity 𝑐. The column with the header label “ep-ratio” represents the parameters 𝑘E/P

𝑦𝑣𝑠 for
corresponding storage tuples. If there is no desired set ratio for the storage energy and power capacities
(which means the storage energy and power capacities can be sized independently from each other), this
cell can be left empty.

Storage New Capacity Block, 𝐾c,block
𝑦𝑣𝑠 , m.storage_dict['c-block'][(stf, sit, sto,

com)]: The parameter𝐾c,block
𝑦𝑣𝑠 represents the capacity of all newly installed units of a storage 𝑠 at a site

𝑣 in the support timeframe 𝑦. The unit of this parameter is MWh. The related section for this parameter
in the spreadsheet can be found under the “Storage” sheet. Here each row represents another storage
𝑠 in a site 𝑣 and the column with the header label “c-block” represents the parameters 𝐾c,block

𝑦𝑣𝑠 of the
corresponding storage 𝑠 and site 𝑣 combinations.

Storage New Power Block, 𝐾p,block
𝑦𝑣𝑠 , m.storage_dict['p-block'][(stf, sit, sto,

com)]: The parameter 𝐾p,block
𝑦𝑣𝑠 represents the power of all newly installed units of a storage 𝑠 at a

site 𝑣 in the support timeframe 𝑦. The unit of this parameter is MW. The related section for this parame-
ter in the spreadsheet can be found under the “Storage” sheet. Here each row represents another storage
𝑠 in a site 𝑣 and the column with the header label “c-block” represents the parameters 𝐾p,block

𝑦𝑣𝑠 of the
corresponding storage 𝑠 and site 𝑣 combinations.

Transmission Technical Parameters

Transmission Efficiency, 𝑒𝑦𝑎𝑓 , m.transmission_dict['eff'][(stf, sin, sout,
tra, com)]: The parameter 𝑒𝑦𝑎𝑓 represents the energy efficiency of a transmission 𝑓 that transfers
a commodity 𝑐 through an arc 𝑎 in support timeframe 𝑦. Here an arc 𝑎 defines the connection line
from an origin site 𝑣out to a destination site 𝑣in. The ratio of the output energy amount to input energy
amount, gives the energy efficiency of a transmission process. The related section for this parameter in
the spreadsheet corresponding to the support timeframe can be found under the “Transmission” sheet.
Here each row represents another combination of transmission 𝑓 and arc 𝑎. The column with the header
label “eff” represents the parameters 𝑒𝑦𝑎𝑓 of the corresponding transmission tuples.

Transmission Capacity Lower Bound, 𝐾𝑦𝑎𝑓 , m.transmission_dict['cap-lo'][(stf,
sin, sout, tra, com)]: The parameter𝐾<𝑎𝑓 represents the minimum power output capacity of
a transmission 𝑓 transferring a commodity 𝑐 through an arc 𝑎, that the energy system model is required
to have. Here an arc 𝑎 defines the connection line from an origin site 𝑣out to a destination site 𝑣in. The
unit of this parameter is MW. The related section for this parameter in the spreadsheet corresponding to
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the support timeframe can be found under the “Transmission” sheet. Here each row represents another
transmission 𝑓 , arc 𝑎 combination. The column with the header label “cap-lo” represents the parameters
𝐾𝑦𝑎𝑓 of the corresponding transmission tuples.

Transmission Capacity Installed, 𝐾𝑎𝑓 , m.transmission_dict['inst-cap'][(min(m.
stf), sin, sout, tra, com)]: The parameter 𝐾𝑎𝑓 represents the amount of power output
capacity of a transmission 𝑓 transferring a commodity 𝑐 through an arc 𝑎, that is already installed to the
energy system at the beginning of the modeling horizon. The unit of this parameter is MW. The related
section for this parameter in the spreadsheet corresponding to the first support timeframe can be found
under the “Transmission” sheet. Here each row represents another transmission 𝑓 , arc 𝑎 combination.
The column with the header label “inst-cap” represents the parameters 𝐾𝑎𝑓 of the transmission tuples.

Transmission Capacity Upper Bound, 𝐾𝑦𝑎𝑓 , m.transmission_dict['cap-up'][(stf,
sin, sout, tra, com)]: The parameter 𝐾𝑦𝑎𝑓 represents the maximum power output capac-
ity of a transmission 𝑓 transferring a commodity 𝑐 through an arc 𝑎 in support timeframe 𝑦, that the
energy system model is allowed to have. Here an arc 𝑎 defines the connection line from an origin site
𝑣out to a destination site 𝑣in. The unit of this parameter is MW. The related section for this parameter in
the spreadsheet corresponding to the support timeframe can be found under the “Transmission” sheet.
Here each row represents another transmission 𝑓 , arc 𝑎 combination. The column with the header label
“cap-up” represents the parameters 𝐾𝑦𝑎𝑓 of the corresponding transmission tuples.

Remaining lifetime of installed transmission, 𝑇𝑎𝑓 , m.transmission.loc[(min(m.stf),
sitin, sitout, tra, com), 'lifetime']: The parameter 𝑇𝑎𝑓 represents the remaining
lifetime of already installed units. It is used to determine the set m.inst_tra_tuples, i.e. to identify for
which support timeframes the installed units can still be used.

Transmission New Capacity Block, 𝐾block
𝑦𝑎𝑓 , m.transmission_dict['tra-block'][(stf,

sin, sout,tra, com)]: The parameter 𝐾block
𝑦𝑎𝑓 represents the capacity of all newly installed units

of a transmission 𝑓 transferring a commodity 𝑐 through an arc 𝑎 in support timeframe 𝑦.The unit of
this parameter is MW. The related section for this parameter in the spreadsheet can be found under the
“Transmission” sheet. Here each row represents another transmission 𝑓 , arc 𝑎 combination. The column
with the header label “tra-block” represents the parameters 𝐾block

𝑦𝑎𝑓 of the corresponding transmission
tuples.

DCPF Transmission Technical Parameters

Selected transmission lines can be modelled with DC Power Flow and combined with the transport
model in an energy system model. The following parameters are only required and included in the
model when a transmission line should be modelled with DCPF.

Transmission Reactance, 𝑋𝑦𝑎𝑓 , m.transmission_dict['reactance'][(stf, sin,
sout, tra, com)]: The parameter 𝑋𝑦𝑎𝑓 represents the reactance of a transmission 𝑓 that transfers
a commodity 𝑐 through an arc 𝑎 in support timeframe 𝑦. Here an arc 𝑎 defines the connection line from
an origin site 𝑣out to a destination site 𝑣in. Transmission reactance is used to calculate the power flow
of DCPF transmission lines. This parameter is required to define a transmission line with the DCPF
model and should be given in per unit system. The related section for this parameter in the spreadsheet
corresponding to the support timeframe can be found under the “Transmission” sheet. Here each row
represents another combination of transmission 𝑓 and arc 𝑎. The column with the header label “reac-
tance” represents the parameters 𝑋𝑦𝑎𝑓 of the corresponding transmission tuples. If the parameter is left
empty in the spreadsheet, the transmission line will be modelled with transport model as default.

Voltage Angle Difference Limit, 𝑑𝑙𝑦𝑎𝑓 , m.transmission_dict['difflimit'][(stf,
sin, sout, tra, com)]: The parameter 𝑑𝑙𝑦𝑎𝑓 represents the voltage angle difference limit of
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a transmission 𝑓 that transfers a commodity 𝑐 through an arc 𝑎 in support timeframe 𝑦. Here an arc 𝑎
defines the connection line from an origin site 𝑣out to a destination site 𝑣in. The allowed maximum dif-
ference of voltage angles of sites 𝑣out and 𝑣in is limited with this parameter. This parameter is expected
in degrees and a value between 0 and 91 is allowed. This parameter is required to define a transmission
line with the DCPF model. The related section for this parameter in the spreadsheet corresponding to
the support timeframe can be found under the “Transmission” sheet. Here each row represents another
combination of transmission 𝑓 and arc 𝑎. The column with the header label “difflimit” represents the
parameters 𝑑𝑙𝑦𝑎𝑓 of the corresponding transmission tuples.

Transmission Base Voltage, 𝑉𝑦𝑎𝑓base, m.transmission_dict['base_voltage'][(stf,
sin, sout, tra, com)]: The parameter 𝑉𝑦𝑎𝑓base represents the base voltage of a transmission
𝑓 that transfers a commodity 𝑐 through an arc 𝑎 in support timeframe 𝑦. Here an arc 𝑎 defines the
connection line from an origin site 𝑣out to a destination site 𝑣in. This parameter is used to calculate the
power flow of DCPF transmission lines. This parameter is expected in kV and a value greater than 0 is
allowed. This parameter is required to define a transmission line with the DCPF model. The related sec-
tion for this parameter in the spreadsheet corresponding to the support timeframe can be found under the
“Transmission” sheet. Here each row represents another combination of transmission 𝑓 and arc 𝑎. The
column with the header label “base_voltage” represents the parameters 𝑉𝑦𝑎𝑓base of the corresponding
transmission tuples.

Demand Side Management Technical Parameters

DSM Efficiency, 𝑒𝑦𝑣𝑐, m.dsm_dict['eff'][(stf, sit, com)]: The parameter 𝑒𝑦𝑣𝑐 repre-
sents the efficiency of the DSM process, i.e., the fraction of DSM upshift that is benefiting the system
via the corresponding DSM downshifts of demand commodity 𝑐 in site 𝑣 and support timeframe 𝑦. The
parameter is given as a fraction with “1” meaning a perfect recovery of the DSM upshift. The related
section for this parameter in the spreadsheet corresponding to the support timeframe can be found under
the “DSM” sheet. Here each row represents another DSM potential for demand commodity 𝑐 in site 𝑣.
The column with the header label “eff” represents the parameters 𝑒𝑦𝑣𝑐 of the corresponding DSM tuples.

DSM Delay Time, 𝑦𝑦𝑣𝑐, m.dsm_dict['delay'][(stf, sit, com)]: The delay time 𝑦𝑦𝑣𝑐
restricts how long the time difference between an upshift and its corresponding downshifts may be for
demand commodity 𝑐 in site 𝑣 and support timeframe 𝑦. The parameter is given in h. The related section
for this parameter in the spreadsheet corresponding to the support timeframe can be found under the
“DSM” sheet. Here each row represents another DSM potential for demand commodity 𝑐 in site 𝑣. The
column with the header label “delay” represents the parameters 𝑦𝑦𝑣𝑐 of the corresponding DSM tuples.

DSM Recovery Time, 𝑜𝑦𝑣𝑐, m.dsm_dict['recov'][(stf, sit, com)]: The recovery time
𝑜𝑦𝑣𝑐 prevents the DSM system to continuously shift demand. During the recovery time, all upshifts of
demand commodity 𝑐 in site 𝑣 and support timeframe 𝑦 may not exceed the product of the delay time
and the maximal upshift capacity. The parameter is given in h. The related section for this parameter in
the spreadsheet corresponding to the support timeframe can be found under the “DSM” sheet. Here each
row represents another DSM potential for demand commodity 𝑐 in site 𝑣. The column with the header
label “recov” represents the parameters 𝑜𝑦𝑣𝑐 of the corresponding DSM tuples. If no limitation via this
parameter is desired it has to be set to values lower than the delay time 𝑦𝑦𝑣𝑐.

DSM Maximal Upshift Per Hour, 𝐾up
𝑦𝑣𝑐, MW, m.dsm_dict['cap-max-up'][(stf, sit,

com)]: The DSM upshift capacity𝐾up
𝑦𝑣𝑐 limits the total upshift per hour for a DSM potential of demand

commodity 𝑐 in site 𝑣 and support timeframe 𝑦. The parameter is given in MW. The related section for
this parameter in the spreadsheet corresponding to the support timeframe can be found under the “DSM”
sheet. Here each row represents another DSM potential for demand commodity 𝑐 in site 𝑣. The column
with the header label “cap-max-up” represents the parameters 𝐾up

𝑦𝑣𝑐 of the corresponding DSM tuples.
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DSM Maximal Downshift Per Hour, 𝐾
down
𝑦𝑣𝑐 , MW, m.dsm_dict['cap-max-do'][(stf,

sit, com)]: The DSM downshift capacity 𝐾
up
𝑦𝑣𝑐 limits the total downshift per hour for a DSM

potential of demand commodity 𝑐 in site 𝑣 and support timeframe 𝑦. The parameter is given in MW.
The related section for this parameter in the spreadsheet corresponding to the support timeframe can be
found under the “DSM” sheet. Here each row represents another DSM potential for demand commodity
𝑐 in site 𝑣. The column with the header label “cap-max-do” represents the parameters 𝐾down

𝑦𝑣𝑐 of the
corresponding DSM tuples.

Economic Parameters

Table 6: Table: Economic Model Parameters

Parameter Unit Description
𝑗 _ Global Discount rate
𝐷𝑦 _ Factor for any payment made in modeled year y
𝐼𝑦 _ Factor for any investment made in modeled year y
𝐿cost C Maximum total system costs (if CO2 is minimized)
Commodity Economic Parameters
𝑘fuel
𝑦𝑣𝑐 C/MWh Stock Commodity Fuel Costs
𝑘env
𝑦𝑣𝑐 C/MWh Environmental Commodity Costs
𝑘bs
𝑦𝑣𝑐𝑡 C/MWh Buy/Sell Commodity Buy/Sell Costs
𝑘bs
𝑦𝑣𝑐 _ Multiplier for Buy/Sell Commodity Buy/Sell Costs

Process Economic Parameters
𝑖𝑦𝑣𝑝 _ Weighted Average Cost of Capital for Process
𝑧𝑦𝑣𝑝 _ Process Depreciation Period
𝑘inv
𝑦𝑣𝑝 C/MW Process Capacity Investment Costs
𝑘fix
𝑦𝑣𝑝 C/(MW a) Annual Process Capacity Fixed Costs
𝑘var
𝑦𝑣𝑝 C/MWh Process Throughput Variable Costs
𝑃 start
𝑦𝑣𝑝 C/MW Process Start-up Cost

Storage Economic Parameters
𝑖𝑦𝑣𝑠 _ Weighted Average Cost of Capital for Storage
𝑧𝑦𝑣𝑠 _ Storage Depreciation Period
𝑘

p,inv
𝑦𝑣𝑠 C/MW Storage Power Investment Costs
𝑘

p,fix
𝑦𝑣𝑠 C/(MW a) Annual Storage Power Fixed Costs
𝑘

p,var
𝑦𝑣𝑠 C/MWh Storage Power Variable Costs
𝑘c,inv
𝑦𝑣𝑠 C/MWh Storage Size Investment Costs
𝑘c,fix
𝑦𝑣𝑠 C/(MWh a) Annual Storage Size Fixed Costs
𝑘c,var
𝑦𝑣𝑠 C/MWh Storage Usage Variable Costs

Transmission Economic Parameters
𝑖𝑦𝑣𝑓 _ Weighted Average Cost of Capital for Transmission
𝑧𝑦𝑎𝑓 _ Tranmission Depreciation Period
𝑘inv
𝑦𝑎𝑓 C/MW Transmission Capacity Investment Costs
𝑘fix
𝑦𝑎𝑓 C/(MW a) Annual Transmission Capacity Fixed Costs
𝑘var
𝑦𝑎𝑓 C/MWh Tranmission Usage Variable Costs

Discount rate, 𝑗, m.global_prop.xs('Discount rate', level=1).loc[m.
global_prop.index.min()[0]]['value']: The discount rate 𝑗 is used to calculate
the present value of future costs. It is set in the worksheet “Global” in the input file of the first support
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timeframe.

Factor for future payments, 𝐷𝑦: The parameter 𝐷𝑦 is a multiplier that has to be factored into all cost
terms apart from the invest costs in intertemporal planning based on support timeframes. All other cost
terms for the support timeframe 𝑦 are muliplied directly with this factor to find the present value of the
sum of costs in support timeframe 𝑦 and all non-modeled time frames until the next modeled time frame
𝑦+1, which are identical to the support timeframe with the modeling approach taken:

𝐷𝑦 = (1 + 𝑗)1−(𝑦−𝑦min) · 1 − (1 + 𝑗)−(𝑦+1−𝑦+1)

𝑗

In script modelhelper.py the factor 𝐷𝑦 is implemented as the product of the functions:

def discount_factor(stf, m):
"""Discount for any payment made in the year stf
"""
discount = (m.global_prop.xs('Discount rate', level=1)

.loc[m.global_prop.index.min()[0]]['value'])

return (1 + discount) ** (1 - (stf - m.global_prop.index.min()[0]))

and

def effective_distance(dist, m):
"""Factor for variable, fuel, purchase, sell, and fix costs.
Calculated by repetition of modeled stfs and discount utility.
"""
discount = (m.global_prop.xs('Discount rate', level=1)

.loc[m.global_prop.index.min()[0]]['value'])

if discount == 0:
return dist

else:
return (1 - (1 + discount) ** (-dist)) / discount

Factor for investment made in support timeframe y, 𝐼𝑦: The parameter 𝐼𝑦 is a multiplier that has
to be factored into the invest costs in intertemporal planning based on support timeframes. The book
value of the total invest costs per capacity in support timeframe 𝑦 is muliplied with this factor to find the
present value of the sum of costs of all annual payments made for this investment within the modeling
horizon. The calculation of this parameter requires several case distinctions and is given by:

• 𝑖 ̸= 0, 𝑗 ̸= 0:

𝐼𝑦 = (1 + 𝑗)1−(𝑦−𝑦min) · 𝑖
𝑗
·
(︂

1 + 𝑖

1 + 𝑗

)︂𝑛

· (1 + 𝑗)𝑛 − (1 + 𝑗)𝑛−𝑘

(1 + 𝑖)𝑛 − 1

• 𝑖 = 0, 𝑗 = 0:

𝐼𝑦 =
𝑘

𝑛

• 𝑖 ̸= 0, 𝑗 = 0:

𝐼𝑦 = 𝑘 · (1 + 𝑖)𝑛 · 𝑖
(1 + 𝑖)𝑛 − 1

• 𝑖 = 0, 𝑗 ̸= 0:

𝐼𝑦 =
1

𝑛
· (1 + 𝑗)−𝑚 · (1 + 𝑗)𝑘 − 1

(1 + 𝑗)𝑘 · 𝑗
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where 𝑘 is the number of annualized payments that have to be made within the modeling horizon, 𝑛 the
depreciation period and 𝑖 the weighted average cost of capital. Note that the parameters 𝑖 and 𝑛 take
different values for different unit tuples.

In script modelhelper.py the factor 𝐼𝑦 is implemented with the function:

def invcost_factor(dep_prd, interest, discount=None, year_built=None,
stf_min=None):

"""Investment cost factor formula.
Evaluates the factor multiplied to the invest costs
for depreciation duration and interest rate.
Args:

dep_prd: depreciation period (years)
interest: interest rate (e.g. 0.06 means 6 %)
year_built: year utility is built
discount: discount rate for intertmeporal planning

"""
# invcost factor for non intertemporal planning
if discount is None:

if interest == 0:
return 1 / dep_prd

else:
return ((1 + interest) ** dep_prd * interest /

((1 + interest) ** dep_prd - 1))
# invcost factor for intertemporal planning
elif discount == 0:

if interest == 0:
return 1

else:
return (dep_prd * ((1 + interest) ** dep_prd * interest) /

((1 + interest) ** dep_prd - 1))
else:

if interest == 0:
return ((1 + discount) ** (1 - (year_built-stf_min)) *

((1 + discount) ** dep_prd - 1) /
(dep_prd * discount * (1 + discount) ** dep_prd))

else:
return ((1 + discount) ** (1 - (year_built-stf_min)) *

(interest * (1 + interest) ** dep_prd *
((1 + discount) ** dep_prd - 1)) /
(discount * (1 + discount) ** dep_prd *
((1+interest) ** dep_prd - 1)))

In this formulation also payments after the modeled time horizon are being made. To fix this the overpay
is subtracted via:

def overpay_factor(dep_prd, interest, discount, year_built, stf_min, stf_
→˓end):

"""Overpay value factor formula.
Evaluates the factor multiplied to the invest costs
for all annuity payments of a unit after the end of the
optimization period.
Args:

dep_prd: depreciation period (years)
interest: interest rate (e.g. 0.06 means 6 %)
year_built: year utility is built
discount: discount rate for intertemporal planning

(continues on next page)
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(continued from previous page)

k: operational time after simulation horizon
"""

op_time = (year_built + dep_prd) - stf_end - 1

if discount == 0:
if interest == 0:

return op_time / dep_prd
else:

return (op_time * ((1 + interest) ** dep_prd * interest) /
((1 + interest) ** dep_prd - 1))

else:
if interest == 0:

return ((1 + discount) ** (1 - (year_built - stf_min)) *
((1 + discount) ** op_time - 1) /
(dep_prd * discount * (1 + discount) ** dep_prd))

else:
return ((1 + discount) ** (1 - (year_built - stf_min)) *

(interest * (1 + interest) ** dep_prd *
((1 + discount) ** op_time - 1)) /
(discount * (1 + discount) ** dep_prd *
((1 + interest) ** dep_prd - 1)))

In case of negative values this overpay factor is set to zero afterwards.

Maximum total system cost, 𝐿cost, m.global_prop.loc[(min(m.stf), 'Cost
budget'), 'value']: This parameter restricts the total present costs over the entire model-
ing horizon. It is only sensible and active when the objective is a minimization of CO2 emissions.

Commodity Economic Parameters

Stock Commodity Fuel Costs, 𝑘fuel
𝑣𝑐 , m.commodity_dict['price'][c]: The parameter 𝑘fuel

𝑦𝑣𝑐

represents the book cost for purchasing one unit (1 MWh) of a stock commodity 𝑐 (∀𝑐 ∈ 𝐶stock) in
modeled timeframe 𝑦 in a site 𝑣 (∀𝑣 ∈ 𝑉 ). The unit of this parameter is C/MWh. The related section for
this parameter in the spreadsheet belonging the support timeframe 𝑦 can be found in the “Commodity”
sheet. Here each row represents another commodity tuple 𝑐𝑦𝑣𝑞 and the column of stock commodity
tuples (∀𝑞 = ”𝑆𝑡𝑜𝑐𝑘”) in this sheet with the header label “price” represents the corresponding parameter
𝑘fuel
𝑦𝑣𝑐.

Environmental Commodity Costs, 𝑘env
𝑦𝑣𝑐, m.commodity_dict['price'][c]: The parameter

𝑘env
𝑦𝑣𝑐 represents the book cost for producing/emitting one unit (1 t, 1 kg, . . . ) of an environmental

commodity 𝑐 (∀𝑐 ∈ 𝐶env) in support timeframe 𝑦 in a site 𝑣 (∀𝑣 ∈ 𝑉 ). The unit of this parameter is
C/t (i.e. per unit of output). The related section for this parameter in the spreadsheet corresponding to
support timeframe 𝑦 is the “Commodity” sheet. Here, each row represents a commodity tuple 𝑐𝑦𝑣𝑞 and
the fourth column of environmental commodity tuples (∀𝑞 = ”𝐸𝑛𝑣”) in this sheet with the header label
“price” represents the corresponding parameter 𝑘env

𝑦𝑣𝑐.

Buy/Sell Commodity Buy/Sell Costs, 𝑘bs
𝑦𝑣𝑐𝑡, m.buy_sell_price_dict[c[2], ][(c[0],

tm)]: The parameter 𝑘bs
𝑦𝑣𝑐𝑡 represents the purchase/buy cost for purchasing/selling one unit (1 MWh)

of a buy/sell commodity 𝑐 (∀𝑐 ∈ 𝐶buy)/(∀𝑐 ∈ 𝐶sell) in support timeframe 𝑦 in a site 𝑣 (∀𝑣 ∈ 𝑉 ) at
timestep 𝑡 (∀𝑡 ∈ 𝑇𝑚). The unit of this parameter is C/MWh. The related section for this parameter in
the spreadsheet can be found in the “Buy-Sell-Price” sheet. Here each column represents a commodity
tuple and the row values provide the timestep information.
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Multiplyer for Buy/Sell Commodity Buy/Sell Costs, 𝑘bs
𝑦𝑣𝑐, m.commodity_dict['price'][c]:

The parameter 𝑘bs
𝑦𝑣𝑐 is a multiplier for the buy/sell time series. It represents the factor on the purchase/buy

cost for purchasing/selling one unit (1 MWh) of a buy/sell commodity 𝑐 (∀𝑐 ∈ 𝐶buy)/(∀𝑐 ∈ 𝐶sell) in
support timeframe 𝑦 in a site 𝑣 (∀𝑣 ∈ 𝑉 ). This parameter is unitless. The related section for this
parameter in the spreadsheet belonging to support timeframe 𝑦 can be found in the “Commodity” sheet.
Here each row represents another commodity tuple 𝑐𝑦𝑣𝑞 and the column of Buy/Sell commodity tuples
(∀𝑞 = ”𝐵𝑢𝑦/𝑆𝑒𝑙𝑙”) in this sheet with the header label “price” represents the corresponding parameter
𝑘bs
𝑦𝑣𝑐.

Process Economic Parameters

Weighted Average Cost of Capital for Process, 𝑖𝑦𝑣𝑝, : The parameter 𝑖𝑦𝑣𝑝 represents the weighted
average cost of capital for a process technology 𝑝 in support timeframe ;math:y in a site 𝑣. The weighted
average cost of capital gives the interest rate (%) of costs for capital after taxes. The related section
for this parameter in the spreadsheet corresponding to support timeframe 𝑦 can be found under the
“Process” sheet. Here each row represents another process tuple and the column with the header label
“wacc” represents the parameters 𝑖𝑦𝑣𝑝. The parameter is given as a percentage, where “0.07” means 7%

Process Depreciation Period, 𝑧𝑦𝑣𝑝: The parameter 𝑧𝑦𝑣𝑝 represents the depreciation period of a process 𝑝
built in support timeframe 𝑦 in a site 𝑣. The depreciation period gives the economic and technical lifetime
of a process investment. It thus features in the calculation of the invest cost factor and determines the
end of operation of the process. The unit of this parameter is “a”, where “a” represents a year of 8760
hours. The related section for this parameter in the spreadsheet can be found under the “Process” sheet.
Here each row represents another process tuple and the column with the header label “depreciation”
represents the parameters 𝑧𝑦𝑣𝑝.

Process Capacity Investment Costs, 𝑘inv
𝑦𝑣𝑝, m.process_dict['inv-cost'][p]: The parameter

𝑘inv
𝑦𝑣𝑝 represents the book value of the investment cost for adding one unit new capacity of a process

technology 𝑝 in support timeframe 𝑦 in a site 𝑣. The unit of this parameter is C/MW. To get the full
impact of the investment within the modeling horizon this parameter is multiplied with the factor for the
investment made in modeled year y 𝐼𝑦. The process capacity investment cost is to be given as an input by
the user. The related section for the process capacity investment cost in the spreadsheet representing the
support timeframe 𝑦 can be found under the “Process” sheet. Here each row represents another process
𝑝 in a site 𝑣 and the column with the header label “inv-cost” represents the process capacity investment
costs of the corresponding process 𝑝 and site 𝑣 combinations.

Process Capacity Fixed Costs, 𝑘fix
𝑦𝑣𝑝, m.process_dict['fix-cost'][p]: The parameter 𝑘fix

𝑦𝑣𝑝

represents the fix cost per one unit capacity 𝜅𝑦𝑣𝑝 of a process technology 𝑝 in support timeframe 𝑦 in
a site 𝑣, that is charged annually. The unit of this parameter is C/(MW a). The related section for
this parameter in the spreadsheet correesponding to the support timeframe 𝑦 can be found under the
“Process” sheet. Here each row represents another process 𝑝 in a site 𝑣 and the column with the header
label “fix-cost” represents the parameters 𝑘fix

𝑦𝑣𝑝 of the corresponding process 𝑝 and site 𝑣 combinations.

Process Variable Costs, 𝑘var
𝑦𝑣𝑝, m.process_dict['var-cost'][p]: The parameter 𝑘var

𝑦𝑣𝑝 repre-
sents the book value of the variable cost per one unit energy throughput 𝜏𝑦𝑣𝑝𝑡 through a process tech-
nology 𝑝 in a site 𝑣 in support timeframe 𝑦. The unit of this parameter is C/MWh. The related section
for this parameter in the spreadsheet corresponding to the support timeframe 𝑦 can be found under the
“Process” sheet. Here each row represents another process 𝑝 in a site 𝑣 and the column with the header
label “var-cost” represents the parameters 𝑘var

𝑦𝑣𝑝 of the corresponding process 𝑝 and site 𝑣 combinations.

Process Start-up Cost, 𝑃 start
𝑦𝑣𝑝 , m.process_dict['start-cost'][(stf, sit, pro)]: The

parameter 𝑃 start
𝑦𝑣𝑝 represents the cost inquired by the starting of a process 𝑝 at a site 𝑣 in the support

timeframe 𝑦. The unit of this parameter is the currency used in the support timeframe 𝑦. The related
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section for this parameter in the spreadsheet can be found under the “Process” sheet. Here each row
represents another process 𝑝 in a site 𝑣 and the column with the header label “start-cost” represents the
parameters 𝑃 start

𝑦𝑣𝑝 of the corresponding process 𝑝 and site 𝑣 combinations.

Storage Economic Parameters

Weighted Average Cost of Capital for Storage, 𝑖𝑦𝑣𝑠, : The parameter 𝑖𝑦𝑣𝑠 represents the weighted
average cost of capital for a storage technology 𝑠 in a site 𝑣 and support timeframe 𝑦. The weighted
average cost of capital gives the interest rate(%) of costs for capital after taxes. The related section
for this parameter in the spreadsheet corresponding to the support timeframe 𝑦 can be found under the
“Storage” sheet. Here each row represents another storage 𝑠 in a site 𝑣 and the column with the header
label “wacc” represents the parameters 𝑖𝑦𝑣𝑠 of the corresponding storage 𝑠 and site 𝑣 combinations. The
parameter is given as a percentage, where “0.07” means 7%.

Storage Depreciation Period, 𝑧𝑦𝑣𝑠, (a): The parameter 𝑧𝑦𝑣𝑠 represents the depreciation period of a
storage 𝑠 in a site 𝑣 built in support timeframe 𝑦. The depreciation period gives the economic and
technical lifetime of a storage investment. It thus features in the calculation of the invest cost factor and
determines the end of operation of the storage. The unit of this parameter is “a”, where “a” represents
a year of 8760 hours. The related section for this parameter in the spreadsheet corresponding to the
support timeframe 𝑦 can be found under the “Storage” sheet. Here each row represents another storage
𝑠 in a site 𝑣 and the column with the header label “depreciation” represents the parameters 𝑧𝑦𝑣𝑠 of the
corresponding storage 𝑠 and site 𝑣 combinations.

Storage Power Investment Costs, 𝑘p,inv
𝑦𝑣𝑠 , m.storage_dict['inv-cost-p'][s]: The parame-

ter 𝑘p,inv
𝑦𝑣𝑠 represents the book value of the total investment cost for adding one unit new power output

capacity of a storage technology 𝑠 in a site 𝑣 in support timeframe 𝑦. The unit of this parameter is
C/MW. To get the full impact of the investment within the modeling horizon this parameter is multiplied
with the factor for the investment made in modeled year y 𝐼𝑦. The related section for the storage power
output capacity investment cost in the spreadsheet corresponding to the support timeframe 𝑦 can be
found under the “Storage” sheet. Here each row represents another storage 𝑠 in a site 𝑣 and the column
with the header label “inv-cost-p” represents the storage power output capacity investment cost of the
corresponding storage 𝑠 and site 𝑣 combinations.

Annual Storage Power Fixed Costs, 𝑘p,fix
𝑦𝑣𝑠 , m.storage_dict['fix-cost-p'][s]: The param-

eter 𝑘p,fix
𝑦𝑣𝑠 represents the fix cost per one unit power output capacity of a storage technology 𝑠 in a site

𝑣 and support timeframe 𝑦, that is charged annually. The unit of this parameter is C/(MW a). The
related section for this parameter in the spreadsheet corresponding to support timeframe 𝑦 can be found
under the “Storage” sheet. Here each row represents another storage 𝑠 in a site 𝑣 and the column with
the header label “fix-cost-p” represents the parameters 𝑘p,fix

𝑦𝑣𝑠 of the corresponding storage 𝑠 and site 𝑣
combinations.

Storage Power Variable Costs, 𝑘p,var
𝑦𝑣𝑠 , m.storage_dict['var-cost-p'][s]: The parameter

𝑘
p,var
𝑦𝑣𝑠 represents the variable cost per unit energy, that is stored in or retrieved from a storage technology
𝑠 in a site 𝑣 in support timeframe 𝑦. The unit of this parameter is C/MWh. The related section for this
parameter in the spreadsheet corresponding to support timeframe 𝑦 can be found under the “Storage”
sheet. Here each row represents another storage 𝑠 in a site 𝑣 and the column with the header label
“var-cost-p” represents the parameters 𝑘p,var

𝑦𝑣𝑠 of the corresponding storage 𝑠 and site 𝑣 combinations.

Storage Size Investment Costs, 𝑘c,inv
𝑦𝑣𝑠 , m.storage_dict['inv-cost-c'][s]: The parameter

𝑘c,inv
𝑦𝑣𝑠 represents the book value of the total investment cost for adding one unit new storage capacity

to a storage technology 𝑠 in a site 𝑣 in support timeframe 𝑦. The unit of this parameter is C/MWh.
To get the full impact of the investment within the modeling horizon this parameter is multiplied with
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the factor for the investment made in modeled year y 𝐼𝑦. The related section for the storage content
capacity investment cost in the spreadsheet corresponding to support timeframe 𝑦 can be found under
the “Storage” sheet. Here each row represents another storage 𝑠 in a site 𝑣 and the column with the
header label “inv-cost-c” represents the storage content capacity investment cost of the corresponding
storage 𝑠 and site 𝑣 combinations.

Annual Storage Size Fixed Costs, 𝑘c,fix
𝑦𝑣𝑠 , m.storage_dict['fix-cost-c'][s]: The parameter

𝑘c,fix
𝑦𝑣𝑠 represents the fix cost per year per one unit storage content capacity of a storage technology 𝑠 in

a site 𝑣 in support timeframe 𝑦. The unit of this parameter is C/(MWh a). The related section for this
parameter in the spreadsheet corresponding to support timeframe 𝑦 can be found under the “Storage”
sheet. Here each row represents another storage 𝑠 in a site 𝑣 and the column with the header label
“fix-cost-c” represents the parameters 𝑘c,fix

𝑣𝑠 of the corresponding storage 𝑠 and site 𝑣 combinations.

Storage Usage Variable Costs, 𝑘c,var
𝑦𝑣𝑠 , m.storage_dict['var-cost-c'][s]: The parameter

𝑘
p,var
𝑦𝑣𝑠 represents the variable cost per unit energy, that is conserved in a storage technology 𝑠 in a site 𝑣

in support timeframe 𝑦. The unit of this parameter is C/MWh. The related section for this parameter in
the spreadsheet corresponding to support timeframe 𝑦 can be found under the “Storage” sheet. Here each
row represents another storage 𝑠 in a site 𝑣 and the column with the header label “var-cost-c” represents
the parameters 𝑘c,var

𝑦𝑣𝑠 of the corresponding storage 𝑠 and site 𝑣 combinations. The value of this parameter
is usually set to zero, but the parameter can be taken advantage of if the storage has a short term usage
or has an increased devaluation due to usage, compared to amount of energy stored.

Transmission Economic Parameters

Weighted Average Cost of Capital for Transmission, 𝑖𝑦𝑣𝑓 , : The parameter 𝑖𝑦𝑣𝑓 represents the
weighted average cost of capital for a transmission 𝑓 transferring commodities through an arc 𝑎 built in
support timeframe 𝑦. The weighted average cost of capital gives the interest rate(%) of costs for capital
after taxes. The related section for this parameter in the spreadsheet corresponding to support time-
frame 𝑦 can be found under the “Transmission” sheet. Here each row represents another transmission 𝑓
transferring commodities through an arc 𝑎 and the column with the header label “wacc” represents the
parameters 𝑖𝑦𝑣𝑓 of the corresponding transmission 𝑓 and arc 𝑎 combinations. The parameter is given as
a percentage, where “0.07” means 7%.

Transmission Depreciation Period, 𝑧𝑦𝑎𝑓 , (a): The parameter 𝑧𝑦𝑎𝑓 represents the depreciation period
of a transmission 𝑓 transferring commodities through an arc 𝑎 built in support timeframe 𝑦. The depre-
ciation period of gives the economic and technical lifetime of a transmission investment. It thus features
in the calculation of the invest cost factor and determines the end of operation of the transmission. The
unit of this parameter is “a”, where “a” represents a year of 8760 hours. The related section for this
parameter in the spreadsheet corresponding to support timeframe 𝑦 can be found under the “Transmis-
sion” sheet. Here each row represents another transmission 𝑓 transferring commodities through an arc 𝑎
and the column with the header label “depreciation” represents the parameters 𝑧𝑦𝑎𝑓 of the corresponding
transmission 𝑓 and arc 𝑎 combinations.

Transmission Capacity Investment Costs, 𝑘inv
𝑦𝑎𝑓 , m.transmission_dict['inv-cost'][t]:

The parameter 𝑘inv
𝑦𝑎𝑓 represents the book value of the investment cost for adding one unit new transmis-

sion capacity to a transmission 𝑓 transferring commodities through an arc 𝑎 in support timeframe 𝑦. To
get the full impact of the investment within the modeling horizon this parameter is multiplied with the
factor for the investment made in modeled year y 𝐼𝑦. The unit of this parameter is C/MW. The related
section for the transmission capacity investment cost in the spreadsheet corresponding to support time-
frame 𝑦 can be found under the “Transmission” sheet. Here each row represents another transmission
𝑓 transferring commodities through an arc 𝑎 and the column with the header label “inv-cost” represents
the transmission capacity investment cost of the corresponding transmission 𝑓 and arc 𝑎 combinations.
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Annual Transmission Capacity Fixed Costs, 𝑘fix
𝑦𝑎𝑓 , m.transmission_dict['fix-cost'][t]:

The parameter 𝑘fix
𝑦𝑎𝑓 represents the annual fix cost per one unit capacity of a transmission 𝑓 transferring

commodities through an arc 𝑎. The unit of this parameter is C/(MW a). The related section for this
parameter in the spreadsheet corresponding to support timeframe 𝑦 can be found under the “Transmis-
sion” sheet. Here each row represents another transmission 𝑓 transferring commodities through an arc
𝑎 and the column with the header label “fix-cost” represents the parameters 𝑘fix

𝑦𝑎𝑓 of the corresponding
transmission 𝑓 and arc 𝑎 combinations.

Transmission Usage Variable Costs, 𝑘var
𝑦𝑎𝑓 , m.transmission_dict['var-cost'][t]: The

parameter 𝑘var
𝑦𝑎𝑓 represents the variable cost per unit energy, that is transferred with a transmission 𝑓

through an arc 𝑎. The unit of this parameter is C/ MWh. The related section for this parameter in the
spreadsheet corresponding to support timeframe 𝑦 can be found under the “Transmission” sheet. Here
each row represents another transmission 𝑓 transferring commodities through an arc 𝑎 and the column
with the header label “var-cost” represents the parameters 𝑘var

𝑎𝑓 of the corresponding transmission 𝑓 and
arc 𝑎 combinations.

Equations

Objective function

There are two possible choices of objective function for urbs problems, either the costs (default option)
or the total CO2-emissions can be minimized.

If the total CO2-emissions are minimized the objective function takes the form:

𝑤
∑︁
𝑡∈𝑇m

∑︁
𝑣∈𝑉

−CB(𝑣, 𝐶𝑂2, 𝑡)

In script model.py the global CO2 emissions are defined and calculated by the following code frag-
ment:

def co2_rule(m):
co2_output_sum = 0
for stf in m.stf:

for tm in m.tm:
for sit in m.sit:

# minus because negative commodity_balance represents
# creation of that commodity.
if m.mode['int']:

co2_output_sum += (- commodity_balance(m, tm, stf, sit,
→˓ 'CO2') *

m.typeperiod['weight_typeperiod
→˓'][(stf, tm)] *

m.weight * stf_dist(stf, m))
else:

co2_output_sum += (- commodity_balance(m, tm, stf, sit,
→˓ 'CO2') *

m.weight)

return (co2_output_sum)

In the default case the total system costs are minimized. These variable total system costs 𝜁 are calculated
by the cost function. The cost function is the objective function of the optimization model. Minimizing
the value of the variable total system cost would give the most reasonable solution for the modelled

96 Chapter 1. Contents



urbs Documentation, Release 1.0.0

energy system. The formula of the cost function expressed in mathematical notation is as following:

)The calculation of the variable total system cost is given in model.py by the following code fragment.

def cost_rule(m):
return pyomo.summation(m.costs)

The variable total system cost 𝜁 is basically calculated by the summation of every type of total costs. As
previously mentioned in section Cost Types, these cost types are : Investment, Fix, Variable,
Fuel, Revenue, Purchase, Start-up and Environmental.

In script model.py the individual cost functions are calculated by the following code fragment:

def def_costs_rule(m, cost_type):
#Calculate total costs by cost type.
#Sums up process activity and capacity expansions
#and sums them in the cost types that are specified in the set
#m.cost_type. To change or add cost types, add/change entries
#there and modify the if/elif cases in this function accordingly.
#Cost types are
# - Investment costs for process power, storage power and
# storage capacity. They are multiplied by the investment
# factors. Rest values of units are subtracted.
# - Fixed costs for process power, storage power and storage
# capacity.
# - Variables costs for usage of processes, storage and transmission.
# - Fuel costs for stock commodity purchase.

if cost_type == 'Invest':
cost = \

sum(m.cap_pro_new[p] *
m.process_dict['inv-cost'][p] *
m.process_dict['invcost-factor'][p]
for p in m.pro_tuples)

if m.mode['int']:
cost -= \

sum(m.cap_pro_new[p] *
m.process_dict['inv-cost'][p] *
m.process_dict['overpay-factor'][p]
for p in m.pro_tuples)

if m.mode['tra']:
# transmission_cost is defined in transmission.py
cost += transmission_cost(m, cost_type)

if m.mode['sto']:
# storage_cost is defined in storage.py
cost += storage_cost(m, cost_type)

return m.costs[cost_type] == cost

elif cost_type == 'Fixed':
cost = \

sum(m.cap_pro[p] * m.process_dict['fix-cost'][p] *
m.process_dict['cost_factor'][p]
for p in m.pro_tuples)

if m.mode['tra']:
cost += transmission_cost(m, cost_type)

(continues on next page)
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if m.mode['sto']:
cost += storage_cost(m, cost_type)

return m.costs[cost_type] == cost

elif cost_type == 'Variable':
cost = \

sum(m.tau_pro[(tm,) + p] * m.weight * m.typeperiod['weight_
→˓typeperiod'][(m.stf_list[0],tm)] *

m.process_dict['var-cost'][p] *
m.process_dict['cost_factor'][p]
for tm in m.tm
for p in m.pro_tuples)

if m.mode['tra']:
cost += transmission_cost(m, cost_type)

if m.mode['sto']:
cost += storage_cost(m, cost_type)

return m.costs[cost_type] == cost

elif cost_type == 'Fuel':
return m.costs[cost_type] == sum(

m.e_co_stock[(tm,) + c] * m.weight * m.typeperiod['weight_
→˓typeperiod'][(m.stf_list[0],tm)] *

m.commodity_dict['price'][c] *
m.commodity_dict['cost_factor'][c]
for tm in m.tm for c in m.com_tuples
if c[2] in m.com_stock)

elif cost_type == 'Start-up':
if m.mode['onoff']:

cost = sum(m.start_up[(tm,) + p] * m.weight *
m.start_price_dict[p] * m.cap_pro[p] *
m.process_dict['cost_factor'][p]
for tm in m.tm
for p in m.pro_start_up_tuples)

return m.costs[cost_type] == cost
else:

return m.costs[cost_type] == 0

elif cost_type == 'Environmental':
return m.costs[cost_type] == sum(

- commodity_balance(m, tm, stf, sit, com) * m.weight * m.
→˓typeperiod['weight_typeperiod'][(m.stf_list[0],tm)] *

m.commodity_dict['price'][(stf, sit, com, com_type)] *
m.commodity_dict['cost_factor'][(stf, sit, com, com_type)]
for tm in m.tm
for stf, sit, com, com_type in m.com_tuples
if com in m.com_env)

# Revenue and Purchase costs defined in BuySellPrice.py
elif cost_type == 'Revenue':

return m.costs[cost_type] == revenue_costs(m)

elif cost_type == 'Purchase':
return m.costs[cost_type] == purchase_costs(m)

(continues on next page)
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else:
raise NotImplementedError("Unknown cost type.")

Constraints

Commodity Constraints

Commodity Balance The function commodity balance calculates the in- and outflows into all processes,
storages and transmission of a commodity 𝑐 in a site 𝑣 in support timeframe 𝑦 at a timestep 𝑡. The value
of the function CB being greater than zero CB > 0 means that the presence of the commodity 𝑐 in the
site 𝑣 in support timeframe 𝑦 at the timestep 𝑡 is getting by the interaction with the technologies given
above. Correspondingly, the value of the function being less than zero means that the presence of the
commodity in the site at the timestep is getting more than before by the technologies given above. The
mathematical explanation of this rule for general problems is explained in Energy Storage.

In script modelhelper.py the value of the commodity balance function CB(𝑦, 𝑣, 𝑐, 𝑡) is calculated
by the following code fragment:

def commodity_balance(m, tm, stf, sit, com):
"""Calculate commodity balance at given timestep.
For a given commodity co and timestep tm, calculate the balance of
consumed (to process/storage/transmission, counts positive) and

→˓provided
(from process/storage/transmission, counts negative) commodity flow.

→˓Used
as helper function in create_model for constraints on demand and stock
commodities.
Args:

m: the model object
tm: the timestep
site: the site
com: the commodity

Returns
balance: net value of consumed (positive) or provided (negative)

→˓power
"""
balance = (sum(m.e_pro_in[(tm, stframe, site, process, com)]

# usage as input for process increases balance
for stframe, site, process in m.pro_tuples
if site == sit and stframe == stf and
(stframe, process, com) in m.r_in_dict) -

sum(m.e_pro_out[(tm, stframe, site, process, com)]
# output from processes decreases balance
for stframe, site, process in m.pro_tuples
if site == sit and stframe == stf and
(stframe, process, com) in m.r_out_dict))

if m.mode['tra']:
balance += transmission_balance(m, tm, stf, sit, com)

if m.mode['sto']:
balance += storage_balance(m, tm, stf, sit, com)

return balance
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where the two functions introducing the partly balances for transmissions and storages, respectively, are
given by:

def transmission_balance(m, tm, stf, sit, com):
"""called in commodity balance
For a given commodity co and timestep tm, calculate the balance of
import and export """

return (sum(m.e_tra_in[(tm, stframe, site_in, site_out,
transmission, com)]

# exports increase balance
for stframe, site_in, site_out, transmission, commodity
in m.tra_tuples
if (site_in == sit and stframe == stf and

commodity == com)) -
sum(m.e_tra_out[(tm, stframe, site_in, site_out,

transmission, com)]
# imports decrease balance
for stframe, site_in, site_out, transmission, commodity
in m.tra_tuples
if (site_out == sit and stframe == stf and

commodity == com)))

def storage_balance(m, tm, stf, sit, com):
"""callesd in commodity balance
For a given commodity co and timestep tm, calculate the balance of
storage input and output """

return sum(m.e_sto_in[(tm, stframe, site, storage, com)] -
m.e_sto_out[(tm, stframe, site, storage, com)]
# usage as input for storage increases consumption
# output from storage decreases consumption
for stframe, site, storage, commodity in m.sto_tuples
if site == sit and stframe == stf and commodity == com)

Vertex Rule: The vertex rule is the main constraint that has to be satisfied for every commodity. It
represents a version of “Kirchhoff’s current law” or local energy conservation. This constraint is defined
differently for each commodity type. The inequality requires, that any imbalance (CB>0, CB<0) of a
commodity 𝑐 in a site 𝑣 and support timeframe 𝑦 at a timestep 𝑡 to be balanced by a corresponding source
term or demand. The rule is not defined for environmental or SupIm commodities. The mathematical
explanation of this rule is given in Minimal optimization model.

In script model.py the constraint vertex rule is defined and calculated by the following code fragments:

m.res_vertex = pyomo.Constraint(
m.tm, m.com_tuples,
rule=res_vertex_rule,
doc='storage + transmission + process + source + buy - sell == demand')

def res_vertex_rule(m, tm, stf, sit, com, com_type):
# environmental or supim commodities don't have this constraint (yet)
if com in m.com_env:

return pyomo.Constraint.Skip
if com in m.com_supim:

return pyomo.Constraint.Skip

(continues on next page)
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# helper function commodity_balance calculates balance from input to
# and output from processes, storage and transmission.
# if power_surplus > 0: production/storage/imports create net positive
# amount of commodity com
# if power_surplus < 0: production/storage/exports consume a net
# amount of the commodity com
power_surplus = - commodity_balance(m, tm, stf, sit, com)

# if com is a stock commodity, the commodity source term e_co_stock
# can supply a possibly negative power_surplus
if com in m.com_stock:

power_surplus += m.e_co_stock[tm, stf, sit, com, com_type]

# if Buy and sell prices are enabled
if m.mode['bsp']:

power_surplus += bsp_surplus(m, tm, stf, sit, com, com_type)

# if com is a demand commodity, the power_surplus is reduced by the
# demand value; no scaling by m.dt or m.weight is needed here, as this
# constraint is about power (MW), not energy (MWh)
if com in m.com_demand:

try:
power_surplus -= m.demand_dict[(sit, com)][(stf, tm)]

except KeyError:
pass

if m.mode['dsm']:
power_surplus += dsm_surplus(m, tm, stf, sit, com)

return power_surplus == 0

where the two functions introducing the effects of Buy/Sell or DSM events, respectively, are given by:

def bsp_surplus(m, tm, stf, sit, com, com_type):

power_surplus = 0

# if com is a sell commodity, the commodity source term e_co_sell
# can supply a possibly positive power_surplus
if com in m.com_sell:

power_surplus -= m.e_co_sell[tm, stf, sit, com, com_type]

# if com is a buy commodity, the commodity source term e_co_buy
# can supply a possibly negative power_surplus
if com in m.com_buy:

power_surplus += m.e_co_buy[tm, stf, sit, com, com_type]

return power_surplus

def dsm_surplus(m, tm, stf, sit, com):
""" called in vertex rule

calculate dsm surplus"""
if (stf, sit, com) in m.dsm_site_tuples:

return (- m.dsm_up[tm, stf, sit, com] +
sum(m.dsm_down[t, tm, stf, sit, com]

(continues on next page)
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for t in dsm_time_tuples(
tm, m.timesteps[1:],
max(int(1 / m.dt *

m.dsm_dict['delay'][(stf, sit, com)]), 1))))
else:

return 0

Stock Per Step Rule: The constraint stock per step rule applies only for commodities of type “Stock”
(𝑐 ∈ 𝐶st). This constraint limits the amount of stock commodity 𝑐 ∈ 𝐶st, that can be used by the energy
system in the site 𝑣 in support timeframe 𝑦 at the timestep 𝑡. This amount is limited by the product of
the parameter maximum stock supply limit per hour 𝑙𝑦𝑣𝑐 and the timestep length ∆𝑡. The mathematical
explanation of this rule is given in Minimal optimization model.

In script model.py the constraint stock per step rule is defined and calculated by the following code
fragment:

m.res_stock_step = pyomo.Constraint(
m.tm, m.com_tuples,
rule=res_stock_step_rule,
doc='stock commodity input per step <= commodity.maxperstep')

def res_stock_step_rule(m, tm, stf, sit, com, com_type):
if com not in m.com_stock:

return pyomo.Constraint.Skip
else:

return (m.e_co_stock[tm, stf, sit, com, com_type] <=
m.dt * m.commodity_dict['maxperhour']
[(stf, sit, com, com_type)])

Total Stock Rule: The constraint total stock rule applies only for commodities of type “Stock” (𝑐 ∈ 𝐶st).
This constraint limits the amount of stock commodity 𝑐 ∈ 𝐶st, that can be used annually by the energy
system in the site 𝑣 and support timeframe 𝑦. This amount is limited by the parameter maximum annual
stock supply limit per vertex 𝐿𝑦𝑣𝑐. The annual usage of stock commodity is calculated by the sum of
the products of the parameter weight 𝑤 and the parameter stock commodity source term 𝜌𝑦𝑣𝑐𝑡, summed
over all timesteps 𝑡 ∈ 𝑇𝑚. The mathematical explanation of this rule is given in Minimal optimization
model.

In script model.py the constraint total stock rule is defined and calculated by the following code
fragment:

m.res_stock_total = pyomo.Constraint(
m.com_tuples,
rule=res_stock_total_rule,
doc='total stock commodity input <= commodity.max')

def res_stock_total_rule(m, stf, sit, com, com_type):
if com not in m.com_stock:

return pyomo.Constraint.Skip
else:

# calculate total consumption of commodity com
total_consumption = 0
for tm in m.tm:

total_consumption += (
m.e_co_stock[tm, stf, sit, com, com_type] * m.typeperiod[

→˓'weight_typeperiod'][(stf,tm)]) (continues on next page)
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total_consumption *= m.weight
return (total_consumption <=

m.commodity_dict['max'][(stf, sit, com, com_type)])

Sell Per Step Rule: The constraint sell per step rule applies only for commodities of type “Sell” (
𝑐 ∈ 𝐶sell). This constraint limits the amount of sell commodity 𝑐 ∈ 𝐶sell, that can be sold by the energy
system in the site 𝑣 in support timeframe 𝑦 at the timestep 𝑡. The limit is defined by the parameter max-
imum sell supply limit per hour 𝑔𝑦𝑣𝑐. To satisfy this constraint, the value of the variable sell commodity
source term 𝜚𝑦𝑣𝑐𝑡 must be less than or equal to the value of the parameter maximum sell supply limit
per hour 𝑔𝑣𝑐 multiplied with the length of the time steps ∆𝑡. The mathematical explanation of this rule
is given in Trading with an external market.

In script BuySellPrice.py the constraint sell per step rule is defined and calculated by the following
code fragment:

m.res_sell_step = pyomo.Constraint(
m.tm, m.com_tuples,
rule=res_sell_step_rule,
doc='sell commodity output per step <= commodity.maxperstep')

def res_sell_step_rule(m, tm, stf, sit, com, com_type):
if com not in m.com_sell:

return pyomo.Constraint.Skip
else:

return (m.e_co_sell[tm, stf, sit, com, com_type] <=
m.dt * m.commodity_dict['maxperhour']
[(stf, sit, com, com_type)])

Total Sell Rule: The constraint total sell rule applies only for commodities of type “Sell” ( 𝑐 ∈ 𝐶sell).
This constraint limits the amount of sell commodity 𝑐 ∈ 𝐶sell, that can be sold annually by the energy
system in the site 𝑣 and support timeframe 𝑦. The limit is defined by the parameter maximum annual
sell supply limit per vertex 𝐺𝑦𝑣𝑐. The annual usage of sell commodity is calculated by the sum of the
products of the parameter weight 𝑤 and the parameter sell commodity source term 𝜚𝑦𝑣𝑐𝑡, summed over
all timesteps 𝑡 ∈ 𝑇𝑚. The mathematical explanation of this rule is given in Trading with an external
market.

In script BuySellPrice.py the constraint total sell rule is defined and calculated by the following
code fragment:

m.res_sell_total = pyomo.Constraint(
m.com_tuples,
rule=res_sell_total_rule,
doc='total sell commodity output <= commodity.max')

def res_sell_total_rule(m, stf, sit, com, com_type):
if com not in m.com_sell:

return pyomo.Constraint.Skip
else:

# calculate total sale of commodity com
total_consumption = 0
for tm in m.tm:

total_consumption += (
m.e_co_sell[tm, stf, sit, com, com_type] * m.typeperiod[

→˓'weight_typeperiod'][(stf,tm)])
(continues on next page)
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total_consumption *= m.weight
return (total_consumption <=

m.commodity_dict['max'][(stf, sit, com, com_type)])

Buy Per Step Rule: The constraint buy per step rule applies only for commodities of type “Buy” (
𝑐 ∈ 𝐶buy). This constraint limits the amount of buy commodity 𝑐 ∈ 𝐶buy, that can be bought by the
energy system in the site 𝑣 in support timeframe 𝑦 at the timestep 𝑡. The limit is defined by the param-
eter maximum buy supply limit per time step 𝑏𝑦𝑣𝑐. To satisfy this constraint, the value of the variable
buy commodity source term 𝜓𝑦𝑣𝑐𝑡 must be less than or equal to the value of the parameter maximum
buy supply limit per time step 𝑏𝑣𝑐, multiplied by the length of the time steps ∆𝑡. The mathematical
explanation of this rule is given in Trading with an external market.

In script BuySellPrice.py the constraint buy per step rule is defined and calculated by the following
code fragment:

m.res_buy_step = pyomo.Constraint(
m.tm, m.com_tuples,
rule=res_buy_step_rule,
doc='buy commodity output per step <= commodity.maxperstep')

def res_buy_step_rule(m, tm, stf, sit, com, com_type):
if com not in m.com_buy:

return pyomo.Constraint.Skip
else:

return (m.e_co_buy[tm, stf, sit, com, com_type] <=
m.dt * m.commodity_dict['maxperhour']
[(stf, sit, com, com_type)])

Total Buy Rule: The constraint total buy rule applies only for commodities of type “Buy” ( 𝑐 ∈ 𝐶buy).
This constraint limits the amount of buy commodity 𝑐 ∈ 𝐶buy, that can be bought annually by the energy
system in the site 𝑣 in support timeframe 𝑦. The limit is defined by the parameter maximum annual buy
supply limit per vertex 𝐵𝑦𝑣𝑐. To satisfy this constraint, the annual usage of buy commodity must be
less than or equal to the value of the parameter buy supply limit per vertex 𝐵𝑣𝑐. The annual usage of
buy commodity is calculated by the sum of the products of the parameter weight 𝑤 and the parameter
buy commodity source term 𝜓𝑦𝑣𝑐𝑡, summed over all modeled timesteps 𝑡 ∈ 𝑇𝑚. The mathematical
explanation of this rule is given in Trading with an external market.

In script BuySellPrice.py the constraint total buy rule is defined and calculated by the following
code fragment:

m.res_buy_total = pyomo.Constraint(
m.com_tuples,
rule=res_buy_total_rule,
doc='total buy commodity output <= commodity.max')

def res_buy_total_rule(m, stf, sit, com, com_type):
if com not in m.com_buy:

return pyomo.Constraint.Skip
else:

# calculate total sale of commodity com
total_consumption = 0
for tm in m.tm:

total_consumption += (

(continues on next page)
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m.e_co_buy[tm, stf, sit, com, com_type] * m.typeperiod[
→˓'weight_typeperiod'][(stf,tm)])

total_consumption *= m.weight
return (total_consumption <=

m.commodity_dict['max'][(stf, sit, com, com_type)])

Environmental Output Per Step Rule: The constraint environmental output per step rule applies only
for commodities of type “Env” (𝑐 ∈ 𝐶env). This constraint limits the amount of environmental commod-
ity 𝑐 ∈ 𝐶env, that can be released to environment by the energy system in the site 𝑣 in support timeframe
𝑦 at the timestep 𝑡. The limit is defined by the parameter maximum environmental output per time step
𝑚𝑦𝑣𝑐. To satisfy this constraint, the negative value of the commodity balance for the given environmental
commodity 𝑐 ∈ 𝐶env must be less than or equal to the value of the parameter maximum environmental
output per time step 𝑚𝑣𝑐, multiplied by the length of the time steps ∆𝑡. The mathematical explanation
of this rule is given in Minimal optimization model.

In script model.py the constraint environmental output per step rule is defined and calculated by the
following code fragment:

m.res_env_step = pyomo.Constraint(
m.tm, m.com_tuples,
rule=res_env_step_rule,
doc='environmental output per step <= commodity.maxperstep')

def res_env_step_rule(m, tm, stf, sit, com, com_type):
if com not in m.com_env:

return pyomo.Constraint.Skip
else:

environmental_output = - commodity_balance(m, tm, stf, sit, com)
return (environmental_output <=

m.dt * m.commodity_dict['maxperhour']
[(stf, sit, com, com_type)])

Total Environmental Output Rule: The constraint total environmental output rule applies only for
commodities of type “Env” ( 𝑐 ∈ 𝐶env). This constraint limits the amount of environmental commodity
𝑐 ∈ 𝐶env, that can be released to environment annually by the energy system in the site 𝑣 in support
timeframe 𝑦. The limit is defined by the parameter maximum annual environmental output limit per
vertex 𝑀𝑦𝑣𝑐. To satisfy this constraint, the annual release of environmental commodity must be less
than or equal to the value of the parameter maximum annual environmental output 𝑀𝑣𝑐. The annual
release of environmental commodity is calculated by the sum of the products of the parameter weight
𝑤 and the negative value of commodity balance function, summed over all modeled time steps 𝑡 ∈ 𝑇𝑚.
The mathematical explanation of this rule is given in Minimal optimization model.

In script model.py the constraint total environmental output rule is defined and calculated by the
following code fragment:

m.res_env_total = pyomo.Constraint(
m.com_tuples,
rule=res_env_total_rule,
doc='total environmental commodity output <= commodity.max')

def res_env_total_rule(m, stf, sit, com, com_type):
if com not in m.com_env:

return pyomo.Constraint.Skip

(continues on next page)
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else:
# calculate total creation of environmental commodity com
env_output_sum = 0
for tm in m.tm:

env_output_sum += (- commodity_balance(m, tm, stf, sit, com)*
→˓m.typeperiod['weight_typeperiod'][(stf,tm)])

env_output_sum *= m.weight
return (env_output_sum <=

m.commodity_dict['max'][(stf, sit, com, com_type)])

Demand Side Management Constraints

The DSM equations are taken from the Paper of Zerrahn and Schill “On the representation of demand-
side management in power system models”, DOI: 10.1016/j.energy.2015.03.037.

DSM Variables Rule: The DSM variables rule defines the relation between the up- and downshifted
DSM commodities. An upshift 𝛿up

𝑦𝑣𝑐𝑡 in site 𝑣 and support timeframe 𝑦 of demand commodity 𝑐 in time
step 𝑡 can be compensated during a certain time step interval [𝑡 − 𝑦𝑦𝑣𝑐/∆𝑡, 𝑡 + 𝑦𝑦𝑣𝑐/∆𝑡] by multiple
downshifts 𝛿down

𝑡,𝑡𝑡,𝑦𝑣𝑐. Here, 𝑦𝑦𝑣𝑐 represents the allowable delay time of downshifts in hours, which is
scaled into time steps by dividing by the timestep length ∆𝑡. Depending on the DSM efficiency 𝑒𝑦𝑣𝑐, an
upshift in a DSM commodity may correspond to multiple downshifts which sum to less than the original
upshift. The mathematical explanation of this rule is given in Demand side management.

In script dsm.py the constraint DSM variables rule is defined by the following code fragment:

m.def_dsm_variables = pyomo.Constraint(
m.tm, m.dsm_site_tuples,
rule=def_dsm_variables_rule,
doc='DSMup * efficiency factor n == DSMdo (summed)')

def def_dsm_variables_rule(m, tm, stf, sit, com):
dsm_down_sum = 0
for tt in dsm_time_tuples(tm,

m.timesteps[1:],
max(int(1 / m.dt *

m.dsm_dict['delay'][(stf, sit, com)]),
→˓1)):

dsm_down_sum += m.dsm_down[tm, tt, stf, sit, com]
return dsm_down_sum == (m.dsm_up[tm, stf, sit, com] *

m.dsm_dict['eff'][(stf, sit, com)])

DSM Upward Rule: The DSM upshift 𝛿up
𝑦𝑣𝑐𝑡 in site 𝑣 and support timeframe 𝑦 of demand commodity

𝑐 in time step 𝑡 is limited by the DSM maximal upshift per hour 𝐾up
𝑦𝑣𝑐, multiplied by the length of the

time steps ∆𝑡. The mathematical explanation of this rule is given in Demand side management.

In script dsm.py the constraint DSM upward rule is defined by the following code fragment:

m.res_dsm_upward = pyomo.Constraint(
m.tm, m.dsm_site_tuples,
rule=res_dsm_upward_rule,
doc='DSMup <= Cup (threshold capacity of DSMup)')
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def res_dsm_upward_rule(m, tm, stf, sit, com):
return m.dsm_up[tm, stf, sit, com] <= (m.dt *

m.dsm_dict['cap-max-up']
[(stf, sit, com)])

DSM Downward Rule: The total DSM downshift 𝛿down
𝑡,𝑡𝑡,𝑦𝑣𝑐 in site 𝑣 and support timeframe 𝑦 of demand

commodity 𝑐 in time step 𝑡 is limited by the DSM maximal downshift per hour 𝐾down
𝑦𝑣𝑐 , multiplied by

the length of the time steps ∆𝑡. The mathematical explanation of this rule is given in Demand side
management.

In script dsm.py the constraint DSM downward rule is defined by the following code fragment:

m.res_dsm_downward = pyomo.Constraint(
m.tm, m.dsm_site_tuples,
rule=res_dsm_downward_rule,
doc='DSMdo (summed) <= Cdo (threshold capacity of DSMdo)')

def res_dsm_downward_rule(m, tm, stf, sit, com):
dsm_down_sum = 0
for t in dsm_time_tuples(tm,

m.timesteps[1:],
max(int(1 / m.dt *

m.dsm_dict['delay'][(stf, sit, com)]),
→˓1)):

dsm_down_sum += m.dsm_down[t, tm, stf, sit, com]
return dsm_down_sum <= (m.dt * m.dsm_dict['cap-max-do'][(stf, sit,

→˓com)])

DSM Maximum Rule: The DSM maximum rule limits the shift of one DSM unit in site 𝑣 in support
timeframe 𝑦 of demand commodity 𝑐 in time step 𝑡. The mathematical explanation of this rule is given
in Demand side management.

In script dsm.py the constraint DSM maximum rule is defined by the following code fragment:

m.res_dsm_maximum = pyomo.Constraint(
m.tm, m.dsm_site_tuples,
rule=res_dsm_maximum_rule,
doc='DSMup + DSMdo (summed) <= max(Cup,Cdo)')

def res_dsm_maximum_rule(m, tm, stf, sit, com):
dsm_down_sum = 0
for t in dsm_time_tuples(tm,

m.timesteps[1:],
max(int(1 / m.dt *

m.dsm_dict['delay'][(stf, sit, com)]),
→˓1)):

dsm_down_sum += m.dsm_down[t, tm, stf, sit, com]

max_dsm_limit = m.dt * max(m.dsm_dict['cap-max-up'][(stf, sit, com)],
m.dsm_dict['cap-max-do'][(stf, sit, com)])

return m.dsm_up[tm, stf, sit, com] + dsm_down_sum <= max_dsm_limit

DSM Recovery Rule: The DSM recovery rule limits the upshift in site 𝑣 and support timeframe 𝑦
of demand commodity 𝑐 during a set recovery period 𝑜𝑦𝑣𝑐. Since the recovery period 𝑜𝑦𝑣𝑐 is input as
hours, it is scaled into time steps by dividing it by the length of the time steps ∆𝑡. The mathematical
explanation of this rule is given in Demand side management.
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In script dsm.py the constraint DSM Recovery rule is defined by the following code fragment:

m.res_dsm_recovery = pyomo.Constraint(
m.tm, m.dsm_site_tuples,
rule=res_dsm_recovery_rule,
doc='DSMup(t, t + recovery time R) <= Cup * delay time L')

def res_dsm_recovery_rule(m, tm, stf, sit, com):
dsm_up_sum = 0
for t in dsm_recovery(tm,

m.timesteps[1:],
max(int(1 / m.dt *

m.dsm_dict['recov'][(stf, sit, com)]), 1)):
dsm_up_sum += m.dsm_up[t, stf, sit, com]

return dsm_up_sum <= (m.dsm_dict['cap-max-up'][(stf, sit, com)] *
m.dsm_dict['delay'][(stf, sit, com)])

Global Environmental Constraint

Global CO2 Limit Rule: The constraint global CO2 limit rule applies to the whole energy system in
one support timeframe 𝑦, that is to say it applies to every site and timestep. This constraints restricts
the total amount of CO2 to environment. The constraint states that the sum of released CO2 across all
sites 𝑣 ∈ 𝑉 and timesteps 𝑡 ∈ 𝑡𝑚 must be less than or equal to the parameter maximum global annual
CO2 emission limit 𝐿𝐶𝑂2,𝑦, where the amount of released CO2 in a single site 𝑣 at a single timestep 𝑡
is calculated by the product of commodity balance of environmental commodities CB(𝑦, 𝑣, 𝐶𝑂2, 𝑡) and
the parameter weight 𝑤. This constraint is skipped if the value of the parameter 𝐿𝐶𝑂2 is set to inf. The
mathematical explanation of this rule is given in Minimal optimization model.

In script model.py the constraint annual global CO2 limit rule is defined and calculated by the follow-
ing code fragment:

def res_global_co2_limit_rule(m, stf):
if math.isinf(m.global_prop_dict['value'][stf, 'CO2 limit']):

return pyomo.Constraint.Skip
elif m.global_prop_dict['value'][stf, 'CO2 limit'] >= 0:

co2_output_sum = 0
for tm in m.tm:

for sit in m.sit:
# minus because negative commodity_balance represents

→˓creation
# of that commodity.
co2_output_sum += (- commodity_balance(m, tm, stf, sit,

→˓'CO2')* m.typeperiod['weight_typeperiod'][(stf,tm)])

# scaling to annual output (cf. definition of m.weight)
co2_output_sum *= m.weight
return (co2_output_sum <= m.global_prop_dict['value']

[stf, 'CO2 limit'])
else:

return pyomo.Constraint.Skip

Global CO2 Budget Rule: The constraint global CO2 budget rule applies to the whole energy system
over the entire modeling horizon, that is to say it applies to every support timeframe, site and timestep.
This constraints restricts the total amount of CO2 to environment. The constraint states that the sum of
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released CO2 across all support timeframe 𝑦 ∈ 𝑌 , sites 𝑣 ∈ 𝑉 and timesteps 𝑡 ∈ 𝑡𝑚 must be less than
or equal to the parameter maximum global CO2 emission budget 𝐿𝐶𝑂2,𝑦, where the amount of released
CO2 in a single support timeframe 𝑦 in a single site 𝑣 and at a single timestep 𝑡 is calculated by the
product of the commodity balance of environmental commodities CB(𝑦, 𝑣, 𝐶𝑂2, 𝑡) and the parameter
weight 𝑤. This constraint is skipped if the value of the parameter 𝐿𝐶𝑂2 is set to inf. The mathematical
explanation of this rule is given in Intertemporal optimization model.

In script model.py the constraint global CO2 budget is defined and calculated by the following code
fragment:

def res_global_co2_budget_rule(m):
if math.isinf(m.global_prop_dict['value'][min(m.stf_list), 'CO2 budget

→˓']):
return pyomo.Constraint.Skip

elif (m.global_prop_dict['value'][min(m.stf_list), 'CO2 budget']) >= 0:
co2_output_sum = 0
for stf in m.stf:

for tm in m.tm:
for sit in m.sit:

# minus because negative commodity_balance represents
# creation of that commodity.
co2_output_sum += (- commodity_balance

(m, tm, stf, sit, 'CO2') *
m.typeperiod['weight_typeperiod

→˓'][(stf,tm)] *
m.weight *
stf_dist(stf, m))

return (co2_output_sum <=
m.global_prop_dict['value'][min(m.stf), 'CO2 budget'])

else:
return pyomo.Constraint.Skip

Process Constraints

Process Capacity Rule: The constraint process capacity rule defines the variable total process capacity
𝜅𝑦𝑣𝑝. The variable total process capacity is defined by the constraint as the sum of the parameter process
capacity installed𝐾𝑣𝑝 and the variable new process capacity �̂�𝑦𝑣𝑝. The mathematical explanation of this
rule is given in Minimal optimization model.

In script model.py the constraint process capacity rule is defined and calculated by the following code
fragment:

m.def_process_capacity = pyomo.Constraint(
m.pro_tuples,
rule=def_process_capacity_rule,
doc='total process capacity = inst-cap + new capacity')

def def_process_capacity_rule(m, stf, sit, pro):
if m.mode['int']:

if (sit, pro, stf) in m.inst_pro_tuples:
if (sit, pro, min(m.stf)) in m.pro_const_cap_dict:

cap_pro = m.process_dict['inst-cap'][(stf, sit, pro)]
else:

(continues on next page)
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cap_pro = \
(sum(m.cap_pro_new[stf_built, sit, pro]

for stf_built in m.stf
if (sit, pro, stf_built, stf)
in m.operational_pro_tuples) +

m.process_dict['inst-cap'][(min(m.stf), sit, pro)])
else:

cap_pro = sum(
m.cap_pro_new[stf_built, sit, pro]
for stf_built in m.stf
if (sit, pro, stf_built, stf) in m.operational_pro_tuples)

else:
if (sit, pro, stf) in m.pro_const_cap_dict:

cap_pro = m.process_dict['inst-cap'][(stf, sit, pro)]
else:

cap_pro = (m.cap_pro_new[stf, sit, pro] +
m.process_dict['inst-cap'][(stf, sit, pro)])

return cap_pro

Process Input Rule: The constraint process input rule defines the variable process input commodity
flow 𝜖in

𝑦𝑣𝑐𝑝𝑡. The variable process input commodity flow is defined by the constraint as the product
of the variable process throughput 𝜏𝑦𝑣𝑝𝑡 and the parameter process input ratio 𝑟in

𝑦𝑝𝑐.The mathematical
explanation of this rule is given in Minimal optimization model.

In script model.py the constraint process input rule is defined and calculated by the following code
fragment:

m.def_process_input = pyomo.Constraint(
m.tm, m.pro_input_tuples - m.pro_partial_input_tuples,
rule=def_process_input_rule,
doc='process input = process throughput * input ratio')

def def_process_input_rule(m, tm, stf, sit, pro, com):
return (m.e_pro_in[tm, stf, sit, pro, com] ==

m.tau_pro[tm, stf, sit, pro] * m.r_in_dict[(stf, pro, com)])

Process Output Rule: The constraint process output rule defines the variable process output commodity
flow 𝜖out

𝑦𝑣𝑐𝑝𝑡. The variable process output commodity flow is defined by the constraint as the product of
the variable process throughput 𝜏𝑦𝑣𝑝𝑡 and the parameter process output ratio 𝑟out

𝑦𝑝𝑐. The mathematical
explanation of this rule is given in Minimal optimization model.

In script model.py the constraint process output rule is defined and calculated by the following code
fragment:

m.def_process_output = pyomo.Constraint(
m.tm, (m.pro_output_tuples - m.pro_partial_output_tuples -

m.pro_timevar_output_tuples),
rule=def_process_output_rule,
doc='process output = process throughput * output ratio')

def def_process_output_rule(m, tm, stf, sit, pro, com):
if com == 'electricity-reactive':

return pyomo.Constraint.Skip
else:

(continues on next page)
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return (m.e_pro_out[tm, stf, sit, pro, com] ==
m.tau_pro[tm, stf, sit, pro] * m.r_out_dict[(stf, pro, com)])

Intermittent Supply Rule: The constraint intermittent supply rule defines the variable process input
commodity flow 𝜖in

𝑦𝑣𝑐𝑝𝑡 for processes 𝑝 that use a supply intermittent commodity 𝑐 ∈ 𝐶sup as input.
Therefore this constraint only applies if a commodity is an intermittent supply commodity 𝑐 ∈ 𝐶sup.
The variable process input commodity flow is defined by the constraint as the product of the variable
total process capacity 𝜅𝑦𝑣𝑝 and the parameter intermittent supply capacity factor 𝑠𝑦𝑣𝑐𝑡, scaled by the
size of the time steps :math: Delta t. The mathematical explanation of this rule is given in Minimal
optimization model.

In script model.py the constraint intermittent supply rule is defined and calculated by the following
code fragment:

m.def_intermittent_supply = pyomo.Constraint(
m.tm, m.pro_input_tuples,
rule=def_intermittent_supply_rule,
doc='process output = process capacity * supim timeseries')

def def_intermittent_supply_rule(m, tm, stf, sit, pro, coin):
if coin in m.com_supim:

return (m.e_pro_in[tm, stf, sit, pro, coin] ==
m.cap_pro[stf, sit, pro] * m.supim_dict[(sit, coin)]
[(stf, tm)] * m.dt)

else:
return pyomo.Constraint.Skip

Process Throughput By Capacity Rule: The constraint process throughput by capacity rule limits the
variable process throughput 𝜏𝑦𝑣𝑝𝑡. This constraint prevents processes from exceeding their capacity.
The constraint states that the variable process throughput must be less than or equal to the variable total
process capacity 𝜅𝑦𝑣𝑝, scaled by the size of the time steps :math: Delta t. The mathematical explanation
of this rule is given in Minimal optimization model.

In script model.py the constraint process throughput by capacity rule is defined and calculated by the
following code fragment:

m.res_process_throughput_by_capacity = pyomo.Constraint(
m.tm, m.pro_tuples,
rule=res_process_throughput_by_capacity_rule,
doc='process throughput <= total process capacity')

def res_process_throughput_by_capacity_rule(m, tm, stf, sit, pro):
return (m.tau_pro[tm, stf, sit, pro] <= m.dt * m.cap_pro[stf, sit,

→˓pro])

Process Throughput Gradient Rule: The constraint process throughput gradient rule limits the process
power gradient

⃒⃒
𝜏𝑦𝑣𝑝𝑡 − 𝜏𝑦𝑣𝑝(𝑡−1)

⃒⃒
. This constraint prevents processes from exceeding their maximal

possible change in activity from one time step to the next. The constraint states that the absolute power
gradient must be less than or equal to the maximal power ramp up gradient 𝑜𝑣𝑒𝑟𝑙𝑖𝑛𝑒𝑃𝐺up

𝑦𝑣𝑝 parameter
when increasing power or to the maximal power ramp down gradient 𝑃𝐺up

𝑦𝑣𝑝 parameter (both scaled
to capacity and by time step duration). The mathematical explanation of this rule is given in Minimal
optimization model.

In script model.py the constraint process throughput gradient rule is split into 2 parts and defined and
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calculated by the following code fragments:

m.res_process_rampdown = pyomo.Constraint(
m.tm, m.pro_rampdowngrad_tuples,
rule=res_process_rampdown_rule,
doc='throughput may not decrease faster than maximal ramp down gradient

→˓')
m.res_process_rampup = pyomo.Constraint(

m.tm, m.pro_rampupgrad_tuples,
rule=res_process_rampup_rule,
doc='throughput may not increase faster than maximal ramp up gradient')

def res_process_rampdown_rule(m, t, stf, sit, pro):
return (m.tau_pro[t - 1, stf, sit, pro] -

m.cap_pro[stf, sit, pro] *
m.process_dict['ramp-down-grad'][(stf, sit, pro)] * m.dt <=
m.tau_pro[t, stf, sit, pro])

def res_process_rampup_rule(m, t, stf, sit, pro):
return (m.tau_pro[t - 1, stf, sit, pro] +

m.cap_pro[stf, sit, pro] *
m.process_dict['ramp-up-grad'][(stf, sit, pro)] * m.dt >=
m.tau_pro[t, stf, sit, pro])

Process Capacity Limit Rule: The constraint process capacity limit rule limits the variable total process
capacity 𝜅𝑦𝑣𝑝. This constraint restricts a process 𝑝 in a site 𝑣 and support timeframe 𝑦 from having more
total capacity than an upper bound and having less than a lower bound. The constraint states that the
variable total process capacity 𝜅𝑦𝑣𝑝 must be greater than or equal to the parameter process capacity
lower bound 𝐾𝑦𝑣𝑝 and less than or equal to the parameter process capacity upper bound 𝐾𝑦𝑣𝑝. The
mathematical explanation of this rule is given in Minimal optimization model.

In script model.py the constraint process capacity limit rule is defined and calculated by the following
code fragment:

m.res_process_capacity = pyomo.Constraint(
m.pro_tuples,
rule=res_process_capacity_rule,
doc='process.cap-lo <= total process capacity <= process.cap-up')

def res_process_capacity_rule(m, stf, sit, pro):
return (m.process_dict['cap-lo'][stf, sit, pro],

m.cap_pro[stf, sit, pro],
m.process_dict['cap-up'][stf, sit, pro])

Sell Buy Symmetry Rule: The constraint sell buy symmetry rule defines the total process capacity
𝜅𝑦𝑣𝑝 of a process 𝑝 in a site 𝑣 and support timeframe 𝑦 that uses either sell or buy commodities (
𝑐 ∈ 𝐶sell ∨ 𝐶buy), therefore this constraint only applies to processes that use sell or buy commodities.
The constraint states that the total process capacities 𝜅𝑦𝑣𝑝 of processes that use complementary buy and
sell commodities must be equal. Buy and sell commodities are complementary, when a commodity 𝑐 is
an output of a process where the buy commodity is an input, and at the same time the commodity 𝑐 is an
input commodity of a process where the sell commodity is an output. The mathematical explanation of
this rule is given in Trading with an external market.

In script BuySellPrice.py the constraint sell buy symmetry rule is defined and calculated by the
following code fragment:
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m.res_sell_buy_symmetry = pyomo.Constraint(
m.pro_input_tuples,
rule=res_sell_buy_symmetry_rule,
doc='total power connection capacity must be symmetric in both '

'directions')

def res_sell_buy_symmetry_rule(m, stf, sit_in, pro_in, coin):
# constraint only for sell and buy processes
# and the processes must be in the same site
if coin in m.com_buy:

sell_pro = search_sell_buy_tuple(m, stf, sit_in, pro_in, coin)
if sell_pro is None:

return pyomo.Constraint.Skip
else:

return (m.cap_pro[stf, sit_in, pro_in] ==
m.cap_pro[stf, sit_in, sell_pro])

else:
return pyomo.Constraint.Skip

Process time variable output rule: This constraint multiplies the process efficiency with the parameter
time series 𝑓out

𝑦𝑣𝑝𝑡. The process output for all commodities is thus manipulated depending on time. This
constraint is not valid for environmental commodities since these are typically linked to an input com-
modity flow rather than an output commodity flow. The mathematical explanation of this rule is given
in Advanced Processes.

In script AdvancedProcesses.py the constraint process time variable output rule is defined and
calculated by the following code fragment:

m.def_process_timevar_output = pyomo.Constraint(
m.tm, m.pro_timevar_output_tuples,
rule=def_pro_timevar_output_rule,
doc='e_pro_out = tau_pro * r_out * eff_factor')

def def_pro_timevar_output_rule(m, tm, stf, sit, pro, com):
return (m.e_pro_out[tm, stf, sit, pro, com] ==

m.tau_pro[tm, stf, sit, pro] * m.r_out_dict[(stf, pro, com)] *
m.eff_factor_dict[(sit, pro)][stf, tm])

Process Constraints for partial operation

The process constraints for partial operation described in the following are only activated if in the input
file there is a value set in the column ratio-min for an input commodity or for an output commodity
in the process-commodity sheet for the process in question.

It is important to understand that this partial load formulation can only work if its accompanied by a
non-zero value for the minimum partial load fraction 𝑃 𝑦𝑣𝑝.

Without activating the on/off feature in the process sheet, the partial load feature can only be used for
processes that are never meant to be shut down and are always operating only between a given part load
state and full load. Please see the next chapter for the combined on/off and partial operation features.

Throughput by Min fraction Rule: This constraint limits the minimal operational state of a process
downward, making sure that the minimal part load fraction is honored. The mathematical explanation
of this rule is given in Advanced Processes.
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In script AdvancedProcesses.py this constraint is defined and calculated by the following code
fragment:

m.res_throughput_by_capacity_min = pyomo.Constraint(
m.tm, m.pro_partial_tuples,
rule=res_throughput_by_capacity_min_rule,
doc='cap_pro * min-fraction <= tau_pro')

def res_throughput_by_capacity_min_rule(m, tm, stf, sit, pro):
return (m.tau_pro[tm, stf, sit, pro] >=

m.cap_pro[stf, sit, pro] *
m.process_dict['min-fraction'][(stf, sit, pro)] * m.dt)

Partial Process Input Rule: The link between operational state 𝑡𝑎𝑢𝑦𝑣𝑝𝑡 and commodity in/outputs
is changed from a simple linear behavior to a more complex one. Instead of constant in- and output
ratios these are now interpolated linearly between the value for full operation 𝑟in/out

𝑦𝑣𝑝 at full load and the
minimum in/output ratios 𝑟in/out

𝑦𝑣𝑝 at the minimum operation point. The mathematical explanation of this
rule is given in Advanced Processes.

In script model.py this expression is written in the following way for the input ratio (and analogous for
the output ratios):

m.def_partial_process_input = pyomo.Constraint(
m.tm, m.pro_partial_input_tuples,
rule=def_partial_process_input_rule,
doc='e_pro_in = cap_pro * min_fraction * (r - R) / (1 - min_fraction)'

'+ tau_pro * (R - min_fraction * r) / (1 - min_fraction)')

def def_partial_process_input_rule(m, tm, stf, sit, pro, com):
# input ratio at maximum operation point
R = m.r_in_dict[(stf, pro, com)]
# input ratio at lowest operation point
r = m.r_in_min_fraction_dict[stf, pro, com]
min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]

online_factor = min_fraction * (r - R) / (1 - min_fraction)
throughput_factor = (R - min_fraction * r) / (1 - min_fraction)
return (m.e_pro_in[tm, stf, sit, pro, com] ==

m.dt * m.cap_pro[stf, sit, pro] * online_factor +
m.tau_pro[tm, stf, sit, pro] * throughput_factor)

In case of a process where also a time variable output efficiency is given the code for the output changes
to.

m.def_process_partial_timevar_output = pyomo.Constraint(
m.tm, m.pro_partial_output_tuples & m.pro_timevar_output_tuples,
rule=def_pro_partial_timevar_output_rule,
doc='e_pro_out = tau_pro * r_out * eff_factor')

def def_pro_partial_timevar_output_rule(m, tm, stf, sit, pro, com):
# input ratio at maximum operation point

R = m.r_out_dict[stf, pro, com]
# input ratio at lowest operation point
r = m.r_out_min_fraction_dict[stf, pro, com]
min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]

(continues on next page)
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online_factor = min_fraction * (r - R) / (1 - min_fraction)
throughput_factor = (R - min_fraction * r) / (1 - min_fraction)
return (m.e_pro_out[tm, stf, sit, pro, com] ==

(m.dt * m.cap_pro[stf, sit, pro] * online_factor +
m.tau_pro[tm, stf, sit, pro] * throughput_factor) *
m.eff_factor_dict[(sit, pro)][stf, tm])

Process Constraints for the on/off feature

The process constraints for the on/off feature described in this chapter are only activated if, in the input
file, the value „1” is set is set in the column on-off for a process in the process sheet.

Process Throughput and On/Off Coupling Rule: These two constraints couple the variables process
throughput 𝜏𝑦𝑣𝑝𝑡 and process on/off marker 𝑦𝑣𝑝𝑡. This is done by turning the marker on (boolean value
1) when the throughput is greater than the minimum load of the process.The mathematical explanation
of this rule is given in Advanced Processes.

In script AdvancedProcesses.py this constraint is defined and calculated by the following code
fragment:

m.res_throughput_by_on_off_lower = pyomo.Constraint(
m.tm, m.pro_on_off_tuples | m.pro_partial_on_off_tuples,
rule=res_throughput_by_on_off_lower_rule,
doc='tau_pro >= min-fraction * cap_pro * on_off')

m.res_throughput_by_on_off_upper = pyomo.Constraint(
m.tm, m.pro_on_off_tuples | m.pro_partial_on_off_tuples,
rule=res_throughput_by_on_off_upper_rule,
doc='tau_pro <='

'cap_pro * on_off + min-fraction * cap_pro * (1 - on_off)')

def res_throughput_by_on_off_lower_rule(m, tm, stf, sit, pro):
return (m.tau_pro[tm, stf, sit, pro] >=

m.min_fraction_dict[stf, sit, pro] * m.cap_pro[stf, sit, pro] *
m.dt * m.on_off[tm, stf, sit, pro])

def res_throughput_by_on_off_upper_rule(m, tm, stf, sit, pro):
return (m.tau_pro[tm, stf, sit, pro] <=

m.cap_pro[stf, sit, pro] * m.dt * m.on_off[tm, stf, sit, pro] +
m.min_fraction_dict[stf, sit, pro] * m.cap_pro[stf, sit, pro] *
m.dt * (1 - m.on_off[tm, stf, sit, pro]))

Process On/Off Output Rule: This constraint modifies the process output commodity flow 𝜖out
𝑦𝑣𝑐𝑝𝑡 when

compared to the original version without the on/off feature in two ways by differentiating between the
output commodity type 𝑞. When the commodity type is Env, the output remains the same as without
the on/off feature. Otherwise, the original output equation is multiplied with the variable process on/off
marker 𝑦𝑣𝑝𝑡. The mathematical explanation of this rule is given in Advanced Processes.

In script AdvancedProcesses.py the constraint process on/off output rule is defined and calculated
by the following code fragment:
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m.def_process_on_off_output = pyomo.Constraint(
m.tm, m.pro_on_off_output_tuples - m.pro_timevar_output_tuples -

m.pro_partial_on_off_output_tuples,
rule=def_process_on_off_output_rule,
doc='e_pro_out = tau_pro * r_out * on_off')

def def_process_on_off_output_rule(m, tm, stf, sit, pro, com):
r = m.r_out_dict[(stf, pro, com)]
if com in m.com_env:

return (m.e_pro_out[tm, stf, sit, pro, com] ==
m.tau_pro[tm, stf, sit, pro] * r)

else:
return (m.e_pro_out[tm, stf, sit, pro, com] ==

m.tau_pro[tm, stf, sit, pro] * r * m.on_off[tm, stf, sit,
→˓pro])

In the case of a process where also a time variable output efficiency is given the code for the output
changes to:

m.def_process_on_off_timevar_output = pyomo.Constraint(
m.tm, m.pro_timevar_output_tuples & m.pro_on_off_output_tuples -

m.pro_partial_on_off_output_tuples,
rule=def_process_on_off_timevar_output_rule,
doc='e_pro_out == tau_pro * r_out * on_off * eff_factor')

def def_process_on_off_timevar_output_rule(m, tm, stf, sit, pro, com):
return (m.e_pro_out[tm, stf, sit, pro, com] ==

m.tau_pro[tm, stf, sit, pro] * m.r_out_dict[(stf, pro, com)] *
m.on_off[tm, stf, sit, pro] *
m.eff_factor_dict[(sit, pro)][stf, tm])

Process On/Off Partial Input Rule: This constraint modifies the process input commodity flow 𝜖in
𝑦𝑣𝑐𝑝𝑡

when compared to the original partial operation version without the on/off feature in by differentiating
between two possible input functions, depending on the process on/off marker 𝑦𝑣𝑝𝑡. When the marker is
on, the input function is the same as in the case of simple partial operation. When the marker is off, the
input function becomes the product of the variable process throughput 𝜏𝑦𝑣𝑝𝑡 and the parameter process
partial input ratio 𝑟in

𝑦𝑝𝑐. the output commodity type 𝑞. When the commodity type. The mathematical
explanation of this rule is given in Advanced Processes.

In script AdvancedProcesses.py the constraint process on/off output rule is defined and calculated
by the following code fragment:

m.def_partial_process_on_off_input = pyomo.Constraint(
m.tm, m.pro_partial_on_off_input_tuples,
rule=def_partial_process_on_off_input_rule,
doc='e_pro_in = '

' (cap_pro * min_fraction * (r - R) / (1 - min_fraction)'
' + tau_pro * (R - min_fraction * r) / (1 - min_fraction))')

def def_partial_process_on_off_input_rule(m, tm, stf, sit, pro, com):
# input ratio at maximum operation point
R = m.r_in_dict[(stf, pro, com)]
# input ratio at lowest operation point
r = m.r_in_min_fraction_dict[stf, pro, com]

(continues on next page)
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min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]

online_factor = min_fraction * (r - R) / (1 - min_fraction)
throughput_factor = (R - min_fraction * r) / (1 - min_fraction)
return (m.e_pro_in[tm, stf, sit, pro, com] ==

(m.dt * m.cap_pro[stf, sit, pro] * online_factor +
m.tau_pro[tm, stf, sit, pro] * throughput_factor) *
m.on_off[tm, stf, sit, pro] +
m.tau_pro[tm, stf, sit, pro] * r *
(1 - m.on_off[tm, stf, sit, pro]))

Process On/Off Partial Output Rule: This constraint modifies the process output commodity flow
𝜖out
𝑦𝑣𝑐𝑝𝑡 when compared to the original partial operation version without the on/off feature in two ways

by differentiating between the output commodity type 𝑞. When the commodity type is not Env, the
output remains the same as for the partial operation without the on/off feature. Otherwise, the original
output equation is changes depending on the variable process on/off marker 𝑦𝑣𝑝𝑡. When the marker is
off, the output function becomes the product of the variable process throughput 𝜏𝑦𝑣𝑝𝑡 and the parameter
process partial output ratio 𝑟out

𝑦𝑝𝑐. When the marker is on, the output function for Env type commodities
remains the same as for the partial operation without the on/off feature. The mathematical explanation
of this rule is given in Advanced Processes.

m.def_partial_process_on_off_output = pyomo.Constraint(
m.tm, m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
rule=def_partial_process_on_off_output_rule,
doc='e_pro_out = on_off *'

' (cap_pro * min_fraction * (r - R) / (1 - min_fraction) '
'+ tau_pro * (R - min_fraction * r) / (1 - min_fraction)) ')

def def_partial_process_on_off_output_rule(m, tm, stf, sit, pro, com):
# input ratio at maximum operation point
R = m.r_out_dict[stf, pro, com]
# input ratio at lowest operation point
r = m.r_out_min_fraction_dict[stf, pro, com]
min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]
on_off = m.on_off[tm, stf, sit, pro]

online_factor = min_fraction * (r - R) / (1 - min_fraction)
throughput_factor = (R - min_fraction * r) / (1 - min_fraction)
if com in m.com_env:

return(m.e_pro_out[tm, stf, sit, pro, com] ==
(m.dt * m.cap_pro[stf, sit, pro] * online_factor +
m.tau_pro[tm, stf, sit, pro] * throughput_factor) * on_off +
m.tau_pro[tm, stf, sit, pro] * r *
(1 - on_off))

else:
return (m.e_pro_out[tm, stf, sit, pro, com] ==

(m.dt * m.cap_pro[stf, sit, pro] * online_factor +
m.tau_pro[tm, stf, sit, pro] * throughput_factor) * on_off)

In the case of a process where also a time variable output efficiency is given the code for the output
changes to:

m.def_process_partial_on_off_timevar_output = pyomo.Constraint(
m.tm, m.pro_partial_on_off_output_tuples & m.pro_timevar_output_tuples,

(continues on next page)
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rule=def_pro_partial_on_off_timevar_output_rule,
doc='e_pro_out == tau_pro * r_out * on_off * eff_factor')

def def_partial_process_on_off_output_rule(m, tm, stf, sit, pro, com):
# input ratio at maximum operation point
R = m.r_out_dict[stf, pro, com]
# input ratio at lowest operation point
r = m.r_out_min_fraction_dict[stf, pro, com]
min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]
on_off = m.on_off[tm, stf, sit, pro]

online_factor = min_fraction * (r - R) / (1 - min_fraction)
throughput_factor = (R - min_fraction * r) / (1 - min_fraction)
if com in m.com_env:

return(m.e_pro_out[tm, stf, sit, pro, com] ==
(m.dt * m.cap_pro[stf, sit, pro] * online_factor +
m.tau_pro[tm, stf, sit, pro] * throughput_factor) * on_off +
m.tau_pro[tm, stf, sit, pro] * r *
(1 - on_off))

else:
return (m.e_pro_out[tm, stf, sit, pro, com] ==

(m.dt * m.cap_pro[stf, sit, pro] * online_factor +
m.tau_pro[tm, stf, sit, pro] * throughput_factor) * on_off)

Process Starting Ramp-up Rule: This constraint replaces the process throughput ramping rule when
the parameter process starting time 𝑆𝑇 start

𝑦𝑣𝑝 is defined in the input process sheet. This is done only until
the variable process throughput 𝜏𝑦𝑣𝑝𝑡 reaches the minimum load value and only while increasing the
process throughput 𝜏𝑦𝑣𝑝𝑡. The mathematical explanation of this rule is given in Advanced Processes.

In script AdvancedProcesses.py the constraint process starting ramp-up rule is defined and cal-
culated by the following code fragment:

m.res_starting_rampup = pyomo.Constraint(
m.tm, m.pro_rampup_start_tuples,
rule=res_starting_rampup_rule,
doc='throughput may not increase faster than maximal starting ramp up '

'gradient until reaching minimum capacity')

def res_starting_rampup_rule(m, t, stf, sit, pro):
min_fraction = m.min_fraction_dict[stf, sit, pro]
start_time = m.process_dict['start-time'][(stf, sit, pro)]
starting_ramp =min_fraction / start_time
return (m.tau_pro[t - 1, stf, sit, pro] +

m.cap_pro[stf, sit, pro] *
m.process_dict['ramp-up-grad'][(stf, sit, pro)] * m.dt *
m.on_off[t - 1, stf, sit, pro] +
m.cap_pro[stf, sit, pro] *
starting_ramp * m.dt *
(1 - m.on_off[t - 1, stf, sit, pro])
>=
m.tau_pro[t, stf, sit, pro])

Process Output Ramping Rule: These constraints act as a limiter for the process output 𝜖out
𝑦𝑣𝑐𝑝𝑡 with

the on/off feature because the process on/off marker 𝑦𝑣𝑝𝑡 can be both on and off in the minimum load
point. There are three possible cases, as follows, defined in the script AdvanceProcesses.py. The
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mathematical explanation of this rule is given in Advanced Processes

Case I: The parameter process minimum load fraction 𝑃 𝑦𝑣𝑝 is greater than the parameter process maxi-
mum power ramp up gradient 𝑃𝐺up

𝑦𝑣𝑝 and is divisible with it. It is defined and calculated by the following
code fragment:

m.res_output_minfraction_rampup = pyomo.Constraint(
m.tm, m.pro_rampup_divides_minfraction_output_tuples -

m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
rule=res_output_minfraction_rampup_rule,
doc='Output may not increase faster than the minimal working capacity')

def res_output_minfraction_rampup_rule(m, tm, stf, sit, pro, com):
if tm != m.timesteps[1]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] * m.dt *
m.process_dict['min-fraction'][(stf, sit, pro)] *
m.r_out_dict[(stf, pro, com)] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:
return pyomo.Constraint.Skip

If the process has partial operation, the code changes to:

m.res_partial_output_minfraction_rampup = pyomo.Constraint(
m.tm, m.pro_rampup_divides_minfraction_output_tuples &

m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
rule=res_partial_output_minfraction_rampup_rule,
doc='Output may not increase faster than the minimal working capacity')

def res_partial_output_minfraction_rampup_rule(m, tm, stf, sit, pro, com):
if tm != m.timesteps[1]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] * m.dt *
m.process_dict['min-fraction'][(stf, sit, pro)] *
m.r_out_min_fraction_dict[(stf, pro, com)] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:
return pyomo.Constraint.Skip

If the process has time variable efficiency, the code changes to:

m.res_timevar_output_minfraction_rampup = pyomo.Constraint(
m.tm, m.pro_rampup_divides_minfraction_output_tuples &

m.pro_timevar_output_tuples - m.pro_partial_on_off_output_tuples,
rule=res_timevar_output_minfraction_rampup_rule,
doc='Output may not increase faster than the minimal working capacity')

def res_timevar_output_minfraction_rampup_rule(m, tm, stf, sit, pro, com):
if tm != m.timesteps[1]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] * m.dt *
m.process_dict['min-fraction'][(stf, sit, pro)] *
m.r_out_dict[(stf, pro, com)] *
m.eff_factor_dict[(sit, pro)][stf, tm] >=
m.e_pro_out[tm, stf, sit, pro, com])
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else:
return pyomo.Constraint.Skip

If the process has both partial operation and time variable efficiency, the code changes to:

m.res_partial_timevar_output_minfraction_rampup = pyomo.Constraint(
m.tm, m.pro_rampup_divides_minfraction_output_tuples &

m.pro_partial_on_off_output_tuples & m.pro_timevar_output_tuples,
rule=res_partial_timevar_output_minfraction_rampup_rule,
doc='Output may not increase faster than the minimal working capacity')

def res_partial_timevar_output_minfraction_rampup_rule(m, tm, stf, sit,
→˓pro, com):

if tm != m.timesteps[1]:
return (m.e_pro_out[tm - 1, stf, sit, pro, com] +

m.cap_pro[stf, sit, pro] * m.dt *
m.process_dict['min-fraction'][(stf, sit, pro)] *
m.r_out_min_fraction_dict[(stf, pro, com)] *
m.eff_factor_dict[(sit, pro)][stf, tm] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:
return pyomo.Constraint.Skip

Case II: The parameter process minimum load fraction 𝑃 𝑦𝑣𝑝 is greater than the parameter process max-
imum power ramp up gradient 𝑃𝐺up

𝑦𝑣𝑝, but is not divisible with it. It is defined and calculated by the
following code fragment:

m.res_output_minfraction_rampup_rampup = pyomo.Constraint(
m.tm, m.pro_rampup_not_divides_minfraction_output_tuples -

m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
rule=res_output_minfraction_rampup_rampup_rule,
doc='Output may not increase faster than the first multiple of the'

'ramping up gradient greater than the minimal working capacity')

def res_output_minfraction_rampup_rampup_rule(m, tm, stf, sit, pro, com):
ramp_up = m.process_dict['ramp-up-grad'][(stf, sit, pro)]
min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]

first_output_value = (math.floor(min_fraction / ramp_up) + 1) * ramp_up
if tm != m.timesteps[1]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] * m.dt *
first_output_value *
m.r_out_dict[(stf, pro, com)] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:
return pyomo.Constraint.Skip

If the process has partial operation, the code changes to:

m.res_partial_output_minfraction_rampup_rampup = pyomo.Constraint(
m.tm, m.pro_rampup_not_divides_minfraction_output_tuples &

m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
rule=res_partial_output_minfraction_rampup_rampup_rule,
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doc='Output may not increase faster than the first multiple of the'
'ramping up gradient greater than the minimal working capacity')

def res_partial_output_minfraction_rampup_rampup_rule(m, tm, stf, sit, pro,
→˓ com):

ramp_up = m.process_dict['ramp-up-grad'][(stf, sit, pro)]
min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]

first_output_value = (math.floor(min_fraction / ramp_up) + 1) * ramp_up
if tm != m.timesteps[1]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] * m.dt *
first_output_value *
m.r_out_min_fraction_dict[(stf, pro, com)] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:
return pyomo.Constraint.Skip

If the process has time variable efficiency, the code changes to:

m.res_timevar_output_minfraction_rampup_rampup = pyomo.Constraint(
m.tm, m.pro_rampup_not_divides_minfraction_output_tuples &

m.pro_timevar_output_tuples - m.pro_partial_on_off_output_tuples,
rule=res_timevar_output_minfraction_rampup_rampup_rule,
doc='Output may not increase faster than the first multiple of the'

'ramping up gradient greater than the minimal working capacity')

def res_timevar_output_minfraction_rampup_rampup_rule(m, tm, stf, sit, pro,
→˓ com):

ramp_up = m.process_dict['ramp-up-grad'][(stf, sit, pro)]
min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]

first_output_value = (math.floor(min_fraction / ramp_up) + 1) * ramp_up
if tm != m.timesteps[1]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] * m.dt *
first_output_value *
m.r_out_dict[(stf, pro, com)] *
m.eff_factor_dict[(sit, pro)][stf, tm] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:
return pyomo.Constraint.Skip

If the process has both partial operation and time variable efficiency, the code changes to:

m.res_partial_timevar_output_minfraction_rampup_rampup = pyomo.Constraint(
m.tm, m.pro_rampup_not_divides_minfraction_output_tuples &

m.pro_partial_on_off_output_tuples & m.pro_timevar_output_tuples,
rule=res_partial_timevar_output_minfraction_rampup_rampup_rule,
doc='Output may not increase faster than the first multiple of the'

'ramping up gradient greater than the minimal working capacity')

def res_partial_timevar_output_minfraction_rampup_rampup_rule(m, tm, stf,
→˓sit, pro, com):

(continues on next page)
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ramp_up = m.process_dict['ramp-up-grad'][(stf, sit, pro)]
min_fraction = m.process_dict['min-fraction'][(stf, sit, pro)]

first_output_value = (math.floor(min_fraction / ramp_up) + 1) * ramp_up
if tm != m.timesteps[1]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] * m.dt *
first_output_value *
m.r_out_min_fraction_dict[(stf, pro, com)] *
m.eff_factor_dict[(sit, pro)][stf, tm] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:
return pyomo.Constraint.Skip

Case III: The parameter process minimum load fraction 𝑃 𝑦𝑣𝑝 is smaller than the parameter process
maximum power ramp up gradient 𝑃𝐺up

𝑦𝑣𝑝. It is defined and calculated by the following code fragment:

m.res_output_rampup = pyomo.Constraint(
m.tm, m.pro_rampup_bigger_minfraction_output_tuples -

m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
rule=res_output_rampup_rule,
doc='Output may not increase faster than the ramping up gradient')

def res_output_rampup_rule(m, tm, stf, sit, pro, com):
if tm != m.timesteps[1]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] * m.dt *
m.process_dict['ramp-up-grad'][(stf, sit, pro)] *
m.r_out_dict[(stf, pro, com)] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:
return pyomo.Constraint.Skip

If the process has partial operation, the code changes to:

m.res_partial_output_rampup = pyomo.Constraint(
m.tm, m.pro_rampup_bigger_minfraction_output_tuples &

m.pro_partial_on_off_output_tuples - m.pro_timevar_output_tuples,
rule=res_partial_output_rampup_rule,
doc='Output may not increase faster than the ramping up gradient')

def res_partial_output_rampup_rule(m, tm, stf, sit, pro, com):
if tm != m.timesteps[1]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] * m.dt *
m.process_dict['ramp-up-grad'][(stf, sit, pro)] *
m.r_out_min_fraction_dict[(stf, pro, com)] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:
return pyomo.Constraint.Skip

If the process has time variable efficiency, the code changes to:

m.res_timevar_output_rampup = pyomo.Constraint(

(continues on next page)

122 Chapter 1. Contents



urbs Documentation, Release 1.0.0

(continued from previous page)

m.tm, m.pro_rampup_bigger_minfraction_output_tuples &
m.pro_timevar_output_tuples - m.pro_partial_on_off_output_tuples,

rule=res_timevar_output_rampup_rule,
doc='Output may not increase faster than the ramping up gradient')

def res_timevar_output_rampup_rule(m, tm, stf, sit, pro, com):
if tm != m.timesteps[1]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] * m.dt *
m.process_dict['ramp-up-grad'][(stf, sit, pro)] *
m.r_out_dict[(stf, pro, com)] *
m.eff_factor_dict[(sit, pro)][stf, tm] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:
return pyomo.Constraint.Skip

If the process has both partial operation and time variable efficiency, the code changes to:

m.res_partial_timevar_output_rampup = pyomo.Constraint(
m.tm, m.pro_rampup_bigger_minfraction_output_tuples &

m.pro_partial_on_off_output_tuples & m.pro_timevar_output_tuples,
rule=res_partial_timevar_output_rampup_rule,
doc='Output may not increase faster than the ramping up gradient')

def res_partial_timevar_output_rampup_rule(m, tm, stf, sit, pro, com):
if tm != m.timesteps[1]:

return (m.e_pro_out[tm - 1, stf, sit, pro, com] +
m.cap_pro[stf, sit, pro] * m.dt *
m.process_dict['ramp-up-grad'][(stf, sit, pro)] *
m.r_out_min_fraction_dict[(stf, pro, com)] *
m.eff_factor_dict[(sit, pro)][stf, tm] >=
m.e_pro_out[tm, stf, sit, pro, com])

else:
return pyomo.Constraint.Skip

Process Start-Up Rule: The constraint process start-up rule marks in the variable process start marker
𝜎𝑦𝑣𝑝𝑡 whether a process 𝑝 started in timestep 𝑡 or not. The mathematical explanation of this rule is given
in Advanced Processes.

In script AdvancedProcesses.py the constraint process start ups rule is defined and calculated by
the following code fragment:

m.res_start_up = pyomo.Constraint(
m.tm, m.pro_start_up_tuples,
rule=res_start_ups_rule,
doc='start >= on_off(t) - on_off(t-1)')

def res_start_up_rule(m, t, stf, sit, pro):
return (m.start_up[t, stf, sit, pro] >= m.on_off[t, stf, sit, pro] -

m.on_off[t - 1, stf, sit,
→˓pro])
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Transmission Constraints

Transmission Capacity Rule: The constraint transmission capacity rule defines the variable total trans-
mission capacity 𝜅𝑦𝑎𝑓 . The variable total transmission capacity is defined by the constraint as the sum
of the variable transmission capacity installed 𝐾𝑦𝑎𝑓 and the variable new transmission capacity �̂�𝑦𝑎𝑓 .
The mathematical explanation of this rule is given in Multinode optimization model.

In script transmission.py the constraint transmission capacity rule is defined and calculated by the
following code fragment:

m.def_transmission_capacity = pyomo.Constraint(
m.tra_tuples,
rule=def_transmission_capacity_rule,
doc='total transmission capacity = inst-cap + new capacity')

def def_transmission_capacity_rule(m, stf, sin, sout, tra, com):
if m.mode['int']:

if (sin, sout, tra, com, stf) in m.inst_tra_tuples:
if (min(m.stf), sin, sout, tra, com) in m.tra_const_cap_dict:

cap_tra = m.transmission_dict['inst-cap'][
(min(m.stf), sin, sout, tra, com)]

else:
cap_tra = (

sum(m.cap_tra_new[stf_built, sin, sout, tra, com]
for stf_built in m.stf
if (sin, sout, tra, com, stf_built, stf) in
m.operational_tra_tuples) +

m.transmission_dict['inst-cap']
[(min(m.stf), sin, sout, tra, com)])

else:
cap_tra = (

sum(m.cap_tra_new[stf_built, sin, sout, tra, com]
for stf_built in m.stf
if (sin, sout, tra, com, stf_built, stf) in
m.operational_tra_tuples))

else:
if (stf, sin, sout, tra, com) in m.tra_const_cap_dict:

cap_tra = \
m.transmission_dict['inst-cap'][(stf, sin, sout, tra, com)]

else:
cap_tra = (m.cap_tra_new[stf, sin, sout, tra, com] +

m.transmission_dict['inst-cap'][
(stf, sin, sout, tra, com)])

return cap_tra

Transmission New Capacity Rule: The constraint transmission new capacity rule defines the variable
new trasmission capacity �̂�𝑦𝑎𝑓 . This variable is defined by the constraint as the product of the parameter
transmission new capacity block 𝐾block

𝑦𝑎𝑓 and the variable new transmission capacity units 𝛽𝑦𝑎𝑓 . The
mathematical explanation of this rule is given in Multinode optimization model.

In script transmission.py the constraint transmission output rule is defined and calculated by the
following code fragment:

m.def_cap_tra_new = pyomo.Constraint(
m.tra_block_tuples,

(continues on next page)
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rule=def_cap_tra_new_rule,
doc='cap_tra_new = tra-block * cap_tra_new')

def def_cap_tra_new_rule(m, stf, sin, sout, tra, com):
return(m.cap_tra_new[stf, sin, sout, tra, com] ==

m.tra_cap_unit[stf, sin, sout, tra, com] *
m.transmission_dict['tra-block'][(stf, sin, sout, tra, com)])

Transmission Output Rule: The constraint transmission output rule defines the variable transmission
output commodity flow 𝜋out

𝑦𝑎𝑓𝑡. The variable transmission output commodity flow is defined by the con-
straint as the product of the variable transmission input commodity flow 𝜋in

𝑦𝑎𝑓𝑡 and the parameter trans-
mission efficiency 𝑒𝑦𝑎𝑓 . The mathematical explanation of this rule is given in Multinode optimization
model.

In script transmission.py the constraint transmission output rule is defined and calculated by the
following code fragment:

m.def_transmission_output = pyomo.Constraint(
m.tm, m.tra_tuples,
rule=def_transmission_output_rule,
doc='transmission output = transmission input * efficiency')

def def_transmission_output_rule(m, tm, stf, sin, sout, tra, com):
return (m.e_tra_out[tm, stf, sin, sout, tra, com] ==

m.e_tra_in[tm, stf, sin, sout, tra, com] *
m.transmission_dict['eff'][(stf, sin, sout, tra, com)])

Transmission Input By Capacity Rule: The constraint transmission input by capacity rule limits the
variable transmission input commodity flow 𝜋in

𝑦𝑎𝑓𝑡. This constraint prevents the transmission power
from exceeding the possible power input capacity of the line. The constraint states that the variable
transmission input commodity flow 𝜋in

𝑦𝑎𝑓𝑡 must be less than or equal to the variable total transmission
capacity 𝜅𝑦𝑎𝑓 , scaled by the size of the time steps :math: Delta t. The mathematical explanation of this
rule is given in Multinode optimization model.

In script transmission.py the constraint transmission input by capacity rule is defined and calcu-
lated by the following code fragment:

m.res_transmission_input_by_capacity = pyomo.Constraint(
m.tm, m.tra_tuples,
rule=res_transmission_input_by_capacity_rule,
doc='transmission input <= total transmission capacity')

def res_transmission_input_by_capacity_rule(m, tm, stf, sin, sout, tra,
→˓com):

return (m.e_tra_in[tm, stf, sin, sout, tra, com] <=
m.dt * m.cap_tra[stf, sin, sout, tra, com])

Transmission Capacity Limit Rule: The constraint transmission capacity limit rule limits the variable
total transmission capacity 𝜅𝑦𝑎𝑓 . This constraint restricts a transmission 𝑓 through an arc 𝑎 in support
timeframe 𝑦 from having more total power output capacity than an upper bound and having less than
a lower bound. The constraint states that the variable total transmission capacity 𝜅𝑦𝑎𝑓 must be greater
than or equal to the parameter transmission capacity lower bound 𝐾𝑦𝑎𝑓 and less than or equal to the
parameter transmission capacity upper bound 𝐾𝑦𝑎𝑓 . The mathematical explanation of this rule is given
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in Multinode optimization model.

In script transmission.py the constraint transmission capacity limit rule is defined and calculated
by the following code fragment:

m.res_transmission_capacity = pyomo.Constraint(
m.tra_tuples,
rule=res_transmission_capacity_rule,
doc='transmission.cap-lo <= total transmission capacity <= '

'transmission.cap-up')

def res_transmission_capacity_rule(m, stf, sin, sout, tra, com):
return (m.transmission_dict['cap-lo'][(stf, sin, sout, tra, com)],

m.cap_tra[stf, sin, sout, tra, com],
m.transmission_dict['cap-up'][(stf, sin, sout, tra, com)])

Transmission Symmetry Rule: The constraint transmission symmetry rule defines the power capacities
of incoming and outgoing arcs 𝑎, 𝑎′ of a transmission 𝑓 in support timeframe 𝑦. The constraint states
that the power capacities 𝜅𝑎𝑓 of the incoming arc 𝑎 and the complementary outgoing arc 𝑎′ between two
sites must be equal. The mathematical explanation of this rule is given in Multinode optimization model.

In script transmission.py the constraint transmission symmetry rule is defined and calculated by
the following code fragment:

m.res_transmission_symmetry = pyomo.Constraint(
m.tra_tuples,
rule=res_transmission_symmetry_rule,
doc='total transmission capacity must be symmetric in both directions')

def res_transmission_symmetry_rule(m, stf, sin, sout, tra, com):
return m.cap_tra[stf, sin, sout, tra, com] == (m.cap_tra

[stf, sout, sin, tra,
→˓com])

DCPF Transmission Constraints

The following constraints are included in the model if the optional DC Power Flow feature is activated.

DC Power Flow Rule: The constraint DC Power Flow rule defines the power flow of transmission
lines, which are modelled with DCPF. This constraint states that the power flow on a transmission
line is equal to the product of voltage angle differences of two connecting sites 𝑣out and 𝑣in and the
admittance of the transmission line. This constraint is only applied to the transmission lines modelled
with DCPF. The mathematical explanation of this rule is given in Multinode optimization model. In script
transmission.py the constraint DC Power Flow Rule is defined and calculated by the following
code fragment:

m.def_dc_power_flow = pyomo.Constraint(
m.tm, m.tra_tuples_dc,
rule=def_dc_power_flow_rule,
doc='transmission output = (angle(in)-angle(out))/ 57.2958 '

'* -1 *(-1/reactance) * (base voltage)^2')

126 Chapter 1. Contents



urbs Documentation, Release 1.0.0

def def_dc_power_flow_rule(m, tm, stf, sin, sout, tra, com):
return (m.e_tra_in[tm, stf, sin, sout, tra, com] ==

(m.voltage_angle[tm, stf, sin] - m.voltage_angle[tm, stf,
→˓sout]) / 57.2958 * -1 *

(-1 / m.transmission_dict['reactance'][(stf, sin, sout, tra,
→˓com)])

* m.site_dict['base-voltage'][(stf, sin)]**2)

DCPF Transmission Input By Capacity Rule: The constraint DCPF transmission input by capacity
rule expands the constraint transmission input by capacity rule for transmission lines modelled with
DCPF. This constraint limits the variable transmission input commodity flow 𝜋in

𝑦𝑎𝑓𝑡 of DCPF transmis-
sion lines also with a lower bound. This constraint prevents the absolute value of the transmission power
from exceeding the possible power input capacity of the line especially when the transmission power
can be negative. The constraint states that the additive inverse of variable transmission input commodity
flow −𝜋in

𝑦𝑎𝑓𝑡 must be less than or equal to the variable total transmission capacity 𝜅𝑦𝑎𝑓 , scaled by the
size of the time steps :math: Delta t. This constraint is only applied to the tranmission lines modelled
with DCPF. The mathematical explanation of this rule is given in Multinode optimization model.

In script transmission.py the constraint transmission input by capacity rule is defined and calcu-
lated by the following code fragment:

m.res_transmission_dc_input_by_capacity = pyomo.Constraint(
m.tm, m.tra_tuples_dc,
rule=res_transmission_dc_input_by_capacity_rule,
doc='-dcpf transmission input <= total transmission capacity')

Voltage Angle Limit Rule: The constraint voltage angle limit rule limits the maximum and minimum
difference of voltage angles 𝜃𝑦𝑣𝑡 of two sites 𝑣out and 𝑣in connected with a DCPF transmission line with
the parameter voltage angle difference limit 𝑑𝑙𝑦𝑎𝑓 . This constraint is only applied to the transmission
lines modelled with DCPF. The mathematical explanation of this rule is given in Multinode optimization
model. In script transmission.py the constraint voltage angle limit rule is defined and given by the
following code fragment:

m.def_angle_limit = pyomo.Constraint(
m.tm, m.tra_tuples_dc,
rule=def_angle_limit_rule,
doc='-angle limit < angle(in) - angle(out) < angle limit')

def def_angle_limit_rule(m, tm, stf, sin, sout, tra, com):
return (- m.transmission_dict['difflimit'][(stf, sin, sout, tra, com)],

(m.voltage_angle[tm, stf, sin] - m.voltage_angle[tm, stf,
→˓sout]),

m.transmission_dict['difflimit'][(stf, sin, sout, tra, com)])

Absolute Transmission Flow Constraints: The two absolute transmission flow constraints are included
in the model to create the variable absolute value of transmission commodity flow 𝜋in

𝑦𝑎𝑓𝑡
′. By limiting

the negative −𝜋in
𝑦𝑎𝑓𝑡

′ and positive 𝜋in
𝑦𝑎𝑓𝑡

′ of substitute variable ‘’e_tra_abs” with the variable 𝜋in
𝑦𝑎𝑓𝑡 and

minimizing the substitute value 𝜋in
𝑦𝑎𝑓𝑡

′ the absolute value of transmission commodity flow is retrieved.
These constraints are only applied to the transmission lines modelled with DCPF. The mathematical
explanation of these rules are given in Multinode optimization model. In script transmission.py
the constraint Absolute Transmission Flow Constraints are defined and given by the following code
fragment:
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m.e_tra_abs1 = pyomo.Constraint(
m.tm, m.tra_tuples_dc,
rule=e_tra_abs_rule1,
doc='transmission dc input <= absolute transmission dc input')

m.e_tra_abs2 = pyomo.Constraint(
m.tm, m.tra_tuples_dc,
rule=e_tra_abs_rule2,
doc='-transmission dc input <= absolute transmission dc input')

def e_tra_abs_rule1(m, tm, stf, sin, sout, tra, com):
return (m.e_tra_in[tm, stf, sin, sout, tra, com] <=

m.e_tra_abs[tm, stf, sin, sout, tra, com])

def e_tra_abs_rule2(m, tm, stf, sin, sout, tra, com):
return (-m.e_tra_in[tm, stf, sin, sout, tra, com] <=

m.e_tra_abs[tm, stf, sin, sout, tra, com])

Transmission Symmetry Rule: The above mentioned constraint transmission symmetry rule is only
applied to the transmission lines modelled with transport model if the DCPF is activated. Since
the DCPF transmission lines do not include the complementary arcs, this constraint is ignored for
these transmission lines. For this reason, the constraint is indexed with the transmission tuple set m.
tra_tuples_tp if the DCPF is activated.

In script transmission.py the constraint transmission symmetry rule is defined as following if the
DCPF is activated:

m.res_transmission_symmetry = pyomo.Constraint(
m.tra_tuples_tp,
rule=res_transmission_symmetry_rule,
doc='total transmission capacity must be symmetric in both directions')

Storage Constraints

Storage State Rule: The constraint storage state rule is the main storage constraint and it defines the
storage energy content of a storage 𝑠 in a site 𝑣 in support timeframe 𝑦 at a timestep 𝑡. This constraint
calculates the storage energy content at a timestep 𝑡 by adding or subtracting differences, such as ingoing
and outgoing energy, to/from a storage energy content at a previous timestep 𝑡−1 multiplied by 1 minus
the self-discharge rate 𝑑𝑦𝑣𝑠 (which is scaled exponentially with the timestep size 𝛿𝑡). Here ingoing en-
ergy is given by the product of the variable storage input commodity flow 𝜖in

𝑦𝑣𝑠𝑡 and the parameter storage
efficiency during charge 𝑒in

𝑦𝑣𝑠. Outgoing energy is given by the variable storage output commodity flow
𝜖out
𝑦𝑣𝑠𝑡 divided by the parameter storage efficiency during discharge 𝑒out

𝑦𝑣𝑠. The mathematical explanation
of this rule is given in Energy Storage.

In script storage.py the constraint storage state rule is defined and calculated by the following code
fragment:

m.def_storage_state = pyomo.Constraint(
m.tm, m.sto_tuples,
rule=def_storage_state_rule,
doc='storage[t] = (1 - selfdischarge) * storage[t-1] + input * eff_in -

→˓ output / eff_out')
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def def_storage_state_rule(m, t, stf, sit, sto, com):
return (m.e_sto_con[t, stf, sit, sto, com] ==

m.e_sto_con[t - 1, stf, sit, sto, com] *
(1 - m.storage_dict['discharge']
[(stf, sit, sto, com)]) ** m.dt.value +

m.e_sto_in[t, stf, sit, sto, com] *
m.storage_dict['eff-in'][(stf, sit, sto, com)] -
m.e_sto_out[t, stf, sit, sto, com] /
m.storage_dict['eff-out'][(stf, sit, sto, com)])

Storage Power Rule: The constraint storage power rule defines the variable total storage power 𝜅p
𝑦𝑣𝑠.

The variable total storage power is defined by the constraint as the sum of the parameter storage power
installed 𝐾p

𝑦𝑣𝑠 and the variable new storage power �̂�p
𝑦𝑣𝑠. The mathematical explanation of this rule is

given in Energy Storage.

In script storage.py the constraint storage power rule is defined and calculated by the following code
fragment:

m.def_storage_power = pyomo.Constraint(
m.sto_tuples,
rule=def_storage_power_rule,
doc='storage power = inst-cap + new power')

def def_storage_power_rule(m, stf, sit, sto, com):
if m.mode['int']:

if (sit, sto, com, stf) in m.inst_sto_tuples:
if (min(m.stf), sit, sto, com) in m.sto_const_cap_p_dict:

cap_sto_p = m.storage_dict['inst-cap-p'][
(min(m.stf), sit, sto, com)]

else:
cap_sto_p = (

sum(m.cap_sto_p_new[stf_built, sit, sto, com]
for stf_built in m.stf
if (sit, sto, com, stf_built, stf) in
m.operational_sto_tuples) +

m.storage_dict['inst-cap-p'][(min(m.stf), sit, sto,
→˓com)])

else:
cap_sto_p = (

sum(m.cap_sto_p_new[stf_built, sit, sto, com]
for stf_built in m.stf
if (sit, sto, com, stf_built, stf)
in m.operational_sto_tuples))

else:
if (stf, sit, sto, com) in m.sto_const_cap_p_dict:

cap_sto_p = m.storage_dict['inst-cap-p'][(stf, sit, sto, com)]
else:

cap_sto_p = (m.cap_sto_p_new[stf, sit, sto, com] +
m.storage_dict['inst-cap-p'][(stf, sit, sto,

→˓com)])

return cap_sto_p

Storage Capacity Rule: The constraint storage capacity rule defines the variable total storage size 𝜅c
𝑦𝑣𝑠.

The variable total storage size is defined by the constraint as the sum of the parameter storage content
installed𝐾c

𝑦𝑣𝑠 and the variable new storage size �̂�c
𝑦𝑣𝑠. The mathematical explanation of this rule is given
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in Energy Storage.

In script storage.py the constraint storage capacity rule is defined and calculated by the following
code fragment:

m.def_storage_capacity = pyomo.Constraint(
m.sto_tuples,
rule=def_storage_capacity_rule,
doc='storage capacity = inst-cap + new capacity')

def def_storage_capacity_rule(m, stf, sit, sto, com):
if m.mode['int']:

if (sit, sto, com, stf) in m.inst_sto_tuples:
if (min(m.stf), sit, sto, com) in m.sto_const_cap_c_dict:

cap_sto_c = m.storage_dict['inst-cap-c'][
(min(m.stf), sit, sto, com)]

else:
cap_sto_c = (

sum(m.cap_sto_c_new[stf_built, sit, sto, com]
for stf_built in m.stf
if (sit, sto, com, stf_built, stf) in
m.operational_sto_tuples) +

m.storage_dict['inst-cap-c'][(min(m.stf), sit, sto,
→˓com)])

else:
cap_sto_c = (

sum(m.cap_sto_c_new[stf_built, sit, sto, com]
for stf_built in m.stf
if (sit, sto, com, stf_built, stf) in
m.operational_sto_tuples))

else:
if (stf, sit, sto, com) in m.sto_const_cap_c_dict:

cap_sto_c = m.storage_dict['inst-cap-c'][(stf, sit, sto, com)]
else:

cap_sto_c = (m.cap_sto_c_new[stf, sit, sto, com] +
m.storage_dict['inst-cap-c'][(stf, sit, sto,

→˓com)])

return cap_sto_c

Storage New Capacity Rule: The constraint storage new capacity rule defines the newly installed
capacity of a storage �̂�c

𝑦𝑣𝑠. This variable is defined by the constraint as the product of the variable
new storage size units 𝛽c

𝑦𝑣𝑠 and the parameter storage new capacity block 𝐾c,block
𝑦𝑣𝑠 . The mathematical

explanation of this rule is given in Energy Storage.

In script storage.py the constraint storage capacity rule is defined and calculated by the following
code fragment:

m.def_new_cap_sto_c = pyomo.Constraint(
m.sto_block_c_tuples,
rule=def_new_cap_sto_c_rule,
doc='cap_sto_c_new = cap_sto_c_unit * c-block')

def def_new_cap_sto_c_rule(m, stf, sit, sto, com):
return (m.cap_sto_c_new[stf, sit, sto, com] ==

m.sto_cap_c_unit[stf, sit, sto, com] *
m.sto_block_c_dict[stf, sit, sto, com])
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Storage New Power Rule: The constraint storage new power rule defines the newly installed power of
a storage �̂�p

𝑦𝑣𝑠. This variable is defined by the constraint as the product of the variable new power size
units 𝛽p

𝑦𝑣𝑠 and the parameter storage new power block 𝐾p,block
𝑦𝑣𝑠 . The mathematical explanation of this

rule is given in Energy Storage.

In script storage.py the constraint storage capacity rule is defined and calculated by the following
code fragment:

m.def_new_cap_sto_p = pyomo.Constraint(
m.sto_block_p_tuples,
rule=def_new_cap_sto_p_rule,
doc='cap_sto_p_new = cap_sto_p_unit * p-block')

def def_new_cap_sto_p_rule(m, stf, sit, sto, com):
return (m.cap_sto_p_new[stf, sit, sto, com] ==

m.sto_cap_p_unit[stf, sit, sto, com] *
m.sto_block_p_dict[stf, sit, sto, com])

Storage Input By Power Rule: The constraint storage input by power rule limits the variable storage
input commodity flow 𝜖in

𝑦𝑣𝑠𝑡. This constraint restricts a storage 𝑠 in a site 𝑣 and support timeframe 𝑦 at a
timestep 𝑡 from having more input power than the storage power capacity. The constraint states that the
variable 𝜖in

𝑦𝑣𝑠𝑡 must be less than or equal to the variable total storage power 𝜅p
𝑦𝑣𝑠, scaled by the size of

the time steps :math: Delta t. The mathematical explanation of this rule is given in Energy Storage.

In script storage.py the constraint storage input by power rule is defined and calculated by the
following code fragment:

m.res_storage_input_by_power = pyomo.Constraint(
m.tm, m.sto_tuples,
rule=res_storage_input_by_power_rule,
doc='storage input <= storage power')

def res_storage_input_by_power_rule(m, t, stf, sit, sto, com):
return (m.e_sto_in[t, stf, sit, sto, com] <= m.dt *

m.cap_sto_p[stf, sit, sto, com])

Storage Output By Power Rule: The constraint storage output by power rule limits the variable storage
output commodity flow 𝜖out

𝑦𝑣𝑠𝑡. This constraint restricts a storage 𝑠 in a site 𝑣 and support timeframe 𝑦 at
a timestep 𝑡 from having more output power than the storage power capacity. The constraint states that
the variable 𝜖out

𝑣𝑠𝑡 must be less than or equal to the variable total storage power 𝜅p
𝑦𝑣𝑠, scaled by the size of

the time steps ∆𝑡. The mathematical explanation of this rule is given in Energy Storage.

In script storage.py the constraint storage output by power rule is defined and calculated by the
following code fragment:

m.res_storage_output_by_power = pyomo.Constraint(
m.tm, m.sto_tuples,
rule=res_storage_output_by_power_rule,
doc='storage output <= storage power')

def res_storage_output_by_power_rule(m, t, stf, sit, sto, co):
return (m.e_sto_out[t, stf, sit, sto, co] <= m.dt *

m.cap_sto_p[stf, sit, sto, co])

Storage State By Capacity Rule: The constraint storage state by capacity rule limits the variable storage
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energy content 𝜖con
𝑦𝑣𝑠𝑡. This constraint restricts a storage 𝑠 in a site 𝑣 and support timeframe 𝑦 at a

timestep 𝑡 from having more storage content than the storage content capacity. The constraint states that
the variable 𝜖con

𝑦𝑣𝑠𝑡 must be less than or equal to the variable total storage size 𝜅c
𝑦𝑣𝑠. The mathematical

explanation of this rule is given in Energy Storage.

In script storage.py the constraint storage state by capacity rule is defined and calculated by the
following code fragment.

m.res_storage_state_by_capacity = pyomo.Constraint(
m.t, m.sto_tuples,
rule=res_storage_state_by_capacity_rule,
doc='storage content <= storage capacity')

def res_storage_state_by_capacity_rule(m, t, stf, sit, sto, com):
return (m.e_sto_con[t, stf, sit, sto, com] <=

m.cap_sto_c[stf, sit, sto, com])

Storage Power Limit Rule: The constraint storage power limit rule limits the variable total storage
power 𝜅p

𝑦𝑣𝑠. This contraint restricts a storage 𝑠 in a site 𝑣 and support timeframe 𝑦 from having more
total power output capacity than an upper bound and having less than a lower bound. The constraint
states that the variable total storage power 𝜅p

𝑦𝑣𝑠 must be greater than or equal to the parameter storage
power lower bound 𝐾p

𝑦𝑣𝑠 and less than or equal to the parameter storage power upper bound 𝐾p
𝑦𝑣𝑠. The

mathematical explanation of this rule is given in Energy Storage.

In script storage.py the constraint storage power limit rule is defined and calculated by the following
code fragment:

m.res_storage_power = pyomo.Constraint(
m.sto_tuples,
rule=res_storage_power_rule,
doc='storage.cap-lo-p <= storage power <= storage.cap-up-p')

def res_storage_power_rule(m, stf, sit, sto, com):
return (m.storage_dict['cap-lo-p'][(stf, sit, sto, com)],

m.cap_sto_p[stf, sit, sto, com],
m.storage_dict['cap-up-p'][(stf, sit, sto, com)])

Storage Capacity Limit Rule: The constraint storage capacity limit rule limits the variable total storage
size 𝜅c

𝑦𝑣𝑠. This constraint restricts a storage 𝑠 in a site 𝑣 and support timeframe 𝑦 from having more total
storage content capacity than an upper bound and having less than a lower bound. The constraint states
that the variable total storage size 𝜅c

𝑦𝑣𝑠 must be greater than or equal to the parameter storage content
lower bound 𝐾c

𝑦𝑣𝑠 and less than or equal to the parameter storage content upper bound 𝐾c
𝑦𝑣𝑠. The

mathematical explanation of this rule is given in Energy Storage.

In script storage.py the constraint storage capacity limit rule is defined and calculated by the fol-
lowing code fragment:

m.res_storage_capacity = pyomo.Constraint(
m.sto_tuples,
rule=res_storage_capacity_rule,
doc='storage.cap-lo-c <= storage capacity <= storage.cap-up-c')

def res_storage_capacity_rule(m, stf, sit, sto, com):
return (m.storage_dict['cap-lo-c'][(stf, sit, sto, com)],

(continues on next page)
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(continued from previous page)

m.cap_sto_c[stf, sit, sto, com],
m.storage_dict['cap-up-c'][(stf, sit, sto, com)])

Initial And Final Storage State Rule: The constraint initial and final storage state rule defines and
restricts the variable storage energy content 𝜖con

𝑦𝑣𝑠𝑡 of a storage 𝑠 in a site 𝑣 and support timeframe 𝑦 at the
initial timestep 𝑡1 and at the final timestep 𝑡𝑁 . There are two distinct cases:

1. The initial and final storage states are specified by a value of the parameter 𝐼𝑦𝑣𝑠 between 0 and 1. 2.
𝐼𝑦𝑣𝑠 is not specified (e.g. by setting it ‘#NV’ in the input sheet). In this case the initial and final storage
state are still equal but variable.

In case 1 the constraints are written in the following way:

Initial storage state: Initial storage represents the storage state in a storage at the beginning of the simula-
tion. The variable storage energy content 𝜖con

𝑦𝑣𝑠𝑡 at the initial timestep 𝑡1 is defined by this constraint. The
constraint states that the variable 𝜖con

𝑣𝑠𝑡1 must be equal to the product of the parameters storage content
installed 𝐾c

𝑦𝑣𝑠 and initial and final state of charge 𝐼𝑦𝑣𝑠.

Final storage state: Final storage represents the storage state in a storage at the end of the simulation.
The variable storage energy content 𝜖con

𝑦𝑣𝑠𝑡 at the final timestep 𝑡𝑁 is restricted by this constraint. The
constraint states that the variable 𝜖con

𝑦𝑣𝑠𝑡𝑁
must be greater than or equal to the product of the parameters

storage content installed 𝐾c
𝑦𝑣𝑠 and initial and final state of charge 𝐼𝑦𝑣𝑠. The mathematical explanation

of this rule is given in Energy Storage.

In script storage.py the constraint initial and final storage state rule is then defined and calculated
by the following code fragment:

m.res_initial_and_final_storage_state = pyomo.Constraint(
m.t, m.sto_init_bound_tuples,
rule=res_initial_and_final_storage_state_rule,
doc='storage content initial == and final >= storage.init * capacity')

In case 2 the constraint becomes a lot easier, since the initial and final state are simply compared to each
other by the following inequality:

∀𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆 : 𝜖con
𝑣𝑠𝑡1 ≤ 𝜖con

𝑣𝑠𝑡𝑁

In script storage.py the constraint initial and final storage state rule is then defined and calculated
by the following code fragment:

m.res_initial_and_final_storage_state_var = pyomo.Constraint(
m.t, m.sto_tuples - m.sto_init_bound_tuples,
rule=res_initial_and_final_storage_state_var_rule,
doc='storage content initial <= final, both variable')

Storage Energy to Power Ratio Rule: For certain type of storage technologies, the power and energy
capacities cannot be independently sized but are dependent to each other. Hence, the constraint storage
energy to power ratio rule sets a linear dependence between the capacities through a user-defined “energy
to power ratio” 𝑘E/P

𝑦𝑣𝑠. It has to be noted that this constraint is only active for the storages with a positive
value under the column “ep-ratio” in the input file, and when this value is not given, the power and
energy capacities can be sized independently. The mathematical explanation of this rule is given in
Energy Storage.

In script storage.py the constraint storage energy to power rule is then defined and calculated by the
following code fragment:
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m.def_storage_energy_power_ratio = pyomo.Constraint(
m.sto_en_to_pow_tuples,
rule=def_storage_energy_power_ratio_rule,
doc='storage capacity = storage power * storage E2P ratio')

def def_storage_energy_power_ratio_rule(m, stf, sit, sto, com):
return (m.cap_sto_c[stf, sit, sto, com] == m.cap_sto_p[stf, sit, sto,

→˓com] *
m.storage_dict['ep-ratio'][(stf, sit, sto, com)])

Cost Constraints

The variable total system cost 𝜁 is calculated by the cost function. In cases of CO2-minimization the
total system cost is constrained by the following expression:

𝜁 = 𝜁inv + 𝜁fix + 𝜁var + 𝜁fuel + 𝜁rev + 𝜁pur + 𝜁startup + 𝜁env ≤ 𝐿𝑐𝑜𝑠𝑡

This constraint is given in model.py by the following code fragment.

def res_global_cost_limit_rule(m, stf):
if math.isinf(m.global_prop_dict["value"][stf, "Cost limit"]):

return pyomo.Constraint.Skip
elif m.global_prop_dict["value"][stf, "Cost limit"] >= 0:

return(pyomo.summation(m.costs) <= m.global_prop_dict["value"]
[stf, "Cost limit"])

else:
return pyomo.Constraint.Skip

1.3.2 ‘urbs’ module description

This part gives a brief overview over the architecture of the program. The data flow in an urbs model is
visualized in the following graph:

‘urbs’ uses a modular structure to build and execute the optimization and to automatically generate the
results. All scripts are placed in the folder ‘urbs’. In subfolder ‘features’ constraint expressions for the
mathematical model are defined. These will not be discussed here and only the highest level functions
will be discussed. The scripts used for these are the following (in alphabetical order):
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identify.py

In this scripts the dictionary of input dataframes ‘data’ is parsed to conclude the structure of the problem
to be built.

input.py

This file handles the input and prepares the mathematical model itself.

model.py

This file just includes the central function used for model generation.

output.py

This file contains lower level functions to retrieve data from a solved model instance.

plot.py

This script generates automated output pictures using the function

report.py

This script handles the automated generation of an excel data sheet from the solved model instance.

runfunctions.py

This file contains the central function for running a predefined set of inputs or a scenario thereof.

saveload.py

This file contains two functions to save and load a collection of inputs and the corresponding outputs of
a model instance.

scenarios.py

In this script scenario functions are defined. These are used to automatically change the inputs as given
in dictionary ‘data’. In this way multiple runs of similar model instances can be automated.

validation.py

This file makes sure that the input given is not leading to an infeasible or non-sensical model. It generates
error messages for certain known errors. It is a organically growing script.
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1.4 CoTraDis module

Continue here for the usage instructions on the coupled transmission-distribution system (CoTraDis)
module.

1.4.1 Coupling of Transmission and Distribution System Modules

Overview

To completely understand the following new CoTraDis documentation you should already be familiar
with the general urbs model (consult Users guide of the urbs framework). Before applying the de-
veloped CoTraDis model framework you should start with this overview that explains the underlying
ideas of coupling transmission and distribution systems as developed in the master thesis of Beneharo
Reveron Baecker: “Implementation of a novel energy system model coupling approach to co-optimize
transmission and active distribution systems”, 2021. The related documentation is structured into four
main parts:

1. The development of a model framework that enables the consideration of distribution systems.
The implementations to consider their characteristics properly are described in Distribution Sys-
tem Framework.

2. An automated coupling of transmission and distribution system data. The implementation can be
seen in the section Automated Coupling.

3. A suitable approach to reduce the computational complexity. The implementations make use of
the typeperiod idea in combination with time series aggregation methods. It is decribed in detailin
the section Time Series Aggregation with Typeperiods. If you want to understand the mathematical
background of tsam, you should first have a look at the documentation of the open source python
tsam package described by Kotzuer et al.

4. Finally the ‘CoTraDis’ application guide gives ideas on how to use the provided framework for
future projects.

Distribution System Framework

This section explains the implementations to consider specific distribution system characteristics. Major
additions & modifications were applied to the the following scripts:

• model.py:

• transmission.py:

which will be described below. | Before dealing with the code, a short summary of required aspects to
consider will be given.

Distribution systems are different from transmission systems in a number of facets. Dif-
ferences to highlight are the reactance-to-resistance ratio (X/R) and their common radial
composition. Depending on these attributes an AC optimal-power-flow model may be help-
ful to deal with distribution system reactive power and voltage constraints. Hence, the
“LinDistFlow” model linearization has been introduced into the given framework as shown
in transmission.py. Besides, we enhanced the urbs framework by integrating several aspects
that characterize classic distribution systems:

• radially-operated open ring grid segments
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• a transformer between both system levels modelled with a boundary bus

• reactive power demand for households

• reactive power line flows and an apparent power line flow constraint

• a central reactive power compensation system

• inverters with a predefined permittible ratio of reactive to active power generation.

The microgrids to describe the distribution system can be freely defined with the microgrid input sheets.
The predefined microgrid structure with their assigned technologies as provided in the input data are
illustrated below:

Implementations: model.py

The extensions within this module mainly include reactive power consideration for processes. In order
to do so, all components located at distribution system nodes are identified with the ‘min-voltage’ pa-
rameter’ which is determined in the “sites” sheet of the microgrid input data. This set is used in this
module and in the urbs/transmission.py module as explained later.

m.sit_tuples_ac = pyomo.Set(
within=m.stf * m.sit,
initialize=[(stf, site) for (stf, site) in m.sit_tuples

if m.site_dict['min-voltage'][(stf, site)] > 0],
doc='Combinations of support timeframes and sites with ac

→˓characteristics')

In this module the reactive power output share is typically indicated with the power factor 𝜑 that can be
defined for each process in the input sheet.It describes the ratio of real power over apparent power. With
this for instance PV-inverters can be enabled to provide inductive and capacitive reactive power. The

1.4. CoTraDis module 137



urbs Documentation, Release 1.0.0

permissible ratio of active and reactive power output for generators is implemented into the model with
the following rules that connect the reactive with the active power output by defining upper and lower
generation limits for the previously defined set:

def def_process_output_reactive_rule1(m, tm, stf, sit, pro):
return (m.e_pro_out[tm, stf, sit, pro, 'electricity-reactive'] <=
m.e_pro_out[tm, stf, sit, pro, 'electricity']

* math.tan(math.acos(m.process_dict['pf-min'][(stf, sit, pro)])))
def def_process_output_reactive_rule2(m, tm, stf, sit, pro):

return (m.e_pro_out[tm, stf, sit, pro, 'electricity-reactive'] >=
-m.e_pro_out[tm, stf, sit, pro, 'electricity']

* math.tan(math.acos(m.process_dict['pf-min'][(stf, sit, pro)])))

Furthermore, a set with all boundary buses denoted as slackbuses representing the transformer on the
distribution system site is defined as follows:

m.sit_slackbus = pyomo.Set(
within=m.stf * m.sit,
initialize=[(stf, site)for (stf, site) in m.sit_tuples

if m.site_dict['ref-node'][(stf, site)] == 1],
doc='Set of all reference nodes in defined microgrids')

In the transmission.py module this set is applied to define the voltage level of each microgrid as
defined with the base-voltage parameters.

Implementations: transmission.py

Transmission lines can only transport one single commodity in the given model framework. Therefore,
imaginary extra lines are created in the transdisthelper.py module. Active and reactive power
flows are coupled with a redefined transmission line capacity constraint using a new rule that considers
the apparent power:

def def_transmission_input_by_apparent_power_rule(m, tm, stf, sin, sout,
→˓tra, com):

return (m.e_tra_in[tm, stf, sin, sout, tra, 'electricity']**2
+ m.e_tra_in[tm, stf, sin, sout, tra, 'electricity-reactive']**2
<= (m.dt * m.cap_tra[stf, sin, sout, tra, com])**2)

To consider the correct lines in a coupled model the distribution system transmission tuple set is created
for all predefined lines. The resistance is required in the input sheet to activate the distribution system
linearization method. The resistance parameter should be greater than 0 and given in per-unit system.
The new m.def_ac_power_flow constraint applies the following rule to the resulting tupel set of
lines:

def def_ac_power_flow_rule(m, tm, stf, sin, sout, tra, com):
return (m.voltage_squared[tm, stf, sin] == m.voltage_squared[tm, stf,
→˓sout] +

2* (m.transmission_dict['resistance'][(stf, sin, sout, tra,
→˓'electricity')]

* m.e_tra_in[tm, stf, sin, sout, tra, 'electricity']
+ m.transmission_dict['reactance'][(stf, sin, sout, tra,

→˓'electricity-reactive')]

* m.e_tra_in[tm, stf, sin, sout, tra, 'electricity-reactive']))
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In comparison to the DC-OPF Multinode optimization model model, the key difference is that the nodal
voltage magnitudes 𝑉 2 are related to the active and reactive power branch flows with the respective line
impedance. After creating the new variable voltage_squared for this quantity

m.voltage_squared = pyomo.Var(
m.tm, m.sit_tuples_ac,
within=pyomo.Reals,
doc='Voltage^2 of a site')

another constraint is introduced in order to monitor the permissible voltage range for all distribution
system sites included in a new set that has been defined in urbs/model.py. This is achieved with the
new def_voltage_limit constraint applying the following rule:

def def_voltage_limit_rule(m, tm, stf, sin):
return ((m.site_dict['base-voltage'][(stf, sin)] * m.site_dict[

→˓'min-voltage'][(stf, sin)])**2,
m.voltage_squared[tm, stf, sin],
(m.site_dict['base-voltage'][(stf, sin)] * m.site_dict['max-voltage

→˓'][(stf, sin)])**2)

Moreover, the voltage of all nodes within the introduced slackbus set is scaled to the base voltage of the
respective grid, that is defined within the input sheet:

def def_slackbus_voltage_rule(m, tm, stf, sin):
return (m.voltage_squared[tm, stf, sin] == m.site_dict['base-

→˓voltage'][(stf, sin)]**2)

Automated Coupling

A central goal in this work is to consider different system levels within a single multi-commodity en-
ergy system model for expansion and operation planning. A key aspect to realize this for our energy
system planning approach is to integrate the bottom level microgrids within each associated top level re-
gion. In the following, a walkthrough on the transdisthelper.py script will be given to establish
understanding regarding how the model coupling implementations work.

1. Import of Microgrid Data

Import microgrid data with a predefined selection list:

for set_number, set in enumerate(microgrid_set_list): # top region
→˓microgrid setting

top_region_name = data['site'].index.get_level_values(1)[set_number]
for type_nr, quantity_nr in enumerate(set):

microgrid_entries = microgrid_data_initial[type_nr]['site'].index.
→˓get_level_values(1)

n = 0
while n < quantity_nr:

microgrid_data_input = copy.deepcopy(microgrid_data_
→˓initial[type_nr])

for entry in microgrid_entries:

Note: So far, demand and RE capacity factor timeseries are scaled for entire microgrid categories of
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a region. In comparison to the variety of millions of demand and weather curves of large regions, this
leads to unrealistically high simultaneity as the number of different timeseries in the model is limited.
Thereby, peaks for generation and demand curves get clearly higher leading to overestimated peak load
capacitiy requirements and thus increasing overall system costs. The idea of a quantity number >1 in
the selection list was to build different microgrids of the same type with automated timeseries variability
to counteract this effect. Due to computational limits, this hasn’t been pursued yet but is kept in the
script for potential future work. However, in our approach, this increased peaks can be reduced with the
applied timeseries aggregation method that has a beneficial smoothing effect on demand curves.

2. Model Connection

Specification of the DS data to the overlying regions by defining unique indices for each parameter
and region and the automated definition of a direct connection representing the transformer interface
between both system levels:

def create_microgrid_data(microgrid_data_input, entry, n, top_region_name):
### Parameter Indexing
microgrid_data_input['site'].rename(

index={entry: entry + str(n + 1) + '_' + top_region_name}, level=1,
→˓ inplace=True)

microgrid_data_input['commodity'].rename(
index={entry: entry + str(n + 1) + '_' + top_region_name}, level=1,

→˓ inplace=True)
microgrid_data_input['process'].rename(

index={entry: entry + str(n + 1) + '_' + top_region_name}, level=1,
→˓ inplace=True)

microgrid_data_input['process_commodity'].rename(
index={entry: entry + str(n + 1) + '_' + top_region_name}, level=1,

→˓ inplace=True)
microgrid_data_input['demand'].rename(

columns={entry: entry + str(n + 1) + '_' + top_region_name},
→˓level=0, inplace=True)

microgrid_data_input['supim'].rename(
columns={entry: entry + str(n + 1) + '_' + top_region_name},

→˓level=0, inplace=True)
microgrid_data_input['storage'].rename(

index={entry: entry + str(n + 1) + '_' + top_region_name}, level=1,
→˓ inplace=True)

microgrid_data_input['dsm'].rename(
index={entry: entry + str(n + 1) + '_' + top_region_name}, level=1,

→˓ inplace=True)
microgrid_data_input['buy_sell_price'].rename(

columns={entry: entry + str(n + 1) + '_' + top_region_name},
→˓level=0, inplace=True)

microgrid_data_input['eff_factor'].rename(
columns={entry: entry + str(n + 1) + '_' + top_region_name},

→˓level=0, inplace=True)
### for transmission data indexes on two levels must be changed
microgrid_data_input['transmission'].rename(

index={entry: entry + str(n + 1) + '_' + top_region_name}, level=1,
→˓ inplace=True)

microgrid_data_input['transmission'].rename(
index={entry: entry + str(n + 1) + '_' + top_region_name}, level=2,

→˓ inplace=True)
(continues on next page)
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### Transformer Interface
microgrid_data_input['transmission'].rename(

index={'top_region_dummy': top_region_name}, level=1, inplace=True)
microgrid_data_input['transmission'].rename(

index={'top_region_dummy': top_region_name}, level=2, inplace=True)
return microgrid_data_input

3. Parameter Scaling

Scaling of parameters with appropriate multipliers (see How to Determine Multipliers) to represent the
multitude of the distribution systems:

def multiplicator_scaling(mode, data, microgrid_data_input, microgrid_
→˓multiplicator_list, set_number, type_nr):

### determine multiplicator for region and microgrid type
multi = data['transdist_share'].values[0] * microgrid_multiplicator_

→˓list[set_number][type_nr]
### base voltage is scaled with the root value of the multiplicator

→˓for a correct consideration within the voltage rule
microgrid_data_input['site'].loc[:, 'base-voltage'] *= math.sqrt(multi)
### scale other relevant quantities
microgrid_data_input['commodity'].loc[:, 'max':'maxperhour'] *= multi
microgrid_data_input['process'].loc[:, ['inst-cap', 'cap-lo', 'cap-up',

→˓ 'cap-block']] *= multi
microgrid_data_input['transmission'].loc[:, ['inst-cap', 'cap-lo',

→˓'cap-up', 'tra-block']] *= multi
microgrid_data_input['storage'].loc[:, ['inst-cap-c', 'cap-lo-c', 'cap-

→˓up-c', 'inst-cap-p', 'cap-lo-p',
'cap-up-p', 'c-block', 'p-block

→˓']] *= multi
microgrid_data_input['dsm'].loc[:, 'cap-max-do':'cap-max-up'] *= multi
### if tsam activated postpone demand scaling to reduce number of tsam

→˓input timeseries, but still pass demand shift
if mode['tsam'] == True:

demand_shift = microgrid_data_input['demand'] * multi
### otherwise also scale demand data
if mode['tsam'] == False:

microgrid_data_input['demand'] *= multi
demand_shift = microgrid_data_input['demand']

return microgrid_data_input, demand_shift

Note: Postponement of demand scaling if tsam is active

The timeseries aggregation method that is described in Time Series Aggregation with Typeperiods is
sensitive to duplicated input timeseries. Therefore, only unique timeseries are handed over as input. All
households are defined with the same microgrid templates. If these are scaled before handing them over
to the TSA method, duplicate profiles with different scales are not recognized. Therefore, in this case
the scaling of the demand is postponed.
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4. Scenario Shifting

Demand shifting between scenarios for better comparability:

def shift_demand(data, microgrid_data_input, set_number, type_nr, demand_
→˓shift, loadprofile_BEV, top_region_name,

mobility_transmission_shift, heat_transmission_shift,
→˓transdist_eff):

### subtract private electricity demand at distribution level
→˓(increased by tdi efficiency) from transmission level considering line
→˓losses

data['demand'].iloc[:, set_number] -= demand_shift.loc[:, pd.
→˓IndexSlice[:, 'electricity']].sum(axis=1) / transdist_eff

if data['transdist_share'].values[0] == 1:
### store scaled full mobility and heat demand for 100% active

→˓distribution network for subsequent scenarios
mobility_transmission_shift[(top_region_name, type_nr)] =

→˓loadprofile_BEV * demand_shift.loc[:, pd.IndexSlice[:, 'mobility']].
→˓sum().sum() / transdist_eff

COP_ts = microgrid_data_input['eff_factor'].loc[:, pd.IndexSlice[:,
→˓ 'heatpump_air']].iloc[:,0].squeeze() #get COP timeseries to transform
→˓hourly heat to electricity demand

heat_transmission_shift[(top_region_name, type_nr)] = demand_shift.
→˓loc[:, pd.IndexSlice[:, 'heat']].sum(axis=1).divide(COP_ts).fillna(0) /
→˓transdist_eff

return data, mobility_transmission_shift, heat_transmission_shift

Note: The subsequent full shifting process is explained in detail in the ‘CoTraDis’ application guide

5. RE Profiles

Copy capacity factor timeseries for renewable energy resources from top level region to all microgrids
within that region

def copy_SupIm_data(data, microgrid_data_input, top_region_name):
for col in microgrid_data_input['supim'].columns:

microgrid_data_input['supim'].loc[:, col] = data['supim'].loc[:,
→˓(top_region_name, col[1])]

return microgrid_data_input

6. Reactive Power Flows

Model new imaginary lines to enable reactive power flow on respective lines with defined resistance:

def add_reactive_transmission_lines(microgrid_data_input):
### copy transmission lines with resistance to model transmission

→˓lines for reactive power flows
reactive_transmission_lines = microgrid_data_input['transmission

→˓'][microgrid_data_input['transmission'].loc[:, 'resistance'] > 0]
reactive_transmission_lines = reactive_transmission_lines.copy(deep =

→˓True)
(continues on next page)
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reactive_transmission_lines.rename(index={'electricity': 'electricity-
→˓reactive'}, level=4, inplace=True)

### set costs to zero as lines are not really built -
reactive_transmission_lines.loc[:, 'inv-cost':'var-cost'] *= 0
### concat new line data
microgrid_data_input['transmission'] = pd.concat([microgrid_data_input[

→˓'transmission'], reactive_transmission_lines], sort=True)
return microgrid_data_input

And Implement reactive power outputs as commodity according to predefined power factors for pro-
cesses:

def add_reactive_output_ratios(microgrid_data_input):
pro_Q = microgrid_data_input['process'][microgrid_data_input['process

→˓'].loc[:, 'pf-min'] > 0]
ratios_elec = microgrid_data_input['process_commodity'].loc[pd.

→˓IndexSlice[:, :, 'electricity', 'Out'], :]
for process_idx, process in pro_Q.iterrows():

for ratio_P_idx, ratio_P in ratios_elec.iterrows():
if process_idx[2] == ratio_P_idx[1]:

ratio_Q = ratios_elec.loc[pd.IndexSlice[:, ratio_P_idx[1],
→˓'electricity', 'Out'], :].copy(deep = True)

ratio_Q.rename(index={'electricity': 'electricity-reactive
→˓'}, level=2, inplace=True)

microgrid_data_input['process_commodity'] = microgrid_data_
→˓input['process_commodity'].append(ratio_Q)

microgrid_data_input['process_commodity'] = microgrid_data_
→˓input['process_commodity']\

[~microgrid_data_input['process_commodity'].index.
→˓duplicated(keep='first')]

return microgrid_data_input

7. Concatenation

Concatenation of the previously processed data from both system levels:

def concatenate_with_micros(data, microgrid_data):
data['site'] = pd.concat([data['site'], microgrid_data['site']],

→˓sort=True)
data['commodity'] = pd.concat([data['commodity'], microgrid_data[

→˓'commodity']],sort=True)
data['process'] = pd.concat([data['process'], microgrid_data['process

→˓']],sort=True)
data['process_commodity'] = pd.concat([data['process_commodity'],

→˓microgrid_data['process_commodity']],sort=True)
data['process_commodity'] = data['process_commodity'][~data['process_

→˓commodity'].index.duplicated(keep='first')]
data['demand'] = pd.concat([data['demand'], microgrid_data['demand']],

→˓axis=1,sort=True)
data['supim'] = pd.concat([data['supim'], microgrid_data['supim']],

→˓axis=1,sort=True)
data['transmission'] = pd.concat([data['transmission'], microgrid_data[

→˓'transmission']],sort=True)
data['storage'] = pd.concat([data['storage'], microgrid_data['storage

→˓']],sort=True) (continues on next page)
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data['dsm'] = pd.concat([data['dsm'], microgrid_data['dsm']],sort=True)
data['buy_sell_price'] = pd.concat([data['buy_sell_price'], microgrid_

→˓data['buy_sell_price']], axis=1,sort=True)
data['eff_factor'] = pd.concat([data['eff_factor'], microgrid_data[

→˓'eff_factor']], axis=1,sort=True)
return data

8. Worklfow

The workflow of all previously described transdisthelper.py implementation is illustrated be-
low:
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Time Series Aggregation with Typeperiods

Typeperiod Motivation

The type period module has been adapted into the urbs framework by Daniel Zinsmeister and modified
to fit into our approach as described below. It allows to scale selected periods to represent the entire year.
In energy system models it is popular to do so as there are recurring patterns in relevant timeseries such
as demand or solar irradiation profiles. For instance, typical periods for summer and winter time can
be chosen and scaled with the corresponding incidence of expected summer/winter periods. Thereby,
economic (costs) and environmental (emissions) effects can be scaled adequately.

Approach with the ‘tsam’ Method

Hereby, the challenge is to choose the most representative period of a season. The timestep selection
must hold for all input timeseries. Considering only one solar irradiation curve when defining two typical
periods for summer and winter, it is possible to manually choose the best fitting weeks within the year.
However, even a simplified model of a country considers approximately 100 distinct profiles. Hence,
it is not possible to manually choose the most suitable representative periods and a mathematical and
automated method is necessary instead. Therefore, to choose the best fitting typeperiods an open source
python package called tsam is used, that applies machine learning methods and has been developed by
Leander Kotzur, Maximilian Hoffmann, Peter Markewitz, Martin Robinius and Detlef Stolten.To under-
stand the tsam procedure in detail see their provided tsam documentation. Summarized, a predefined
number of type periods with a selected number of hours per period is calculated to optimally repre-
sent the original data for all timeseries simultaneously. This is realized by optimizing cluster groups
with the Root-Mean-Squared-Error (RMSE) as objective functional value. Thereby, redundant data are
minimized and thereby computational complexity can be substantially decreased.

In our approach before giving the timeseries data to the tsam algorithm, for all redundant profiles, a
‘Python’ dictionary is created to remember the equal profiles which have been handed over. Next all
duplicates are deleted. By doing so the number of input timeseries in our approach could be reduced
from 1638 to 95.

def run_tsam(data, noTypicalPeriods, hoursPerPeriod, cross_scenario_data):
### bring together all time series data
time_series_data = pd.concat([data['demand'], data['supim'], data['buy_

→˓sell_price'],
data['eff_factor']], axis=1, sort=True)

### create dict
equal_col_dict = dict()
for col1 in time_series_data.columns:

time_series_data2 = time_series_data.drop(columns = col1)
for col2 in time_series_data2.columns:

if time_series_data[col1].equals(time_series_data2[col2]):
equal_col_dict[col1] = col2
break

### drop duplicate timeseries
time_series_data = time_series_data.T.drop_duplicates().T

This dictionary is used after the application of the timeseries aggregation to allocate the results to all
original profiles.
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Enabling Seasonal Storage Solutions

The motivation to apply typical periods is to weight cluster periods based on their total incidence number.
The explicit chain of periods and thus the transition between distinct periods is not considered. Thereby,
the overall number of periods to model keeps low and thus the computational complexity is reduced.
Despite, the disadvantage is that the possibility of energy exchange between periods is disregarded. As
a consequence, storage components must be modelled with an additional constraint denoted as cyclicity
condition setting all period’s final storage SOCs equal to the initial values.

### original timeset for cyclicity rule
m.t_endofperiod = pyomo.Set(

within=m.t,
initialize=t_endofperiod_list,
ordered=True,
doc='timestep at the end of each timeperiod')

### cyclicity contraint
m.res_storage_state_cyclicity_typeperiod = pyomo.Constraint(

m.t_endofperiod, m.sto_tuples,
rule=res_storage_state_cyclicity_typeperiod_rule,
doc='storage content initial == storage content at the end of each

→˓timeperiod')

### cyclicity rule without tsam
def res_storage_state_cyclicity_typeperiod_rule(m, t, stf, sit, sto, com):

return (m.e_sto_con[m.t[1], stf, sit, sto, com] == m.e_sto_con[t, stf,
→˓sit, sto, com])

The resulting main disadvantage is that long-term storage solutions that are essential for RE-dominant
energy systems cannot be considered appropriately. Therefore, we apply a time series aggregation
method with typical weeks combined with an additional storage constraint that enables the exchange
of energy between consecutive, alternating periods (for instance the type periods A and B). This relaxes
the cyclicity condition within a given type period, i.e. a total SOC change within a given type period A
is allowed. The basic idea is illustrated below for four typical weeks:
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The definition of required sets, variables, constraints and rules to implement this idea are presented
below:

### sets
m.t_endofperiod = pyomo.Set(

within=m.t,
initialize=t_endofperiod_list,
ordered=True,
doc='timestep at the end of each timeperiod')

m.subsequent_typeperiods = pyomo.Set(
within=m.t * m.t,
initialize=subsequent_typeperiods_list,
ordered=True,
doc='subsequent timesteps between two typeperiods')

m.start_end_typeperiods = pyomo.Set(
within=m.t * m.t,
initialize=start_end_typeperiods_list,
ordered=True,
doc='start and end of each modeled typeperiod as tuple')

### SOC variable
m.deltaSOC = pyomo.Var(

m.t_endofperiod, m.sto_tuples,
within=pyomo.Reals,
doc='Variable to describe the delta of a storage within each period')

(continues on next page)
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### constraints
### constraint to describe the SOC difference of a storage within a
→˓repeating period A
m.res_delta_SOC = pyomo.Constraint(

m.start_end_typeperiods, m.sto_tuples,
rule=res_delta_SOC,
doc='delta_SOC_A = weight * (SOC_A_tN - SOC_A_t0)')

### SOC constraint for two consecutive typeperiods A and B
m.res_typeperiod_delta_SOC = pyomo.Constraint(

m.subsequent_typeperiods, m.sto_tuples,
rule=res_typeperiod_deltaSOC_rule,
doc='SOC_B_t0 = SOC_A_t0 + delta_SOC_A')

### new ciclycity constraint for typeperiods
m.res_storage_state_cyclicity_typeperiod = pyomo.Constraint(

m.sto_tuples,
rule=res_storage_state_cyclicity_rule_typeperiod,
doc='storage content end >= storage content start - deltaSOC[last_

→˓typeperiod]')

### rules
### SOC rule for each repeating typeperiod
def res_delta_SOC(m, t_0, t_end, stf, sit, sto, com):

return ( m.deltaSOC[t_end, stf, sit, sto, com] ==
(m.typeperiod_weights[t_end] - 1) * (m.e_sto_con[t_end, stf,

→˓sit, sto, com]
- m.e_sto_con[t_0, stf, sit, sto, com]))

### new storage rule using tsam considering the delta SOC per repeating
→˓typeperiod
def res_typeperiod_deltaSOC_rule(m, t_A, t_B, stf, sit, sto, com):

return (m.e_sto_con[t_B, stf, sit, sto, com] ==
m.e_sto_con[t_A, stf, sit, sto, com] + m.deltaSOC[t_A, stf,

→˓sit, sto, com])

### new ciclycity rule for typeperiods
def res_storage_state_cyclicity_rule_typeperiod(m, stf, sit, sto, com):

return (m.e_sto_con[m.t[len(m.t)], stf, sit, sto, com] >=
m.e_sto_con[m.t[1], stf, sit, sto, com] - m.deltaSOC[m.t[len(m.

→˓t)], stf, sit, sto, com])

‘CoTraDis’ application guide

This section serves as a guide for those who would like to use the CoTraDis module. First the adjusted
runme file is introduced. Next, special input parameters to consider are presented. Finally, the default
scenario framework is discussed in order to enable you to define own model scenarios.

The script starts with the specification of the input files. The input folder must be located in the same
folder as the run_transdist.py script. In this folder the main transmission system file is located
including another folder that contains input files for each desired microgrid type. The desired input files
to be imported must be defined at the beginning of the script
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input_files = 'Transmission_Level.xlsx' # for single year file name, for
→˓intertemporal folder name
microgrid_files = ['Microgrid_rural_A.xlsx','Microgrid_urban_A.xlsx']

Then the result name and the result directory is set

result_name = 'Trans-Dist'

Next, the objective function to be minimized by the model is determined (options: ‘cost’ or ‘CO2’)

# objective function
objective = 'cost' # set either 'cost' or 'CO2' as objective

and the solver to use muste be chosen. Gurobi is our predefined solver - to use it an academic license
must be downloaded at the Gurobi website after creating an account.

# Choose Solver (cplex, glpk, gurobi, ...)
solver = 'gurobi'

To apply time series aggregation methods (tsam) the number of typical periods and the length of the
periods must be defined:

# input data for tsam method
noTypicalPeriods = 4
hoursPerPeriod = 168

Watch out! An increasing number of typeperiods crucially influences the computational load due to
the introduced seasonal storage constraint (all subsequent alternating typeperiods must be modeled).
Evidence has shown, that especially at the beginning when increasing the noTypicalPeriods parameter,
the computational load increases rapidly. For higher numbers, the constellation of subsequent weeks
varies which can even result in lower weeks to model (noTypicalPeriods : modeledWeeks - 2 : 3, 4 : 9, 6
: 14, 8 : 18, 10 : 21, 12 : 20). These values may change for each individual model with its constellation
of timeseries for intermittent resources and demand.

If you don’t use tsam you must choose the time range to be modeled (default of 8760 hours for the entire
year)

# simulation timesteps
(offset, length) = (0,8760) # time step selection

Remarks on Input Data

In this section input data that must be additionally considered in the input excel sheet are listed to
simplify the application for users:

Tranmission System Input File:

Sheet “Global”:

• transDist parameter to concatenate distribution system data: 1 or 0

• tsam parameter: 1 or 0
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Sheet “Site”:

• microgrid setting to select desired microgrids per region: list

• multiplier to scale chosen microgrids: list

Distribution System Input File:

Sheet “Site”:

• base voltage of the distribution system level: value

• ref-node to indicate reference node with transformer interface: 1 or 0

• min/max-voltage to define permissible voltage range: value

Note: Permissible voltage range must be adjusted to the length of microgrid branches

In our case study for German distribution systems we identified a possible voltage range from 0.95
to 1.03 per unit. These values are representative for actual grids which have more nodes that can be
modeled. Therefore, to get a meaningful voltage constraint, the range must be appropriately reduced.

Sheet “Commodity”:

• commodities must be defined for all nodes that are desired to be constrained by a vertex rule of
the commodity (for the transmission of the commodity also if no processes of the commodity are
defined)

Sheet “Process”:

• the power factor parameter pf-min: value

• declare own slack process for better debugging on distribution system level

• if the expansion of distribution system components is intended to be included into the optimiza-
tion, price parameters must be defined (e.g. when comparing two different technologies to cover
the heat demand)

Sheet “Transmission”:

• the impedance parameters are determining for the power flow model to be applied (resistance, reactance):

– (#N/A, #N/A) : transport model

– (#N/A, >0) : DCPF model

– (>0, >0) : LinDistFlow model

• transmission distribution interface transformer parameter must be chosen carefully (similar to
voltage range determination)

Sheet “SupIm”:

• timeseries for intermittent ressources are automatically taken from the regions the microgrids are
defined in. Hence timeseries here are defined with zero vectors.
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How to Determine Multipliers

The residential quantities such as demand and capacity potentials have been defined for the entire country
in only two microgrids with 25 nodes together. Obviously, to describe the entire country they must be
scaled. The multipliers must be carefully derived to represent the desired system. The default microgrids
and the related multipliers have been derived to include all residential buildings in Germany as follows:

We categorized the DS into two possible microgrid modules: Living areas differ in some aspects such as
population density, PV potentials and mobility requirements. Therefore two general areas are defined:
rural (𝑟) and urban (𝑢). The population distribution by regions is categorized into these categories by
summing up all people living in cities greater than 50 thousand inhabitants to the urban population 𝑃𝑢

for each region. The remaining population is allocated to the rural population 𝑃𝑟. To represent the
correct ratio of single family houses (𝑆) to multi apartment houses (𝑀 ) within the microgrids the range
of house category shares 𝑥 = 𝜁𝑆

𝜁𝑀
for rural and urban areas averaged for Germany are estimated (no

detailed information about the region-wise distribution of inhabitants by 𝑆 and 𝑀 could be found).

To meet the exact number of 𝑆 and 𝑀 in Germany the defined microgrid must be scaled appropriately.
Accordingly, two parameters are aimed to be determined: the multipliers for each region to scale the
defined microgrid and the best fitting house category ratio 𝑥 within the given range. As the given rural
and urban population per region on one side is given as a quantity of people but on the other side the
ratio 𝑥 is given for house categories, the latter entity must be converted to a ratio of people shares
𝑦 = 𝜌𝑆

𝜌𝑀
. The assumptions of two persons living in an average German household and 7 households per

apartment house are used to determine the number of residents per 𝑆 (𝜖𝑆 = 2) and M (𝜖𝑀 = 14). Next,
the population ratio can be calculated:

𝜌𝑆
𝜌𝑀

= 𝑥
𝜖𝑆
𝜖𝑀

=
𝜁𝑆
𝜁𝑀

𝜖𝑆
𝜖𝑀⏟  ⏞  

𝛼

Combining 𝜌𝑆 = 𝛼𝜌𝑀 and 𝜌𝑆 + 𝜌𝑀 = 1 yields:

𝜌𝑆 =
𝛼

1 + 𝛼

Next, the most representative value of 𝑥 is determined by varying it until the resulting total quantity of 𝑆
and 𝑀 for overall Germany is as close as possible to values derived with a second top-down approach:
The total number of residential buildings in Germany is taken and divided into both house categories.
Finally, the resulting share 𝜌𝑆 can be multiplied with the population 𝑃 of the respective area to get the
number of people 𝑃𝑆 living in single family houses for both area types. To get the required multipliers
𝜇, 𝑃𝑆 needs to be divided by 𝜖𝑆 and the defined number of 𝑆 in the respective microgrid category:

𝜇 =
𝑃𝑆

𝜖𝑆𝑆

Only this parameter 𝜇𝑆 is required, as the ratio between 𝑆 and 𝑀 is determined with 𝑥.

Note: Multipliers must fit to the defined microgrids and the research question

The modular definition of the microgrids and the scaling can be freely performed depending on the re-
search topic. However, please keep in mind that the interdependency between microgrid definition and
multiplier derivation is important to finally depict the desired energy system as realistically as possi-
ble. The introduced approach to determine the multipliers may not be suitable for different microgrid
structures!
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Remarks on the Scenario Shifting Approach

When transmission and distribution demand data are combined, special care must be taken to avoid a
double counting. For instance, the default electricity demand curve per German regions already include
the residential electricity consumption. In the conducted study, a central research question was to analyze
the impact of increasing shares of active distgribution grids. Therefore, when introducing distribution
systems with demand curves for households the hourly total distribution system demand within a region
must be substracted from the respective transmission system demand.

To secure comparability between scenarios, the total demand must be constant. Thus, if the distribu-
tion network is only partly modeled as active grid, the demand must be shifted between both system
levels. For the basic electricity demand, this is implemented in the transdist.py module with the
shift_demand function that subtracts less from the top region demand with decreasing distribution net-
work shares (transdist_share). When multiple scenarios are modeled, it is recommended to run first the
100% active distribution grid scenario, as thereby the maximum demand for mobility and heat can be
stored to be used in subsequent scenarios with lower transdist_shares.

### Shift demand between scenarios for better comparability
def shift_demand(data, microgrid_data_input, set_number, type_nr, demand_
→˓shift, loadprofile_BEV, top_region_name,

mobility_transmission_shift, heat_transmission_shift,
→˓transdist_eff):

### subtract private electricity demand at distribution level
→˓(increased by tdi efficiency) from transmission level considering line
→˓losses

data['demand'].iloc[:, set_number] -= demand_shift.loc[:, pd.
→˓IndexSlice[:, 'electricity']].sum(axis=1) / transdist_eff

if data['transdist_share'].values[0] == 1:
### store scaled full mobility and heat demand for 100% active

→˓distribution network for subsequent scenarios
mobility_transmission_shift[(top_region_name, type_nr)] =

→˓loadprofile_BEV * demand_shift.loc[:, pd.IndexSlice[:, 'mobility']].
→˓sum().sum() / transdist_eff

COP_ts = microgrid_data_input['eff_factor'].loc[:, pd.IndexSlice[:,
→˓ 'heatpump_air']].iloc[:,0].squeeze() #get COP timeseries to transform
→˓hourly heat to electricity demand

heat_transmission_shift[(top_region_name, type_nr)] = demand_shift.
→˓loc[:, pd.IndexSlice[:, 'heat']].sum(axis=1).divide(COP_ts).fillna(0) /
→˓transdist_eff

return data, mobility_transmission_shift, heat_transmission_shift

Note: Transformer losses at the interface are important for scenario comparability

When modeling a fully active distribution grid a higher share of the demand is modeled within the
distribution system. Having energy flows between both systems and a transformer at the interface that
is modeled with losses, the total energy that is required by the energy system increases. Therefore, to
compare equal energy requirements for all scenarios, these losses are considered with the ‘transdist_eff’
parameter in the shifting processes.

In comparison, the central demand does not include charging of battery electric vehicles or the
widespread application of heatpumps. Hence, for the mobility and heat demand the scenario module
has been extended with a function to consider this. The variable_distribution_share function on one
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side shifts the inflexible demand curves to the transmission system level. On the other side, it ensures
that the PV-potentials (depending on the distribution grid input parameters) are constant for all scenarios.

def variable_distribution_share(data, cross_scenario_data, transdist_
→˓share):

data['transdist_share'] = pd.Series([transdist_share]) # defined as
→˓series to avoid validation error

if transdist_share < 1:
if bool(cross_scenario_data):

data['process'].loc[pd.IndexSlice[:, :, 'PV_utility_rooftop'],
→˓'cap-up'] =

data['process'].loc[pd.IndexSlice[:, :,'PV_utility_rooftop'],
→˓'cap-up'].values \

+ (1 - transdist_share) * cross_scenario_data['PV_cap_shift'].
→˓values

### read additional demand (BEV, Heat) from cross_scenario data
additional_demand_mobility = cross_scenario_data['mobility_

→˓transmission_shift']
additional_demand_heat = cross_scenario_data['heat_

→˓transmission_shift']
### add additional electricity demand for mobility and heat on

→˓transmission level
for col in data['demand']:

if col[0] in list(additional_demand_mobility.columns):
data['demand'].loc[:, col] += additional_demand_mobility.

→˓loc[:, col[0]] * (1 - transdist_share)
if col[0] in list(additional_demand_heat.columns):

data['demand'].loc[:, col] += additional_demand_heat.loc[:,
→˓ col[0]] * (1 - transdist_share)

return data, cross_scenario_data

The responsible transdist_share is determined in the scenario module, by adjusting the respective pa-
rameter (e.g. for a 66% active distribution grid):

def transdist66(data, cross_scenario_data):
data['global_prop'].loc[pd.IndexSlice[:, 'TransDist'], 'value'].

→˓iloc[0] = 1
data, cross_scenario_data = variable_distribution_share(data, cross_

→˓scenario_data, 0.66)
return data, cross_scenario_data

Before using the discussed scenario framework you should answer yourself the following question:

Do you want to consider different shares for active distribution systems?

• Yes - Than you need to fully understand the scenario implementations as described above.

• No - Than you basically need to know that using the default framework, the normal electricity
demand needs to be defined within the transmission system demand timeseries, but additional
electricity demand from sector coupling must not be included.
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CHAPTER 2

Features

• urbs is a linear programming optimization model for multi-commodity energy systems, their siz-
ing, development and utilization.

• It finds the minimum cost energy system to satisfy given demand timeseries for possibly multiple
commodities (e.g. electricity, heat).

• By default, operates on hourly-spaced timesteps (configurable) and can be used for intertemporal
optimization.

• Thanks to pandas, complex data analysis code is short and extensible.

• The model itself is quite small thanks to relying on the Pyomo package.

• urbs includes reporting and plotting functions for rapid scenario development.
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CHAPTER 3

Changes

3.1 2019-03-13 Version 1.0

• Maintenance: Modularity (only features which are used are build)

• Maintenance: New structure of documentation

• Feature: Time variable efficiency

• Feature: Objective function can be changed to CO2

• Feature: Intertemporal feature (expansion between years)

• Feature: Input validation (having easier to understand error messages due to Excel file)

• Feature: Reconstruction of partial feature

• Feature: Global constraints instead of Hacks

• Bugfixes: Many

3.2 2017-01-13 Version 0.7

• Maintenance: Model file urbs.py split into subfiles in folder urbs

• Feature: Usable area in site implemented as possible constraint

• Feature: Plot function (and get_timeseries) now support grouping of multiple sites

• Feature: Environmental commodity costs (e.g. emission taxes or other pollution externalities)

• Bugfix: column Overproduction in report sheet did not respect DSM
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3.3 2016-08-18 Version 0.6

• Demand Side Management Constraints added

• Process Constraints for partial operation added

• Various fixes in examples, docs and tutorials for Pyomo 4/Python 3 changes

3.4 2016-02-16 Version 0.5

• Support for Python 3 added

• Support for Pyomo 4 added, while maintaining Pyomo 3 support. Upgrading to Pyomo 4 is
advised, as support while be dropped with the next release to support new features.

• New feature: maximal power gradient for conversion processes

• Documentation: buyselldoc (expired) long explanation for Buy and Sell commodity types

• Documentation: Model Implementation full listing of sets, parameter, variables, objective function
and constraints in mathematical notation and textual explanation

• Documentation: updated installation notes in README.md

• Plotting: automatic sorting of time series by variance makes it easier to read stacked plots with
many technologies

3.5 2015-07-29 Version 0.4

• Additional commodity types Buy and Sell, which support time-dependent prices.

• Persistence functions load and save, based on pickle, allow saving and retrieving input data and
problem instances including results, for later re-plotting or re-analysis without having to solve
them again.

• Documenation: workflow tutorial added with example “Newsealand”

3.6 2014-12-05 Version 0.3

• Processes now support multiple inputs and multiple output commodities.

• As a consequence plot() now plots commodity balance by processes, not input commodities.

• urbs now supports input files with only a single site; simply delete all entries from the ‘Transmis-
sion’ spreadsheet and only use a single site name throughout your input.

• Moved hard-coded ‘Global CO2 limit’ constraint to dedicated “Hacks” spreadsheet, while the
constraint is add_hacks().

• More docstrings and comments in the main file urbs.py.
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CHAPTER 4

Screenshots

This is a typical result plot created by urbs.plot(), showing electricity generation and storage levels
in one site over 10 days (240 time steps):
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An exemplary comparison script comp.py shows how one can create automated cross-scenario analy-
ses with very few lines of pandas code. This resulting figure shows system costs and generated electricity
by energy source over five scenarios:
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CHAPTER 5

Dependencies

• Python versions 2.7 or 3.x are both supported.

• pyomo for model equations and as the interface to optimisation solvers (CPLEX, GLPK, Gurobi,
. . . ). Version 4 recommended, as version 3 support (a.k.a. as coopr.pyomo) will be dropped soon.

• matplotlib for plotting due to its capability to customise everything.

• pandas for input and result data handling, report generation

• Any solver supported by pyomo; suggestion: GLPK
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Python Module Index

u
urbs, 12
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Index

C
commodity_subset() (in module urbs), 63

U
urbs (module), 1, 3, 5, 12, 20, 22, 23, 28, 31, 35,

38, 39, 42, 49, 68, 77, 89, 96
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